Protecting Free and Open Communications on the Internet Against Man-In-The-Middle Attacks on Third-Party Software: We’Re FOCI’D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RSA-512 Certificates Abused in the Wild
RSA-512 Certificates abused in the wild During recent weeks we have observed several interesting publications which have a direct relation to an investigation we worked on recently. On one hand there was a Certificate Authority being revoked by Mozilla, Microsoft and Google (Chrome), on the other hand there was the disclosure of a malware attack by Mikko Hypponen (FSecure) using a government issued certificate signed by the same Certificate Authority. That case however is not self-contained and a whole range of malicious software had been signed with valid certificates. The malicious software involved was used in targeted attacks focused on governments, political organizations and the defense industry. The big question is of course, what happened, and how did the attackers obtain access to these certificates? We will explain here in detail how the attackers have used known techniques to bypass the Microsoft Windows code signing security model. Recently Mikko Hypponen wrote a blog on the F-Secure weblog (http://www.f-secure.com/weblog/archives/00002269.html) detailing the discovery of a certificate used to sign in the wild malware. Specifically this malware was embedded in a PDF exploit and shipped in August 2011. Initially Mikko also believed the certificate was stolen, as that is very common in these days, with a large amount of malware families having support, or optional support, for stealing certificates from the infected system. Apparently someone Mikko spoke to mentioned something along the lines that it had been stolen a long time ago. During the GovCert.nl symposium Mikko mentioned the certificate again, but now he mentioned that according to the people involved with investigating the case in Malaysia it likely wasn't stolen. -
Why We Should Consider the Plurality of Hacker and Maker Cultures 2017
Repositorium für die Medienwissenschaft Sebastian Kubitschko; Annika Richterich; Karin Wenz „There Simply Is No Unified Hacker Movement.“ Why We Should Consider the Plurality of Hacker and Maker Cultures 2017 https://doi.org/10.25969/mediarep/1115 Veröffentlichungsversion / published version Zeitschriftenartikel / journal article Empfohlene Zitierung / Suggested Citation: Kubitschko, Sebastian; Richterich, Annika; Wenz, Karin: „There Simply Is No Unified Hacker Movement.“ Why We Should Consider the Plurality of Hacker and Maker Cultures. In: Digital Culture & Society, Jg. 3 (2017), Nr. 1, S. 185– 195. DOI: https://doi.org/10.25969/mediarep/1115. Erstmalig hier erschienen / Initial publication here: https://doi.org/10.14361/dcs-2017-0112 Nutzungsbedingungen: Terms of use: Dieser Text wird unter einer Creative Commons - This document is made available under a creative commons - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 Attribution - Non Commercial - No Derivatives 4.0 License. For Lizenz zur Verfügung gestellt. Nähere Auskünfte zu dieser Lizenz more information see: finden Sie hier: https://creativecommons.org/licenses/by-nc-nd/4.0 https://creativecommons.org/licenses/by-nc-nd/4.0 “There Simply Is No Unified Hacker Movement.” Why We Should Consider the Plurality of Hacker and Maker Cultures Sebastian Kubitschko in Conversation with Annika Richterich and Karin Wenz Sebastian Kubitschko is a postdoctoral researcher at the Centre for Media, Communication and Information Research (ZeMKI) at the University of Bremen in Germany. His main research fields are political communication, social movements and civil society organisations. In order to address the relevance of new forms of techno-political civic engagement, he has conducted qualitative, empirical research on one of the world’s oldest and largest hacker organisations, the Chaos Computer Club (CCC). -
TLS Attacks & DNS Security
