Effects of High Forage/Concentrate Diet on Volatile Fatty Acid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Purification and Properties of Lactate Racemase from Lactobacillus Sake
The Journal of Biochemistry, Vol . 64, No. I, 1968 Purification and Properties of Lactate Racemase from Lactobacillus sake By TETSUG HIYAMA, SAKUzo FUKUI and KAKUO KITAHARA* (From the Institute of Applied Microbiology,University of Tokyo, Bunkyo-ku, Tokyo) (Received for publication, February 12, 1968) A lactate racemase [EC 5.1.2.1] was isolated and purified about 190 fold in specific activity from the sonic extract of Lactobacillus sake. The purified preparation was almost homogeneous by ultracentrifugal and electrophoretical analyses. Characteristic properties of the enzyme were as follows : (a) absorption spectrum showed a single peak at 274 my, (b) molecular weight was 25,000, (c) the enzyme did not require any additional cofactors and showed no activity of lactate dehydrogenase, (d) K, values were 1.7 •~ 10-2 M and 8.0 •~ 10-2 M for D and L-lactate, respectively, (e) optimal pH was 5.8-6.2, (f) an equilibrium point was at a molar ratio of 1/1 (L-isomer/D-isomer), (g) the enzyme activity was inhibited by atebrin, adenosine monosulfate, oxamate and some of Fe chelating agents, (h) pyruvate and acrylate were not incorporated into lactate during the reaction, and (i) exchange reaction of hydrogen between lactate and water did not occur during the reaction. Since the first observation on the enzy the addition of both NAD and pyridoxamine matic racemization of optical active lactate phosphate. In this paper we deal with the by lactic acid bacteria had been reported by purification and properties of the lactate KATAGIRI and KITAHARA in 1936 (1), racemases racemizing enzyme from the cells of L. -
Supplementary Materials
Supplementary Materials Figure S1. Differentially abundant spots between the mid-log phase cells grown on xylan or xylose. Red and blue circles denote spots with increased and decreased abundance respectively in the xylan growth condition. The identities of the circled spots are summarized in Table 3. Figure S2. Differentially abundant spots between the stationary phase cells grown on xylan or xylose. Red and blue circles denote spots with increased and decreased abundance respectively in the xylan growth condition. The identities of the circled spots are summarized in Table 4. S2 Table S1. Summary of the non-polysaccharide degrading proteins identified in the B. proteoclasticus cytosol by 2DE/MALDI-TOF. Protein Locus Location Score pI kDa Pep. Cov. Amino Acid Biosynthesis Acetylornithine aminotransferase, ArgD Bpr_I1809 C 1.7 × 10−4 5.1 43.9 11 34% Aspartate/tyrosine/aromatic aminotransferase Bpr_I2631 C 3.0 × 10−14 4.7 43.8 15 46% Aspartate-semialdehyde dehydrogenase, Asd Bpr_I1664 C 7.6 × 10−18 5.5 40.1 17 50% Branched-chain amino acid aminotransferase, IlvE Bpr_I1650 C 2.4 × 10−12 5.2 39.2 13 32% Cysteine synthase, CysK Bpr_I1089 C 1.9 × 10−13 5.0 32.3 18 72% Diaminopimelate dehydrogenase Bpr_I0298 C 9.6 × 10−16 5.6 35.8 16 49% Dihydrodipicolinate reductase, DapB Bpr_I2453 C 2.7 × 10−6 4.9 27.0 9 46% Glu/Leu/Phe/Val dehydrogenase Bpr_I2129 C 1.2 × 10−30 5.4 48.6 31 64% Imidazole glycerol phosphate synthase Bpr_I1240 C 8.0 × 10−3 4.7 22.5 8 44% glutamine amidotransferase subunit Ketol-acid reductoisomerase, IlvC Bpr_I1657 C 3.8 × 10−16 -
Nickel-Pincer Cofactor Biosynthesis Involves Larb-Catalyzed Pyridinium
