Phylogeny of the Bee Family Megachilidae (Hymenoptera: Apoidea) Based on Adult Morphology

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny of the Bee Family Megachilidae (Hymenoptera: Apoidea) Based on Adult Morphology 1 Phylogeny of the bee family Megachilidae (Hymenoptera: Apoidea) based on adult morphology 2,3 VICTOR H. GONZALEZ1 ,TERRYGRISWOLD1 ,CHRISTOPHE J.PRAZ , 2 B RYA N N. D A N F O RT H 1USDA-ARS, Bee Biology and Systematics Laboratory, Utah State University, Logan, UT, U.S.A., 2Department of Entomology, Cornell University, Ithaca, NY, U.S.A. and 3Laboratory of Evolutionary Entomology, University of Neuchatel, Neuchatel, Switzerland Abstract. Phylogenetic relationships within the bee family Megachilidae are poorly understood. The monophyly of the subfamily Fideliinae is questionable, the relation- ships among the tribes and subtribes in the subfamily Megachilinae are unknown, and some extant genera cannot be placed with certainty at the tribal level. Using acladisticanalysisofadultexternalmorphologicalcharacters,weexploretherela- tionships of the eight tribes and two subtribes currently recognised in Megachilidae. Our dataset included 80% of the extant generic-level diversity, representatives of all fossil taxa, and was analysed using parsimony. We employed 200 characters and selected 7 outgroups and 72 ingroup species of 60 genera, plus 7 species of 4 extinct genera from Baltic amber. Our analysis shows that Fideliinae and the tribes Anthidiini and Osmiini of Megachilinae are paraphyletic; it supports the monophyly of Megachilinae, including the extinct taxa, and the sister group relationship of Lithurgini to the remaining megachilines. The Sub-Saharan genus Aspidosmia,a rare group with a mixture of osmiine and anthidiine features, is herein removed from Anthidiini and placed in its own tribe, Aspidosmiini, new tribe.Protolithurgini is the sister of Lithurgini, both placed herein in the subfamily Lithurginae; the other extinct taxa, Glyptapina and Ctenoplectrellina, are more basally related among Megachilinae than Osmiini, near Aspidosmia,andarehereintreatedatthetriballevel. Noteriades,agenuspresentlyintheOsmiini,ishereintransferredtotheMegachilini. Thus, we recognise four subfamilies (Fideliinae, Pararhophitinae, Lithurginae and Megachilinae) and nine tribes in Megachilidae. We briefly discuss the evolutionary history and biogeography of the family, present alternative classifications, and provide arevisedkeytotheextanttribesofMegachilinae. Introduction 1972; Michener, 2007; Pitts-Singer & Cane, 2011). Megachilid bees are found in a wide diversity of habitats on all conti- Megachilidae is the second largest bee family, containing nents except Antarctica, ranging from lowland tropical rain more than 4000 described species worldwide (Michener, 2007; forests to deserts to alpine environments. The diversity of nest- Ascher & Pickering, 2011). These solitary bees are both ing biology and floral relationships of Megachilidae is also ecologically and economically relevant; they include many astonishing. Diverse materials are used in nest building, includ- pollinators of natural, urban and agricultural vegetation. For ing mud, petals, leaves (intact pieces or macerated to a pulp), example, Megachile rotundata (Fabricius) has been introduced resin, soil particles, gravel and plant trichomes. The inclusion to many parts of the world as a pollinator of alfalfa (Bohart, of these foreign materials in nest construction may have pro- moted a massive range expansion and diversification within Correspondence: Victor H. Gonzalez, USDA-ARS, Bee Biology the family (Litman et al., 2011). Equally diverse are nesting and Systematics Laboratory, Utah State University, Logan, UT 84322- site choices: surfaces of walls, stones and tree branches; inside 5310, U.S.A. E-mail: [email protected] pre-existing cavities in the ground, wood, stems, galls and snail 2 shells; excavated in soil, wood or even in arboreal termite value of megachilid bees, their higher level classification and nests (e.g. Messer, 1984; Cane et al., 2007; Michener, 2007). phylogeny remain poorly understood. Some megachilid genera, subgenera or species are oligolec- tic (e.g. Wcislo & Cane, 1996), collecting pollen exclusively from related plant species or genera, and frequently exhibiting Classification and phylogeny unique associated morphological and behavioral adaptations The most widely accepted classificatory proposal for bees (e.g. Muller,¨ 