IAIK TLS Attacks & DNS Security Information Security 2019 Johannes Feichtner [email protected] IAIK Outline TCP / IP Model ● Browser Issues Application SSLStrip Transport MITM Attack revisited Network Link layer ● PKI Attacks (Ethernet, WLAN, LTE…) Weaknesses HTTP TLS / SSL FLAME FTP DNS Telnet SSH ● Implementation Attacks ... ● Protocol Attacks ● DNS Security IAIK Review: TLS Services All applications running TLS are provided with three essential services Authentication HTTPS FTPS Verify identity of client and server SMTPS ... Data Integrity Detect message tampering and forgery, TLS e.g. malicious Man-in-the-middle TCP IP Encryption Ensure privacy of exchanged communication Note: Technically, not all services are required to be used Can raise risk for security issues! IAIK Review: TLS Handshake RFC 5246 = Establish parameters for cryptographically secure data channel Full handshake Client Server scenario! Optional: ClientHello 1 Only with ServerHello Client TLS! Certificate 2 ServerKeyExchange Certificate CertificateRequest ClientKeyExchange ServerHelloDone CertificateVerify 3 ChangeCipherSpec Finished ChangeCipherSpec 4 Finished Application Data Application Data IAIK Review: Certificates Source: http://goo.gl/4qYsPz ● Certificate Authority (CA) = Third party, trusted by both the subject (owner) of the certificate and the party (site) relying upon the certificate ● Browsers ship with set of > 130 trust stores (root CAs) IAIK Browser Issues Overview Focus: Relationship between TLS and HTTP Problem? ● Attacker wants to access encrypted data ● Browsers also have to deal with legacy websites Enforcing max. security level would „break“ connectivity to many sites Attack Vectors ● SSLStrip ● MITM Attack …and somehow related: Cookie Stealing due to absent „Secure“ flag… IAIK Review: ARP Poisoning How? Attacker a) Join WLAN, ● Sniff data start ARP Poisoning ● Manipulate data b) Create own AP ● Attack HTTPS connections E.g. -
Web and Mobile Security
Cyber Security Body of Knowledge: Web and Mobile Security Sergio Maffeis Imperial College London bristol.ac.uk © Crown Copyright, The National Cyber Security Centre 2021. This information is licensed under the Open Government Licence v3.0. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open- government-licence/. When you use this information under the Open Government Licence, you should include the following attribution: CyBOK Web & Mobile Security Knowledge Area Issue 1.0 © Crown Copyright, The National Cyber Security Centre 2021, licensed under the Open Government Licence http://www.nationalarchives.gov.uk/doc/open- government-licence/. The CyBOK project would like to understand how the CyBOK is being used and its uptake. The project would like organisations using, or intending to use, CyBOK for the purposes of education, training, course development, professional development etc. to contact it at [email protected] to let the project know how they are using CyBOK. bristol.ac.uk Web & Mobile Security KA • This webinar covers and complements selected topics from the “Web & Mobile Security Knowledge Area - Issue 1.0” document [WMS-KA for short] • “The purpose of this Knowledge Area is to provide an overview of security mechanisms, attacks and defences in modern web and mobile ecosystems.” • We assume basic knowledge of the web and mobile platforms – The WMS-KA also covers some of the basic concepts assumed here Web and Mobile Security 3 Scope • The focus of WMS-KA is on the intersection of mobile and web security, as a result of recent appification and webification trends. – The KA does not cover specific mobile-only aspects including mobile networks, mobile malware, side channels. -
SSL/TLS Interception Proxies and Transitive Trust Jeff Jarmoc Dell Secureworks Counter Threat Unit℠ Threat Intelligence
SSL/TLS Interception Proxies and Transitive Trust Jeff Jarmoc Dell SecureWorks Counter Threat Unit℠ Threat Intelligence Presented at Black Hat Europe – March 14, 2012. Introduction Secure Sockets Layer (SSL) [1] and its successor Transport Layer Security (TLS) [2] have become key components of the modern Internet. The privacy, integrity, and authenticity [3] [4] provided by these protocols are critical to allowing sensitive communications to occur. Without these systems, e- commerce, online banking, and business-to-business exchange of information would likely be far less frequent. Threat actors have also recognized the benefits of transport security, and they are increasingly turning to SSL to hide their activities. Advanced Persistent Threat (APT) attackers [5], botnets [6], and even commodity web attacks can leverage SSL encryption to evade detection. To counter these tactics, organizations are increasingly deploying security controls that intercept end- to-end encrypted channels. Web proxies, data loss prevention (DLP) systems, specialized threat detection solutions, and network intrusion