Iranian Cyber-Activities in the Context of Regional Rivalries and International Tensions

Total Page:16

File Type:pdf, Size:1020Kb

Iranian Cyber-Activities in the Context of Regional Rivalries and International Tensions CSS CYBER DEFENSE PROJECT Hotspot Analysis: Iranian cyber-activities in the context of regional rivalries and international tensions Zürich, May 2019 Version 1 Risk and Resilience Team Center for Security Studies (CSS), ETH Zürich Iranian cyber-activities in the context of regional rivalries and international tensions Authors: Marie Baezner © 2019 Center for Security Studies (CSS), ETH Zürich Contact: Center for Security Studies Haldeneggsteig 4 ETH Zürich CH-8092 Zürich Switzerland Tel.: +41-44-632 40 25 [email protected] www.css.ethz.ch Analysis prepared by: Center for Security Studies (CSS), ETH Zürich ETH-CSS project management: Tim Prior, Head of the Risk and Resilience Research Group Myriam Dunn Cavelty, Deputy Head for Research and Teaching, Andreas Wenger, Director of the CSS Disclaimer: The opinions presented in this study exclusively reflect the authors’ views. Please cite as: Baezner, Marie (2019): Hotspot Analysis: Iranian cyber-activities in context of regional rivalries and international tensions, May 2019, Center for Security Studies (CSS), ETH Zürich. 1 Iranian cyber-activities in the context of regional rivalries and international tensions Table of Contents 1 Introduction 4 2 Background and chronology 5 3 Description 9 3.1 Attribution and actors 9 Iranian APTs 9 Iranian patriotic hackers 11 Western actors 12 3.2 Targets 12 Iranian domestic targets 12 Middle East 12 Other targets 13 3.3 Tools and techniques 13 Distributed Denial of Service (DDoS) attacks 13 Fake personas, social engineering and spear phishing 13 Malware 13 4 Effects 14 4.1 Social effects 14 4.2 Economic effects 15 4.3 Technological effects 15 Low technical sophistication of Iranian APTs 15 Stuxnet as a turning point 16 4.4 International effects 16 Iranian use of cyber-operations as asymmetrical warfare technique 16 Proxy wars with regional rivals in physical and cyber realms 16 The JCPOA and cyber-activities 17 Iranian international influence campaigns 17 5 Policy Consequences 18 5.1 Improving cybersecurity 18 5.2 Information sharing 18 5.3 Building awareness of Iranian influence campaigns 18 5.4 Monitoring of US – Iran relations 18 6 Annex 1 19 7 Annex 2 25 8 Annex 3 26 9 Glossary 27 10 Abbreviations 28 11 Bibliography 29 2 Iranian cyber-activities in the context of regional rivalries and international tensions hard-disk contents and rendered computers useless. Executive Summary Iranian APTs have used a mix of freely available, commercial and custom-made malware to compromise their targets and steal relevant information. Iranian Targets: Multiple industries, government patriotic hackers have also played a significant role in institutions, Non-Governmental cyberspace, but their actions have been primarily 1 Organizations (NGOs) in Western and limited to DDoS attacks. However, Stuxnet and Flame Middle Eastern states and Iranian are evidence that the US and Israel have targeted the dissidents in Iran and abroad. Islamic Republic. 2 Tools: Distributed Denial of Service (DDoS), Effects fake personas on social media for spear The social effects of cyber-activities in Iran phishing and malware. consist of control over internet content and the Effects: Surveillance of Iranian opposition, surveillance of opposition figures as part of economic costs due to destructive governmental control over the information sphere. cyberattacks and DDoS attacks, low sophistication but efficient enough Iranian authorities strictly regulate websites that are cyberattacks, Stuxnet as wakeup call for accessible on Iranian territory by censoring websites the international community, cyber- judged to be contrary to Islamic values. Opposition operations as asymmetrical warfare figures’ activities are also closely monitored on the technique, proxy wars transposed to internet. cyberspace, decrease of malicious cyber- Economic effects comprise the economic costs of activities after the signature of the Joint the various cyberattacks attributed to Iranian APTs and Comprehensive Plan Of Action (JCPOA) patriotic hackers. Companies in the Middle East have and Iranian actors conducting influence had to replace damaged computers after destructive campaigns. attacks, and US banks have had to bear the financial Timeframe: From mid-2000s and still ongoing. costs of DDoS attacks. One technology effect concerns the low Iran is an important actor in the Middle East. The sophistication of Iranian APTs’ cyberattacks, which has country stands out from its neighbors because of its not prevented them from achieving their strategic goals. history, economy and religion. Due to these differences, Another technological effect consists of the fact that Iran’s neighbors and parts of the international Stuxnet constituted a turning