1996; Thorp, 2000; Muller¨ & Bansac, 2004). (Michener, 2007) recognises seven extant families, although Other interesting adaptations are related to nesting biology. other proposals exist (for a discussion see Michener, 2007). In For example, females in several genera in the Anthidiini, com- Michener’s classification, Megachilidae is organised into two monly known as wool carder bees, make cotton wool-like subfamilies, eight tribes (one extinct), two extinct subtribes and brood cells from plant hairs or trichomes that they collect with 76 genera. An alternative proposal is that of Engel (2005), in their multidentate mandibles; also, some of them have a dense which some tribes are given subfamilial rank, some tribes are tomentum on the outer surfaces of their basitarsi, which help treated as subtribes and new tribes are proposed (Table 1). Two them absorb extrafloral trichome secretions that are then added taxa, now placed in the subfamily Fideliinae, were considered to those plant hairs to waterproof the cell, facilitate manipula- for a long time either as a distinct family or included within the tion, prevent microbial attack and to deter nest-robbing arthro- Apidae owing to a number of plesiomorphic features relative pods (Muller¨ et al., 1996; Michener, 2007). Megachilidae not only to Megachilidae, but also to other long-tongued bees also contains a large number of cleptoparasitic bees (cuckoo (Engel, 2002; Michener, 2007). However, the discovery of the bees). Nineteen genera, including an entire tribe (Dioxyini), immature stages as well as studies on their nesting biology and are cleptoparasites of other bees, thus making Megachilidae ethology suggested their closer affinity to the Megachilidae an important group for testing hypotheses on the origins of, (Rozen, 1970, 1973, 1977; McGinley & Rozen, 1987). and adaptations to, cleptoparasitic behaviour amongst bees. Roig-Alsina & Michener (1993), in their study of the long- Megachilids are also notable as the primary source of inva- tongued bees using both larval and adult external and internal morphological characters, provided the first exploration of sive bees, including multiple species in the genera Anthidium the phylogenetic relationships of Megachilidae. Fideliinae was Fabricius and Megachile Latreille (e.g. Cane, 2003; Michener, recovered as the sister group of the remaining megachilids in 2007). For instance, A. manicatum (Linnaeus) is perhaps the their analyses, but the subfamily appeared paraphyletic when most widely distributed unmanaged bee species in the world. both larval and adult characters were combined. Fideliinae is It was unintentionally introduced to North America in the late a small group with a disjunct distribution in the xeric areas of 1960s from Europe; and it is now established transcontinen- Asia, Africa and South America. The subfamily is segregated tally as well as in South America, New Zealand and the Canary into two very distinct tribes: Fideliini containing 14 species in Islands (Jaycox, 1967; Smith, 1991; Miller et al., 2002; Hoe- two genera, and Pararhophitini with three species in a single beke & Wheeler, 2005; Maier, 2005; Zavortink & Shanks, genus (Engel, 2002, 2004; Michener, 2007). 2008; Gibbs & Sheffield, 2009; Strange et al., 2011). Despite The other six tribes are currently grouped into the subfamily the ecological importance, evolutionary interest and economic Megachilinae. The distinctive nature of one tribe, Lithurgini, Table 1. Hierarchical suprageneric classifications of Megachilidae, including two proposals discussed in the text. Michener (2007) Engel (2005) Proposal 1 Proposal 2 (preferred) Subfamily Fideliinae Cockerell, 1932 Fideliinae Fideliinae Fideliinae Tribe Fideliini Cockerell, 1932 Fideliini Pararhophitinae Pararhophitinae Tribe Pararhophitini Popov, 1949 Neofideliini Engel, 2004 Megachilinae Lithurginae Subfamily Megachilinae Latreille, 1802 Pararhophitinae Anthidiini Lithurgini Tribe Anthidiini Ashmead, 1899 Lithurginae Aspidosmiini, new tribe Protolithurginia Tribe Dioxyini Cockerell, 1902 Lithurgini Ctenoplectrellinia Megachilinae Tribe Lithurgini Newman, 1834 Protolithurginia Dioxyini Anthidiini Tribe Megachilini Latreille, 1802 Megachilinae Glyptapinia Aspidosmiini, new tribe Tribe Osmiini Newman, 1834 Anthidiini Lithurgini Ctenoplectrellinia Subtribe Osmiina Newman, 1834 Anthidiina Megachilini Dioxyini Subtribe Ctenoplectrellina Engel, 2001a Dioxyina Osmiini Glyptapinia Subtribe Glyptapina