prevention systems (NIPS) offer functionality to intercept, inspect, and filter encrypted traffic. Similar functionality is present in lawful intercept systems and solutions enabling the broad surveillance of encrypted communications by governments. Broadly classified as “SSL/TLS interception proxies,” these solutions act as a “man in the middle,” violating the end-to-end security promises of SSL. This type of interception comes at a cost. Intercepting SSL-encrypted connections sacrifices a degree of privacy and integrity for the benefit of content inspection, often at the risk of authenticity and endpoint validation. Implementers and designers of SSL interception proxies should consider these risks and understand how their systems operate in unusual circumstances. -
Cybersecurity Forum Für Datensicherheit, Datenschutz Und Datenethik 23
3. JAHRESTAGUNG CYBERSECURITY FORUM FÜR DATENSICHERHEIT, DATENSCHUTZ UND DATENETHIK 23. APRIL 2020, FRANKFURT AM MAIN #cyberffm Premium-Partner: Veranstaltungspartner: 3. JAHRESTAGUNG CYBERSECURITY DEUTSCHLAND — DIGITAL — SICHER — BSI Die Schadsoftware »Emotet« hat uns in den letzten Wochen und Monaten erneut schmerzhaft vor Augen geführt, welche Auswirkungen es haben kann, wenn man die Vorteile der Digitalisierung genießt, ohne die dafür unabdingbar notwendige Infor- mationssicherheit zu gewährleisten. Stadtverwaltungen, Behörden, Krankenhäuser und Universitäten wurden lahmgelegt, Unternehmen mussten zeitweise den Betrieb einstellen. Die Folgen sind für jeden von uns spürbar: Arbeitsplätze sind in Gefahr, Waren und Dienstleistungen können nicht mehr angeboten und verkauft werden, Krankenhäuser müssen die Patientenannahme ablehnen. Stadtverwaltungen sind nicht mehr arbeitsfähig und schließen ihre Bürgerbüros. Bürgerinnen und Bürger konnten keine Ausweise und Führerscheine beantragen, keine Autos anmelden und keine Sperrmüllabfuhr bestellen. Sogar Hochzeiten mussten verschoben werden. Und wie würde die Lage wohl erst aussehen, wenn wir tatsächlich in einer voll digitalisierten Welt lebten? Das BSI beschäftigt sich damit, in welchen Anwendungsfeldern der Digitalisierung Risiken entstehen könnten und wie wir diese Risiken kalkulierbar und beherrschbar machen können. Unsere Stärke ist es, Themen der Informationssicherheit gebündelt fachlich zu analysieren und aus der gemeinsamen Analyse heraus konkrete Angebote für unterschiedliche Zielgruppen -
Certificate Transparency: New Part of PKI Infrastructure
Certificate transparency: New part of PKI infrastructure A presentation by Dmitry Belyavsky, TCI ENOG 7 Moscow, May 26-27, 2014 About PKI *) *) PKI (public-key infrastructure) is a set of hardware, software, people, policies, and procedures needed to create, manage, distribute, use, store, and revoke digital certificates Check the server certificate The server certificate signed correctly by any of them? Many trusted CAs NO YES Everything seems to We warn the user be ok! DigiNotar case OCSP requests for the fake *.google.com certificate Source: FOX-IT, Interim Report, http://cryptome.org/0005/diginotar-insec.pdf PKI: extra trust Independent Trusted PKI source certificate DANE (RFC 6698) Certificate pinning Limited browsers support Mozilla Certificate Patrol, Chrome cache for Google certificates Certificate transparency (RFC 6962) Inspired by Google (Support in Chrome appeared) One of the authors - Ben Laurie (OpenSSL Founder) CA support – Comodo Certificate Transparency: how it works • Log accepts cert => SCT Client • Is SCT present and signed correctly? Client • Is SCT present and signed correctly? Auditor • Does log server behave correctly? Monitor • Any suspicious certs? Certificate Transparency: how it works Source: http://www.certificate-transparency.org Certificate Transparency how it works Source: http://www.certificate-transparency.org Certificate Transparency current state Google Chrome Support (33+) http://www.certificate-transparency.org/certificate-transparency-in-chrome Google Cert EV plan http://www.certificate-transparency.org/ev-ct-plan Certificate Transparency current state Open source code 2 pilot logs Certificate Transparency: protect from what? SAVE from MITM attack ü Warning from browser ü Site owner can watch logs for certs Do NOT SAVE from HEARTBLEED! Certificate transparency and Russian GOST crypto Russian GOST does not save from the MITM attack Algorithm SHA-256 >>> GOSTR34.11-2012 Key >>> GOST R 34.10-2012 Q&A Questions? Drop ‘em at: [email protected] . -