Nickel-pincer cofactor biosynthesis involves LarB- catalyzed pyridinium carboxylation and LarE- dependent sacrificial sulfur insertion Benoît Desguina,b, Patrice Soumillionb, Pascal Holsb, and Robert P. Hausingera,1 aDepartment of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824; and bInstitute of Life Sciences, Université catholique de Louvain, B-1348 Louvain-La-Neuve, Belgium Edited by Tadhg P. Begley, Texas A&M University, College Station, TX, and accepted by the Editorial Board March 28, 2016 (received for review January 11, 2016) The lactate racemase enzyme (LarA) of Lactobacillus plantarum proteins) when incubated with ATP (1 mM), MgCl2 (12 mM), harbors a (SCS)Ni(II) pincer complex derived from nicotinic acid. and the other purified proteins, and the activity was stimulated Synthesis of the enzyme-bound cofactor requires LarB, LarC, and fivefold by inclusion of CoA (10 mM) (SI Appendix,Fig.S1A– LarE, which are widely distributed in microorganisms. The functions D). These results are consistent with the requirement of a small of the accessory proteins are unknown, but the LarB C terminus molecule produced by LarB being needed for development of resembles aminoimidazole ribonucleotide carboxylase/mutase, LarC Lar activity. To uncover the substrate of LarB, we replaced the binds Ni and could act in Ni delivery or storage, and LarE is a putative LarB-containing lysates in the LarA activation mixture with ATP-using enzyme of the pyrophosphatase-loop superfamily. Here, purified LarB and potential substrates. Because nicotinic acid is a precursor of the Lar cofactor (1) and LarB features partial we show that LarB carboxylates the pyridinium ring of nicotinic acid sequence identity with PurE, an aminoimidazole ribonucleotide adenine dinucleotide (NaAD) and cleaves the phosphoanhydride (AIR) mutase/carboxylase (4), we tested the possibility that bond to release AMP. -
Detoxification of Lignocellulose-Derived Microbial Inhibitory Compounds by Clostridium Beijerinckii NCIMB 8052 During Acetone-Butanol-Ethanol Fermentation
Detoxification of Lignocellulose-derived Microbial Inhibitory Compounds by Clostridium beijerinckii NCIMB 8052 during Acetone-Butanol-Ethanol Fermentation DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yan Zhang Graduate Program in Animal Sciences The Ohio State University 2013 Dissertation Committee: Thaddeus C. Ezeji, Advisor Steven C. Loerch Sandra G. Velleman Zhongtang Yu Venkat Gopalan Copyrighted by Yan Zhang 2013 Abstract Pretreatment and hydrolysis of lignocellulosic biomass to fermentable sugars generate a complex mixture of microbial inhibitors such as furan aldehydes (e.g., furfural), which at sublethal concentration in the fermentation medium can be tolerated or detoxified by acetone butanol ethanol (ABE)-producing Clostridium beijerinckii NCIMB 8052. The response of C. beijerinckii to furfural at the molecular level, however, has not been directly studied. Therefore, this study was to elucidate mechanism employed by C. beijerinckii to detoxify lignocellulose-derived microbial inhibitors and use this information to develop inhibitor-tolerant C. beijerinckii. Towards the long-term goal of developing inhibitor-tolerant Clostridium strains, the first objective was to evaluate ABE fermentation by C. beijerinckii using different proportions of Miscanthus giganteus hydrolysates as carbon source. Compared to the growth of C. beijerinckii in control medium, C. beijerinckii experienced different degrees of inhibition. The degree of inhibition was dose-dependent, and C. beijerinckii did not grow in P2 medium with greater than 25% (v/v) Miscanthus giganteus hydrolysates. To improve tolerance of C. beijerinckii to inhibitors, supplementation of P2 medium with undiluted (100%) Miscanthus giganteus hydrolysates with 4 g/L CaCO3 resulted in successful growth of and ABE production by C. -
The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota. -
Production of Butyric Acid and Hydrogen by Metabolically Engineered Mutants of Clostridium Tyrobutyricum
PRODUCTION OF BUTYRIC ACID AND HYDROGEN BY METABOLICALLY ENGINEERED MUTANTS OF CLOSTRIDIUM TYROBUTYRICUM DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Xiaoguang Liu, M.S. ***** The Ohio State University 2005 Dissertation committee: Approved by Professor Shang-Tian Yang, Adviser Professor Barbara E Wyslouzil Adviser Professor Hua Wang Department of Chemical Engineering ABSTRACT Butyric acid has many applications in chemical, food and pharmaceutical industries. The production of butyric acid by fermentation has become an increasingly attractive alternative to current petroleum-based chemical synthesis. Clostridium