Cockerell, 1909a Ctenoplectrellinia Protolithurginia Megachilini Tribe Protolithurgini Engel, 2001a Glyptapinia Osmiini Megachilini Osmiini Osmiina Heriadina Michener, 1941 a Extinct taxa. 3 possessing numerous plesiomorphic as well as distinctive apo- in the classification of Urban & Moure (2007). Some sub- morphic characters, resulted in subfamilial rank in the past (e.g. genera are monotypic or contain a few species with unusual Michener, 1944, 1983; Engel, 2005). Lithurgini is a small tribe, characters related to adaptations for pollen collecting (e.g. with 61 species and 3 genera, found on all continents except modified hairs on the mouthparts) or secondary sexual char- Antarctica. The monophyly of the group is not questioned. acters (e.g. spines on the hind coxa of the male) (Gonzalez & Except for the sister group relationship of Lithurgini
Recommended publications
  • Wild Bees of Grand Staircase-Escalante National Monument: Richness, Abundance, and Spatio-Temporal Beta-Diversity
    Wild bees of Grand Staircase-Escalante National Monument: richness, abundance, and spatio-temporal beta-diversity Olivia Messinger Carril1, Terry Griswold2, James Haefner3 and Joseph S. Wilson4 1 Santa Fe, NM, United States of America 2 USDA-ARS Pollinating Insects Research Unit, Logan, UT, United States of America 3 Biology Department, Emeritus Professor, Utah State University, Logan, UT, United States of America 4 Department of Biology, Utah State University - Tooele, Tooele, UT, United States of America ABSTRACT Interest in bees has grown dramatically in recent years in light of several studies that have reported widespread declines in bees and other pollinators. Investigating declines in wild bees can be difficult, however, due to the lack of faunal surveys that provide baseline data of bee richness and diversity. Protected lands such as national monuments and national parks can provide unique opportunities to learn about and monitor bee populations dynamics in a natural setting because the opportunity for large-scale changes to the landscape are reduced compared to unprotected lands. Here we report on a 4-year study of bees in Grand Staircase-Escalante National Monument (GSENM), found in southern Utah, USA. Using opportunistic collecting and a series of standardized plots, we collected bees throughout the six-month flowering season for four consecutive years. In total, 660 bee species are now known from the area, across 55 genera, and including 49 new species. Two genera not previously known to occur in the state of Utah were discovered, as well as 16 new species records for the state. Bees include ground-nesters, cavity- and twig-nesters, cleptoparasites, narrow specialists, generalists, solitary, and social species.
    [Show full text]
  • Studies of North American Bees
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers from the University Studies series (The University of Nebraska) University Studies of the University of Nebraska January 1914 Studies of North American Bees Myron Harmon Swenk University of Nebraska - Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/univstudiespapers Part of the Life Sciences Commons Swenk, Myron Harmon, "Studies of North American Bees" (1914). Papers from the University Studies series (The University of Nebraska). 9. https://digitalcommons.unl.edu/univstudiespapers/9 This Article is brought to you for free and open access by the University Studies of the University of Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers from the University Studies series (The University of Nebraska) by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. VOL. XIV JANUAR Y 1914 No. I I.-STUDIES OF NORTH AMERICAN BEES BY MYRON HARMON SWENK &+ The present paper is the second of the series proposed in a previous contribution on the famil.\- Nomadidae (arztea, XII, pp. I-II~),and aims to tabulate and list the bees of the family Stelididae occurring in Nebraska, together wilth annotations con- cerning their distribution, comparative abundance and season of flight. As in the previous study, records and descriptions of specimens from outside Nebraska before the writer are included where these seem to add anything to our knowledge of the species concerned. MATERIAL In the studies upon which this paper is based over four hundred specimens have been examined and determined. From the state of Nebraska fifteen species and subspecies are recorded, and of these three species are apparently new.