Security Economics in the HTTPS Value Chain
Security Economics in the HTTPS Value Chain Hadi Asghari*, Michel J.G. van Eeten*, Axel M. Arnbak+ & Nico A.N.M. van Eijk+1 * [email protected], [email protected] Delft University of Technology, Faculty of Technology Policy and Management + [email protected], [email protected] University van Amsterdam, Faculty of Law, Institute for Information Law Abstract. Even though we increasingly rely on HTTPS to secure Internet communications, several landmark incidents in recent years have illustrated that its security is deeply flawed. We present an extensive multi-disciplinary analysis that examines how the systemic vulnerabilities of the HTTPS authentication model could be addressed. We conceptualize the security issues from the perspective of the HTTPS value chain. We then discuss the breaches at several Certificate Authorities (CAs). Next, we explore the security incentives of CAs via the empirical analysis of the market for SSL certificates, based on the SSL Observatory dataset. This uncovers a surprising pattern: there is no race to the bottom. Rather, we find a highly concentrated market with very large price differences among suppliers and limited price competition. We explain this pattern and explore what it tells us about the security incentives of CAs, including how market leaders seem to benefit from the status quo. In light of these findings, we look at regulatory and technical proposals to address the systemic vulnerabilities in the HTTPS value chain, in particular the EU eSignatures proposal that seeks to strictly regulate HTTPS communications. Keywords: HTTPS, Cybersecurity, Internet Governance, Constitutional Values, E-Commerce, Value Chain Analysis, Security Economics, eSignatures Regulation, SSL, TLS, Digital Certificates, Certificate Authorities. -
Ethical Hacking
Ethical Hacking Alana Maurushat University of Ottawa Press ETHICAL HACKING ETHICAL HACKING Alana Maurushat University of Ottawa Press 2019 The University of Ottawa Press (UOP) is proud to be the oldest of the francophone university presses in Canada and the only bilingual university publisher in North America. Since 1936, UOP has been “enriching intellectual and cultural discourse” by producing peer-reviewed and award-winning books in the humanities and social sciences, in French or in English. Library and Archives Canada Cataloguing in Publication Title: Ethical hacking / Alana Maurushat. Names: Maurushat, Alana, author. Description: Includes bibliographical references. Identifiers: Canadiana (print) 20190087447 | Canadiana (ebook) 2019008748X | ISBN 9780776627915 (softcover) | ISBN 9780776627922 (PDF) | ISBN 9780776627939 (EPUB) | ISBN 9780776627946 (Kindle) Subjects: LCSH: Hacking—Moral and ethical aspects—Case studies. | LCGFT: Case studies. Classification: LCC HV6773 .M38 2019 | DDC 364.16/8—dc23 Legal Deposit: First Quarter 2019 Library and Archives Canada © Alana Maurushat, 2019, under Creative Commons License Attribution— NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ Printed and bound in Canada by Gauvin Press Copy editing Robbie McCaw Proofreading Robert Ferguson Typesetting CS Cover design Édiscript enr. and Elizabeth Schwaiger Cover image Fragmented Memory by Phillip David Stearns, n.d., Personal Data, Software, Jacquard Woven Cotton. Image © Phillip David Stearns, reproduced with kind permission from the artist. The University of Ottawa Press gratefully acknowledges the support extended to its publishing list by Canadian Heritage through the Canada Book Fund, by the Canada Council for the Arts, by the Ontario Arts Council, by the Federation for the Humanities and Social Sciences through the Awards to Scholarly Publications Program, and by the University of Ottawa. -
The State of SSL Security