point in cybersecurity in community see the Islamic Republic as a regional rival terms of awareness of cyber capabilities. generating tensions in the region. With regard to There were multiple effects of Iranian-related cybersecurity, Iran is also an interesting actor, both as a cyber-activities on the international level. First, Iranian target and as a threat actor. As a target, Iran discovered authorities consider cyber-operations as tools for Stuxnet in its nuclear facility at Natanz in 2010 and is asymmetrical warfare. The Iranian government is aware regularly targeted by the US and Israel. As a threat actor, that it cannot compete with the US or US allies in Iranian Advanced Persistent Threats (APTs) regularly military terms, but cyber-operations give Iran the involve destructive and cyberespionage campaigns, opportunity to harass its adversaries with limited risks of including a recent online influence campaign in the US. retaliation because of low barriers of entry and relative This Hotspot Analysis examines cyber-activities in anonymity. Second, Iran fights proxy wars against its relation to Iran within the context of regional rivalry and regional rivals in both the physical world and in international tensions. The objective of this report is to cyberspace. Third, the number of malicious cyber- understand the dynamics of these cyberspace activities activities between the US and Iran diminished after the in such complex settings. JCPOA was signed and increased again once the US Description withdrew from the agreement. This confirms that state- Due to regional rivalry and international tensions, sponsored cyber-activities are related to events in the Iran has engaged in multiple and diverse cyber-activities. physical realm. Finally, Iranian APTs have been involved While a majority of sources report on APTs that are in online influence campaigns in the US mid-term nebulous and flexible entities with likely ties to the elections to influence political opinion in favor of Iranian Iranian authorities, a minority also reports on actors interests. targeting Iran. The majority of Iranian cyber-activities Policy Consequences consists of espionage targeting various industries, Policy recommendations focus on improving government institutions, NGOs and Iranian dissidents. cybersecurity, sharing information on Iranian APTs, The goal of these campaigns is to gather information raising awareness of influence campaigns and relevant to Iranian authorities. While other cyberattacks monitoring US-Iran relations. have had destructive characteristics in that they wiped 1 Abbreviations are listed in Section 10. 2 Technical terms are explained in a glossary in Section 9. 3 Iranian cyber-activities in the context of regional rivalries and international tensions against industries, government institutions and Non- 1 Introduction Governmental Organizations (NGOs) in Western states Iran is a significant actor in the Middle East and and in the Middle East. Finally, the section looks at tools also in cyberspace. Because of its history, economy, and techniques used in the Iranian context. This section religion and political ambitions, Iran cannot be ignored demonstrates that Iranian patriotic hackers used as a regional power and is considered as a threat by its Distributed Denial of Service (DDoS) attacks, that Iranian neighbors. While access to certain internet content is APTs created fake personas on social media for spear strictly controlled inside Iran, Iranian Advanced phishing campaigns and used a mix of freely available, Persistent Threats (APTs)3 have become infamous for commercial and custom-made malware in their targeting energy companies in neighboring countries cyberattacks, and that Western actors used with destructive malware4 and cyberespionage sophisticated malware against Iranian targets. campaigns. However, Iran is also known for being the Section 4 examines the effects of cyber-activities target of highly sophisticated cyberattacks, the most at the national and international levels. The first famous being Stuxnet, which was jointly developed by subsection analyzes the effects of Iranian authorities’ the US and Israel. control over internet content and online surveillance of This Hotspot Analysis analyzes cyber-activities in dissidents. The second subsection details the economic relation to Iran in the context of its regional rivalry with effects of destructive cyberattacks on energy companies its neighbors and its relationship with the US, which has and the economic effects of DDoS attacks. The third come under renewed strain. In this context, subsection examines the fact that Iranian APTs are not cyberattacks are instruments that states can deploy in technically sophisticated but still manage to achieve case of tensions, whether to defuse heightened tension their
Recommended publications
  • 2016 8Th International Conference on Cyber Conflict: Cyber Power