tyrobutyricum is an anaerobic bacterium producing butyric acid, acetic acid, hydrogen and carbon dioxide as its main products. Hydrogen, as an energy byproduct, can add value to the fermentation process. The goal of this project was to develop novel bioprocess to produce butyric acid and hydrogen economically by Clostridial mutants. Conventional fermentation technologies for butyric acid and hydrogen production are limited by low reactor productivity, product concentration and yield. In this project, novel engineered mutants of C. tyrobutyricum were created by gene manipulation and cell adaptation. Fermentation process was also optimized using immobilizing cells in the fibrous-bed bioreactor (FBB) to enhance butyric acid and hydrogen production. First, metabolic engineered mutants with knocked-out acetate formation pathway were created and characterized. Gene inactivation technology was used to delete the genes of phosphotransacetylase (PTA) and acetate kinase (AK), two key enzymes in the acetate-producing pathway of C. tyrobutyricum, through homologous recombination. The metabolic engineered mutants were characterized by Southern hybridization, enzyme assay, protein expression and metabolites production. -
Nzvi Impacts Substrate Conversion and Microbiome Composition in Chain Elongation from D- and L-Lactate Substrates
fbioe-09-666582 June 9, 2021 Time: 17:45 # 1 ORIGINAL RESEARCH published: 15 June 2021 doi: 10.3389/fbioe.2021.666582 nZVI Impacts Substrate Conversion and Microbiome Composition in Chain Elongation From D- and L-Lactate Substrates Carlos A. Contreras-Dávila, Johan Esveld, Cees J. N. Buisman and David P. B. T. B. Strik* Environmental Technology, Wageningen University & Research, Wageningen, Netherlands Medium-chain carboxylates (MCC) derived from biomass biorefining are attractive biochemicals to uncouple the production of a wide array of products from the use of non-renewable sources. Biological conversion of biomass-derived lactate during secondary fermentation can be steered to produce a variety of MCC through chain Edited by: Caixia Wan, elongation. We explored the effects of zero-valent iron nanoparticles (nZVI) and University of Missouri, United States lactate enantiomers on substrate consumption, product formation and microbiome Reviewed by: composition in batch lactate-based chain elongation. In abiotic tests, nZVI supported Lan Wang, chemical hydrolysis of lactate oligomers present in concentrated lactic acid. In Institute of Process Engineering (CAS), China fermentation experiments, nZVI created favorable conditions for either chain-elongating Sergio Revah, or propionate-producing microbiomes in a dose-dependent manner. Improved lactate Metropolitan Autonomous University, · −1 Mexico conversion rates and n-caproate production were promoted at 0.5–2 g nZVI L while ≥ · −1 *Correspondence: propionate formation became relevant at 3.5 g nZVI L . Even-chain carboxylates David P. B. T. B. Strik (n-butyrate) were produced when using enantiopure and racemic lactate with lactate [email protected] conversion rates increased in nZVI presence (1 g·L−1). -
SI Appendix Index 1
SI Appendix Index Calculating chemical attributes using EC-BLAST ................................................................................ 2 Chemical attributes in isomerase reactions ............................................................................................ 3 Bond changes …..................................................................................................................................... 3 Reaction centres …................................................................................................................................. 5 Substrates and products …..................................................................................................................... 6 Comparative analysis …........................................................................................................................ 