THE STATE OF SSL SECURITY SSL OF STATE THE White Paper The State of SSL Security Why Secure Sockets Layer Certificates Remain Vital to Online Safety The State of SSL Security: Why Secure Sockets Layer Certificates Remain Vital to Online Safety The State of SSL Security Contents What SSL is—and why it matters . .3 . Different levels of validation, different levels of trust . .4 . SSL under siege. 5 Emerging SSL trends: protecting the fragile trust ecosystem. 6 Why working with a trusted, industry-leading vendor is critical . 8. Conclusion . 9 The State of SSL Security: Why Secure Sockets Layer Certificates Remain Vital to Online Safety Without adequate security, online transactions—and the Internet as we know it— could not serve as a feasible platform for global commerce, transmission of data, or the sharing of reliable information. SSL security is the easiest, most cost-effective way to provide that strong protection. Yet high-profile SSL hacking incidents have filled the news headlines recently. Poor security practices by secure sockets layer (SSL) Certificate Authorities (CAs), coupled with persistent outcries from industry detractors that the CA model is no longer viable, caused the digital certificate to have a challenging year in 2011. But SSL itself is not the problem. Rather, the culprits tend to be weak validation, lax oversight of third-party authenticating entities, failure to use best practices to secure facilities, or other factors that are less a matter of the technology than of operator error. SSL itself is still critical to keeping online transactions safe. The real issue is that businesses considering SSL should remember that their choice of vendor matters—significantly. -
Legacy of Heartbleed: MITM and Revoked Certificates
Legacy of Heartbleed: MITM and Revoked Certificates Alexey Busygin [email protected] NeoBIT Notable Private Key Leaks • 2010 – DigiCert Sdn Bhd. issued certificates with 512-bit keys • 2012 – Trustwave issued CA certificate for one of its customers DLP system • 2013 – DigiNotar CA was totally compromised • 2014 – Heartbleed bug caused certificate revocation storm. 500000+ certs to be revoked • 2015 – RSA-CRT private key leaks • 2017 – Cloudbleed bug in Cloudflare reverse proxies 2 Checking Certificate Revocation Status: Certificate Revocation Lists (CRL) • CAs publish CRLs – lists of revoked certificate serial numbers • Normally certificate contains URL of the corresponding CRL Why it’s not OK? CRLs are not appropriate for online checks: • Excess size (up to 1 MB) • Vulnerable to replay attacks 3 Checking Certificate Revocation Status: Online Certificate Status Protocol (OCSP) • CAs maintain OCSP responders answering with certificate revocation status • Normally certificate contains URL of the OCSP responder • OCSP provides optional replay attack protection Why it’s not OK? • Slows down connection establishment • Browsing history leaks to CA • OCSP responder is DDoS target 4 Checking Certificate Revocation Status: OCSP Stapling • No browsing history leaks • Choose one: o Replay attack protection o TLS server side OCSP response caching: Minimal impact on connection establishment time Reduced load on OCSP responder Why it’s not OK? • Stapled OCSP responses are optional and may be stripped by MITM • OCSP responder is DDoS target (if replay -
Hacktivism Cyberspace Has Become the New Medium for Political Voices
White Paper Hacktivism Cyberspace has become the new medium for political voices By François Paget, McAfee Labs™ Table of Contents The Anonymous Movement 4 Origins 4 Defining the movement 6 WikiLeaks meets Anonymous 7 Fifteen Months of Activity 10 Arab Spring 10 HBGary 11 The Sony ordeal 11 Lulz security and denouncements 12 Groups surrounding LulzSec 13 Green rights 14 Other operations 15 AntiSec, doxing, and copwatching 16 Police responses 17 Anonymous in the streets 18 Manipulation and pluralism 20 Operation Megaupload 21 Communications 21 Social networks and websites 21 IRC 22 Anonymity 23 DDoS Tools 24 Cyberdissidents 25 Telecomix 26 Other achievements 27 Patriots and Cyberwarriors 28 Backlash against Anonymous 29 TeaMp0isoN 30 Other achievements 30 Conclusion 32 2 Hacktivism What is hacktivism? It combines politics, the Internet, and other elements. Let’s start with the political. Activism, a political movement emphasising direct action, is the inspiration for hacktivism. Think of Greenpeace activists who go to sea to disrupt whaling campaigns. Think of the many demonstrators who protested against human rights violations in China by trying to put out the Olympic flame during its world tour in 2008. Think of the thousands of activists who responded to the Adbusters call in July 2011 to peacefully occupy a New York City park as part of Occupy Wall Street. Adding the online activity of hacking (with both good and bad connotations) to political activism gives us hacktivism. One source claims this term was first used in an article on the filmmaker Shu Lea Cheang; the article was written by Jason Sack and published in InfoNation in 1995.