    2016 8th International Conference on Cyber Conflict: Cyber Power N.Pissanidis, H.Rõigas, M.Veenendaal (Eds.) 31 MAY - 03 JUNE 2016, TALLINN, ESTONIA 2016 8TH International ConFerence on CYBER ConFlict: CYBER POWER Copyright © 2016 by NATO CCD COE Publications. All rights reserved. IEEE Catalog Number: CFP1626N-PRT ISBN (print): 978-9949-9544-8-3 ISBN (pdf): 978-9949-9544-9-0 CopyriGHT AND Reprint Permissions No part of this publication may be reprinted, reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the NATO Cooperative Cyber Defence Centre of Excellence ([email protected]). This restriction does not apply to making digital or hard copies of this publication for internal use within NATO, and for personal or educational use when for non-profit or non-commercial purposes, providing that copies bear this notice and a full citation on the first page as follows: [Article author(s)], [full article title] 2016 8th International Conference on Cyber Conflict: Cyber Power N.Pissanidis, H.Rõigas, M.Veenendaal (Eds.) 2016 © NATO CCD COE Publications PrinteD copies OF THIS PUBlication are availaBLE From: NATO CCD COE Publications Filtri tee 12, 10132 Tallinn, Estonia Phone: +372 717 6800 Fax: +372 717 6308 E-mail: [email protected] Web: www.ccdcoe.org Head of publishing: Jaanika Rannu Layout: Jaakko Matsalu LEGAL NOTICE: This publication contains opinions of the respective authors only. They do not necessarily reflect the policy or the opinion of NATO CCD COE, NATO, or any agency or any government.
    [Show full text]
  • RSA-512 Certificates Abused in the Wild
    RSA-512 Certificates abused in the wild During recent weeks we have observed several interesting publications which have a direct relation to an investigation we worked on recently. On one hand there was a Certificate Authority being revoked by Mozilla, Microsoft and Google (Chrome), on the other hand there was the disclosure of a malware attack by Mikko Hypponen (FSecure) using a government issued certificate signed by the same Certificate Authority. That case however is not self-contained and a whole range of malicious software had been signed with valid certificates. The malicious software involved was used in targeted attacks focused on governments, political organizations and the defense industry. The big question is of course, what happened, and how did the attackers obtain access to these certificates? We will explain here in detail how the attackers have used known techniques to bypass the Microsoft Windows code signing security model. Recently Mikko Hypponen wrote a blog on the F-Secure weblog (http://www.f-secure.com/weblog/archives/00002269.html) detailing the discovery of a certificate used to sign in the wild malware. Specifically this malware was embedded in a PDF exploit and shipped in August 2011. Initially Mikko also believed the certificate was stolen, as that is very common in these days, with a large amount of malware families having support, or optional support, for stealing certificates from the infected system. Apparently someone Mikko spoke to mentioned something along the lines that it had been stolen a long time ago. During the GovCert.nl symposium Mikko mentioned the certificate again, but now he mentioned that according to the people involved with investigating the case in Malaysia it likely wasn't stolen.
    [Show full text]
  • The Iranian Cyber Threat
    The Iranian Cyber Threat May 2021 0 Contents Introduction .............................................................................................................................................. 2 Cyber Retaliation ..................................................................................................................................... 2 Iran’s National Security Strategy .............................................................................................................. 4 Laying the Groundwork ........................................................................................................................... 5 Structure ................................................................................................................................................... 5 Defense ................................................................................................................................................... 6 Offense .................................................................................................................................................... 6 History of Iranian Cyber Attacks and Incidents ........................................................................................... 7 The Attacks .............................................................................................................................................. 8 Iranian Cyber Army .................................................................................................................................