7 Racemases and epimerases (EC 5.1) ….................................................................................................. 7 Intramolecular oxidoreductases (EC 5.3) …........................................................................................... 8 Intramolecular transferases (EC 5.4) ….................................................................................................. 9 Supporting references …....................................................................................................................... 10 Fig. S1. Overview …............................................................................................................................ -
Unravelling Lactate‐Acetate and Sugar Conversion Into Butyrate By
Environmental Microbiology (2020) 22(11), 4863–4875 doi:10.1111/1462-2920.15269 Unravelling lactate-acetate and sugar conversion into butyrate by intestinal Anaerobutyricum and Anaerostipes species by comparative proteogenomics Sudarshan A. Shetty ,1 Sjef Boeren,2 study demonstrates that A. soehngenii and several Thi P. N. Bui,1,3 Hauke Smidt1 and Willem M. de Vos 1,4* related Anaerobutyricum and Anaerostipes spp. are 1Laboratory of Microbiology, Wageningen University and highly adapted for a lifestyle involving lactate plus Research, Wageningen, The Netherlands. acetate utilization in the human intestinal tract. 2Laboratory of Biochemistry, Wageningen University and Research, Wageningen, The Netherlands. Introduction 3No Caelus Pharmaceuticals, Armsterdam, The Netherlands. The major fermentation end products in anaerobic colonic sugar fermentations are the short chain fatty acids 4Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. (SCFAs) acetate, propionate and butyrate. While all these SCFAs confer health benefits, butyrate is used to fuel colonic enterocytes and has been shown to inhibit Summary the proliferation and to induce apoptosis of tumour cells The D- and L-forms of lactate are important fermenta- (McMillan et al., 2003; Thangaraju et al., 2009; Topping tion metabolites produced by intestinal bacteria but and Clifton, 2001). Butyrate is also suggested to play a are found to negatively affect mucosal barrier func- role in gene expression as it is a known inhibitor of his- tion and human health. Both enantiomers of lactate tone deacetylases, and recently it was demonstrated that can be converted with acetate into the presumed ben- butyrate promotes histone crotonylation in vitro eficial butyrate by a phylogenetically related group of (Davie, 2003; Fellows et al., 2018). -
Perspectives
PERSPECTIVES in a number of enzymes such as [FeFe]- hydrogenase, [FeNi]-hydrogenase, Natural inspirations for metal–ligand [Fe]-hydrogenase, lactate racemase and alcohol dehydrogenase. In this Perspective, cooperative catalysis we discuss these examples of biological cooperative catalysis and how, inspired by these naturally occurring systems, chemists Matthew D. Wodrich and Xile Hu have sought to create functional analogues. Abstract | In conventional homogeneous catalysis, supporting ligands act as We also speculate that cooperative catalysis spectators that do not interact directly with substrates. However, in metal–ligand may be at play in [NiFe]-carbon monoxide cooperative catalysis, ligands are involved in facilitating reaction pathways that dehydrogenase ([NiFe]-CODHase), which may inspire the design of synthetic CO2 would be less favourable were they to occur solely at the metal centre. This reduction catalysts making use of these catalysis paradigm has been known for some time, in part because it is at play motifs. Each section in the following in enzyme catalysis. For example, studies of hydrogenative and dehydrogenative discussion is devoted to an enzyme and its enzymes have revealed striking details of metal–ligand cooperative catalysis synthetic models. that involve functional groups proximal to metal active sites. In addition to [FeFe]- and [NiFe]-hydrogenase the more well-known [FeFe]-hydrogenase and [NiFe]-hydrogenase enzymes, Hydrogenases are enzymes that catalyse [Fe]-hydrogenase, lactate racemase and alcohol dehydrogenase each makes use (REF. 5) the production and utilization of H2 . of cooperative catalysis. This Perspective highlights these enzymatic examples of Three variants of hydrogenase enzymes exist metal–ligand cooperative catalysis and describes functional bioinspired which are named [FeFe]-, [NiFe]- and [Fe]-hydrogenase because their active molecular catalysts that also make use of these motifs. -