    [Show full text]
  • View Final Report (PDF)
    TABLE OF CONTENTS TABLE OF CONTENTS I EXECUTIVE SUMMARY III INTRODUCTION 1 GENESIS OF THE PROJECT 1 RESEARCH QUESTIONS 1 INDUSTRY SITUATION 2 METHODOLOGY 3 GENERAL COMMENTS ON INTERVIEWS 5 APT1 (CHINA) 6 SUMMARY 7 THE GROUP 7 TIMELINE 7 TYPOLOGY OF ATTACKS 9 DISCLOSURE EVENTS 9 APT10 (CHINA) 13 INTRODUCTION 14 THE GROUP 14 TIMELINE 15 TYPOLOGY OF ATTACKS 16 DISCLOSURE EVENTS 18 COBALT (CRIMINAL GROUP) 22 INTRODUCTION 23 THE GROUP 23 TIMELINE 25 TYPOLOGY OF ATTACKS 27 DISCLOSURE EVENTS 30 APT33 (IRAN) 33 INTRODUCTION 34 THE GROUP 34 TIMELINE 35 TYPOLOGY OF ATTACKS 37 DISCLOSURE EVENTS 38 APT34 (IRAN) 41 INTRODUCTION 42 THE GROUP 42 SIPA Capstone 2020 i The Impact of Information Disclosures on APT Operations TIMELINE 43 TYPOLOGY OF ATTACKS 44 DISCLOSURE EVENTS 48 APT38 (NORTH KOREA) 52 INTRODUCTION 53 THE GROUP 53 TIMELINE 55 TYPOLOGY OF ATTACKS 59 DISCLOSURE EVENTS 61 APT28 (RUSSIA) 65 INTRODUCTION 66 THE GROUP 66 TIMELINE 66 TYPOLOGY OF ATTACKS 69 DISCLOSURE EVENTS 71 APT29 (RUSSIA) 74 INTRODUCTION 75 THE GROUP 75 TIMELINE 76 TYPOLOGY OF ATTACKS 79 DISCLOSURE EVENTS 81 COMPARISON AND ANALYSIS 84 DIFFERENCES BETWEEN ACTOR RESPONSE 84 CONTRIBUTING FACTORS TO SIMILARITIES AND DIFFERENCES 86 MEASURING THE SUCCESS OF DISCLOSURES 90 IMPLICATIONS OF OUR RESEARCH 92 FOR PERSISTENT ENGAGEMENT AND FORWARD DEFENSE 92 FOR PRIVATE CYBERSECURITY VENDORS 96 FOR THE FINANCIAL SECTOR 96 ROOM FOR FURTHER RESEARCH 97 ACKNOWLEDGEMENTS 98 ABOUT THE TEAM 99 SIPA Capstone 2020 ii The Impact of Information Disclosures on APT Operations EXECUTIVE SUMMARY This project was completed to fulfill the including the scope of the disclosure and capstone requirement for Columbia Uni- the disclosing actor.
    [Show full text]
  • Internet Infrastructure Review Vol.27
    Internet Infrastructure Vol.27 Review May 2015 Infrastructure Security Increasingly Malicious PUAs Messaging Technology Anti-Spam Measure Technology and DMARC Trends Web Traffic Report Report on Access Log Analysis Results for Streaming Delivery of the 2014 Summer Koshien Inte r ne t In f r ast r uc t ure Review Vol.27 May 2015 Executive Summary ———————————————————3 1. Infrastructure Security ———————————————4 Table of Contents Table 1.1 Introduction —————————————————————— 4 1.2 Incident Summary ——————————————————— 4 1.3 Incident Survey ——————————————————— 11 1.3.1 DDoS Attacks —————————————————————— 11 1.3.2 Malware Activities ———————————————————— 13 1.3.3 SQL Injection Attacks —————————————————— 16 1.3.4 Website Alterations ——————————————————— 17 1.4 Focused Research —————————————————— 18 1.4.1 Increasingly Malicious PUAs —————————————— 18 1.4.2 ID Management Technology: From a Convenience and Security Perspective ————— 22 1.4.3 Evaluating the IOCs of Malware That Reprograms HDD Firmware —————————————————————— 25 1.5 Conclusion —————————————————————— 27 2. Messaging Technology —————————————— 28 2.1 Introduction ————————————————————— 28 2.2 Spam Trends ————————————————————— 28 2.2.1 Spam Ratios Decline Further in FY2014 ————————— 28 2.2.2 Higher Risks Despite Lower Volumes —————————— 29 2.3 Trends in Email Technologies ——————————— 29 2.3.1 The DMARC RFC ————————————————————— 29 2.3.2 Problems with DMARC and Reporting —————————— 30 2.3.3 Use of DMARC by Email Recipients ——————————— 30 2.3.4 Domain Reputation ——————————————————— 31 2.3.5
    [Show full text]
  • The Cyberpeace Institute Foreword 2 Acknowledgements 5
    March 2021 The CyberPeace Institute Foreword 2 Acknowledgements 5 Part 1: Setting the Scene 7 Disclaimer Introduction 9 The opinions, findings, and conclusions and recommendations in Signposting – How to read the Report 11 this Report reflect the views and opinions of the CyberPeace Institute Key Findings 15 alone, based on independent and discrete analysis, and do not indicate Recommendations 19 endorsement by any other national, regional or international entity. Part 2: Understanding the Threat Landscape 27 The designations employed and the presentation of the material in this publication do not express any opinion whatsoever on the part of the Chapter 1 Background 29 CyberPeace Institute concerning the legal status of any country, territory, 1.1 A convergence of threats to healthcare 29 city or area of its authorities, or concerning the delimitation of its 1.2 Healthcare as a target of choice 30 frontiers or boundaries. 1.3 Cybersecurity in the healthcare sector 32 Copyright Notice Chapter 2 Victims, Targets and Impact 35 2.1 A diversity of victims – the people 36 The concepts and information contained in this document are the 2.2 A typology of targets – healthcare organizations 38 property of the CyberPeace Institute, an independent non-profit 2.3 A variety of impacts on victims and targets 41 foundation headquartered in Geneva, unless otherwise indicated within the document. This document may be reproduced, in whole or in part, Chapter 3 Attacks 51 provided that the CyberPeace Institute is referenced as author and 3.1 Disruptive attacks – ransomware’s evolving threat to healthcare 52 copyright holder. 3.2 Data breaches – from theft to cyberespionage 57 3.3 Disinformation operations – an erosion of trust 59 © 2021 CyberPeace Institute.
    [Show full text]
  • Iran'in Siber Güvenlik Stratejisinin Saldiri Ve
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/334583513 İRAN’IN SİBER GÜVENLİK STRATEJİSİNİN SALDIRI VE SAVUNMA KAPASİTESİ BAKIMINDAN ANALİZİ Article in Turkish Studies - Social Sciences · January 2019 DOI: 10.29228/TurkishStudies.22799 CITATIONS READS 0 225 1 author: Ali Burak Darıcılı 35 PUBLICATIONS 21 CITATIONS SEE PROFILE All content following this page was uploaded by Ali Burak Darıcılı on 25 July 2019. The user has requested enhancement of the downloaded file. Turkish Studies Social Sciences Volume 14 Issue 3, 2019, p. 409-425 DOI: 10.29228/TurkishStudies.22799 ISSN: 2667-5617 Skopje/MACEDONIA-Ankara/TURKEY Research Article / Araştırma Makalesi A r t i c l e I n f o / M a k a l e B i l g i s i Received/Geliş: 04.02.2019 Accepted/Kabul: 10.06.2019 Report Dates/Rapor Tarihleri: Referee 1 (15.03.2019)-Referee 2 (11.03.2019)- Referee 3 (18.03.2019) This article was checked by iThenticate. ANALYSIS OF IRAN'S CYBER SECURITY STRATEGY WITH REGARD TO THE ATTACK AND THE DEFENSE CAPACITY Ali Burak DARICILI ABSTRACT The Stuxnet Virus was released in June 2010 and has affected Iran's nuclear facilities in Bushehr and Natanz. It was claimed that the United States of America (USA) and Israel secret services together have a role in the planning of this cyber-attack. Following this cover activity, also known as Operation Olympic Games in the literature, Iran considered the need to take serious measures in the field of cyber security and aimed to reach an effective cyber security capacity in cyber space with the investments made in 2010.