Uncovering a Superfamily of Nickel-Dependent Hydroxyacid
www.nature.com/scientificreports OPEN Uncovering a superfamily of nickel‑dependent hydroxyacid racemases and epimerases Benoît Desguin 1*, Julian Urdiain‑Arraiza1, Matthieu Da Costa2, Matthias Fellner 3,4, Jian Hu4,5, Robert P. Hausinger 4,6, Tom Desmet 2, Pascal Hols 1 & Patrice Soumillion 1 Isomerization reactions are fundamental in biology. Lactate racemase, which isomerizes L‑ and D‑lactate, is composed of the LarA protein and a nickel‑containing cofactor, the nickel‑pincer nucleotide (NPN). In this study, we show that LarA is part of a superfamily containing many diferent enzymes. We overexpressed and purifed 13 lactate racemase homologs, incorporated the NPN cofactor, and assayed the isomerization of diferent substrates guided by gene context analysis. We discovered two malate racemases, one phenyllactate racemase, one α‑hydroxyglutarate racemase, two D‑gluconate 2‑epimerases, and one short‑chain aliphatic α‑hydroxyacid racemase among the tested enzymes. We solved the structure of a malate racemase apoprotein and used it, along with the previously described structures of lactate racemase holoprotein and D‑gluconate epimerase apoprotein, to identify key residues involved in substrate binding. This study demonstrates that the NPN cofactor is used by a diverse superfamily of α‑hydroxyacid racemases and epimerases, widely expanding the scope of NPN‑dependent enzymes. Chemical isomers exhibit subtle changes in their structures, yet can show dramatic diferences in biological properties1. Interconversions of isomers by isomerases are important in the metabolism of living organisms and have many applications in biocatalysis, biotechnology, and drug discovery2. Tese enzymes are divided into 6 classes, depending on the type of reaction catalyzed: racemases and epimerases, cis–trans isomerases, intramo- lecular oxidoreductases, intramolecular transferases, intramolecular lyases, and other isomerases3. -
Supplemental Table S1: Comparison of the Deleted Genes in the Genome-Reduced Strains
Supplemental Table S1: Comparison of the deleted genes in the genome-reduced strains Legend 1 Locus tag according to the reference genome sequence of B. subtilis 168 (NC_000964) Genes highlighted in blue have been deleted from the respective strains Genes highlighted in green have been inserted into the indicated strain, they are present in all following strains Regions highlighted in red could not be deleted as a unit Regions highlighted in orange were not deleted in the genome-reduced strains since their deletion resulted in severe growth defects Gene BSU_number 1 Function ∆6 IIG-Bs27-47-24 PG10 PS38 dnaA BSU00010 replication initiation protein dnaN BSU00020 DNA polymerase III (beta subunit), beta clamp yaaA BSU00030 unknown recF BSU00040 repair, recombination remB BSU00050 involved in the activation of biofilm matrix biosynthetic operons gyrB BSU00060 DNA-Gyrase (subunit B) gyrA BSU00070 DNA-Gyrase (subunit A) rrnO-16S- trnO-Ala- trnO-Ile- rrnO-23S- rrnO-5S yaaC BSU00080 unknown guaB BSU00090 IMP dehydrogenase dacA BSU00100 penicillin-binding protein 5*, D-alanyl-D-alanine carboxypeptidase pdxS BSU00110 pyridoxal-5'-phosphate synthase (synthase domain) pdxT BSU00120 pyridoxal-5'-phosphate synthase (glutaminase domain) serS BSU00130 seryl-tRNA-synthetase trnSL-Ser1 dck BSU00140 deoxyadenosin/deoxycytidine kinase dgk BSU00150 deoxyguanosine kinase yaaH BSU00160 general stress protein, survival of ethanol stress, SafA-dependent spore coat yaaI BSU00170 general stress protein, similar to isochorismatase yaaJ BSU00180 tRNA specific adenosine