    [Show full text]
  • Potential Human Cost of Cyber Operations
    ICRC EXPERT MEETING 14–16 NOVEMBER 2018 – GENEVA THE POTENTIAL HUMAN COST OF CYBER OPERATIONS REPORT ICRC EXPERT MEETING 14–16 NOVEMBER 2018 – GENEVA THE POTENTIAL HUMAN COST OF CYBER OPERATIONS Report prepared and edited by Laurent Gisel, senior legal adviser, and Lukasz Olejnik, scientific adviser on cyber, ICRC THE POTENTIAL HUMAN COST OF CYBER OPERATIONS Table of Contents Foreword............................................................................................................................................. 3 Acknowledgements ............................................................................................................................. 4 Executive summary ............................................................................................................................. 5 Introduction....................................................................................................................................... 10 Session 1: Cyber operations in practice .………………………………………………………………………….….11 A. Understanding cyber operations with the cyber kill chain model ...................................................... 11 B. Operational purpose ................................................................................................................. 11 C. Trusted systems and software supply chain attacks ...................................................................... 13 D. Cyber capabilities and exploits ..................................................................................................
    [Show full text]
  • A PRACTICAL METHOD of IDENTIFYING CYBERATTACKS February 2018 INDEX
    In Collaboration With A PRACTICAL METHOD OF IDENTIFYING CYBERATTACKS February 2018 INDEX TOPICS EXECUTIVE SUMMARY 4 OVERVIEW 5 THE RESPONSES TO A GROWING THREAT 7 DIFFERENT TYPES OF PERPETRATORS 10 THE SCOURGE OF CYBERCRIME 11 THE EVOLUTION OF CYBERWARFARE 12 CYBERACTIVISM: ACTIVE AS EVER 13 THE ATTRIBUTION PROBLEM 14 TRACKING THE ORIGINS OF CYBERATTACKS 17 CONCLUSION 20 APPENDIX: TIMELINE OF CYBERSECURITY 21 INCIDENTS 2 A Practical Method of Identifying Cyberattacks EXECUTIVE OVERVIEW SUMMARY The frequency and scope of cyberattacks Cyberattacks carried out by a range of entities are continue to grow, and yet despite the seriousness a growing threat to the security of governments of the problem, it remains extremely difficult to and their citizens. There are three main sources differentiate between the various sources of an of attacks; activists, criminals and governments, attack. This paper aims to shed light on the main and - based on the evidence - it is sometimes types of cyberattacks and provides examples hard to differentiate them. Indeed, they may of each. In particular, a high level framework sometimes work together when their interests for investigation is presented, aimed at helping are aligned. The increasing frequency and severity analysts in gaining a better understanding of the of the attacks makes it more important than ever origins of threats, the motive of the attacker, the to understand the source. Knowing who planned technical origin of the attack, the information an attack might make it easier to capture the contained in the coding of the malware and culprits or frame an appropriate response. the attacker’s modus operandi.
    [Show full text]
  • TLS Attacks & DNS Security
    IAIK TLS Attacks & DNS Security Information Security 2019 Johannes Feichtner [email protected] IAIK Outline TCP / IP Model ● Browser Issues Application SSLStrip Transport MITM Attack revisited Network Link layer ● PKI Attacks (Ethernet, WLAN, LTE…) Weaknesses HTTP TLS / SSL FLAME FTP DNS Telnet SSH ● Implementation Attacks ... ● Protocol Attacks ● DNS Security IAIK Review: TLS Services All applications running TLS are provided with three essential services Authentication HTTPS FTPS Verify identity of client and server SMTPS ... Data Integrity Detect message tampering and forgery, TLS e.g. malicious Man-in-the-middle TCP IP Encryption Ensure privacy of exchanged communication Note: Technically, not all services are required to be used Can raise risk for security issues! IAIK Review: TLS Handshake RFC 5246 = Establish parameters for cryptographically secure data channel Full handshake Client Server scenario! Optional: ClientHello 1 Only with ServerHello Client TLS! Certificate 2 ServerKeyExchange Certificate CertificateRequest ClientKeyExchange ServerHelloDone CertificateVerify 3 ChangeCipherSpec Finished ChangeCipherSpec 4 Finished Application Data Application Data IAIK Review: Certificates Source: http://goo.gl/4qYsPz ● Certificate Authority (CA) = Third party, trusted by both the subject (owner) of the certificate and the party (site) relying upon the certificate ● Browsers ship with set of > 130 trust stores (root CAs) IAIK Browser Issues Overview Focus: Relationship between TLS and HTTP Problem? ● Attacker wants to access encrypted data ● Browsers also have to deal with legacy websites Enforcing max. security level would „break“ connectivity to many sites Attack Vectors ● SSLStrip ● MITM Attack …and somehow related: Cookie Stealing due to absent „Secure“ flag… IAIK Review: ARP Poisoning How? Attacker a) Join WLAN, ● Sniff data start ARP Poisoning ● Manipulate data b) Create own AP ● Attack HTTPS connections E.g.
    [Show full text]
  • Web and Mobile Security
    Cyber Security Body of Knowledge: Web and Mobile Security Sergio Maffeis Imperial College London bristol.ac.uk © Crown Copyright, The National Cyber Security Centre 2021. This information is licensed under the Open Government Licence v3.0. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open- government-licence/. When you use this information under the Open Government Licence, you should include the following attribution: CyBOK Web & Mobile Security Knowledge Area Issue 1.0 © Crown Copyright, The National Cyber Security Centre 2021, licensed under the Open Government Licence http://www.nationalarchives.gov.uk/doc/open- government-licence/. The CyBOK project would like to understand how the CyBOK is being used and its uptake. The project would like organisations using, or intending to use, CyBOK for the purposes of education, training, course development, professional development etc. to contact it at [email protected] to let the project know how they are using CyBOK. bristol.ac.uk Web & Mobile Security KA • This webinar covers and complements selected topics from the “Web & Mobile Security Knowledge Area - Issue 1.0” document [WMS-KA for short] • “The purpose of this Knowledge Area is to provide an overview of security mechanisms, attacks and defences in modern web and mobile ecosystems.” • We assume basic knowledge of the web and mobile platforms – The WMS-KA also covers some of the basic concepts assumed here Web and Mobile Security 3 Scope • The focus of WMS-KA is on the intersection of mobile and web security, as a result of recent appification and webification trends. – The KA does not cover specific mobile-only aspects including mobile networks, mobile malware, side channels.
    [Show full text]
  • Gothic Panda Possibly Used Doublepulsar a Year Before The
    Memo 17/05/2019 - TLP:WHITE Gothic Panda possibly used DoublePulsar a year before the Shadow Brokers leak Reference: Memo [190517-1] Date: 17/05/2019 - Version: 1.0 Keywords: APT, DoublePulsar, China, US, Equation Group Sources: Publicly available sources Key Points Gothic Panda may have used an Equation Group tool at least one year before the Shadow Brokers leak. It is unknown how the threat group obtained the tool. This is a good example of a threat actor re-using cyber weapons that were originally fielded by another group. Summary According research conducted by Symantec, the Chinese threat actor known as Gothic Panda (APT3, UPS, SSL Beast, Clandestine Fox, Pirpi, TG-0110, Buckeye, G0022, APT3) had access to at least one NSA-associated Equation Group tool a year before they were leaked by the Shadow Brokers threat actor. On April 14, 2017, a threat actor called the Shadow Brokers released a bundle of cyber-attack tools purportedly coming from the US NSA, also referred to as the Equation Group. Among the released material there was the DoublePulsar backdoor implant tool, which was used alongside EternalBlue in the May 2017 destructive WannaCry attack. DoublePulsar is a memory-based kernel malware that allows perpetrators to run arbitrary shellcode payloads on the target system. It does not write anything on the hard drive and will thus disappear once the victim machine is rebooted. Its only purpose is to enable dropping other malware or executables in the system. According to Symantec, Gothic Panda used the DoublePulsar exploit as early as in 2016, a full year before the Shadow Brokers release.
    [Show full text]