    [Show full text]
  • Teletusa Limpida (SIGNORET)
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Teletusa limpida (SIGNORET): a Neotropical proconiine leafhopper that mimics megachilid bees (Hymenoptera: Apoidea), with notes on Batesian mimicry in the subfamily Cicadellinae (Hemiptera: Cicadellidae) G. MEJDALANI, D.M. TAKIYA, M. FELIX, P. CEOTTO & D. YANEGA Abstract Morphological comparisons and field and M. neoxanthoptera. Yellow areas on studies carried out in the Brazilian State of the leafhopper abdomen resemble the Minas Gerais suggested that the proconi- metasomal scopal hairs or the pollen ine leafhopper Teletusa limpida (SlG- carried on the scopa of the bees. The NORET) is a Batesian mimic of bees of the present case of mimicry is compared with family Megachilidae. This leafhopper the two other known cases of mimicry in exhibits the following mimicry-related leafhoppers of the subfamily Cicadellinae characteristics: (1) body densely covered (genera Propetes WALKER and Lissoscarta by conspicuous hairs, especially developed STAL), as well as with similar cases in the on the face and mesoscutellum, (2) disc of Auchenorrhyncha. The appearance of frons forming an approximately right angle mimicry in the Cicadellinae is discussed in with the longitudinal axis of body, (3) a phylogenetic context. fore- and hindwings almost entirely hya- line, (4) abdomen short and expanded lat- erally, and (5) overall coloration dark Key words brown or black with yellow markings. These features are remarkably similar to Proconiini, Cicadellini, mimetic spe- those of four megachilid species that are cies, morphology, phylogeny, Megachili- sympatric with T. limpida in Minas Gerais dae, Vespidae. (Anthodioctes megachiloides (HOLMBERG), Hypanthidiodes subarenarium (SCHWARZ), Hypanthidiodes musciforme (SCHROTTKY), and Megachile meoxanthoptera COCKE- RELL.
    [Show full text]
  • Anthidium Manicatum, an Invasive Bee, Excludes a Native Bumble Bee, Bombus Impatiens, from floral Resources
    Biol Invasions https://doi.org/10.1007/s10530-018-1889-7 (0123456789().,-volV)(0123456789().,-volV) ORIGINAL PAPER Anthidium manicatum, an invasive bee, excludes a native bumble bee, Bombus impatiens, from floral resources Kelsey K. Graham . Katherine Eaton . Isabel Obrien . Philip T. Starks Received: 15 April 2018 / Accepted: 21 November 2018 Ó Springer Nature Switzerland AG 2018 Abstract Anthidium manicatum is an invasive pol- response to A. manicatum presence. We found that B. linator reaching widespread distribution in North impatiens avoided foraging near A. manicatum in both America. Male A. manicatum aggressively defend years; but despite this resource exclusion, we found no floral territories, attacking heterospecific pollinators. evidence of fitness consequences for B. impatiens. Female A. manicatum are generalists, visiting many of These results suggest A. manicatum pose as significant the same plants as native pollinators. Because of A. resource competitors, but that B. impatiens are likely manicatum’s rapid range expansion, the territorial able to compensate for this resource loss by finding behavior of males, and the potential for female A. available resources elsewhere. manicatum to be significant resource competitors, invasive A. manicatum have been prioritized as a Keywords Exotic species Á Resource competition Á species of interest for impact assessment. But despite Interspecific competition Á Foraging behavior Á concerns, there have been no empirical studies inves- Pollination tigating the impact of A. manicatum on North Amer- ican pollinators. Therefore, across a two-year study, we monitored foraging behavior and fitness of the common eastern bumble bee (Bombus impatiens) in Introduction With increasing movement of goods and people Electronic supplementary material The online version of around the world, introduction of exotic species is this article (https://doi.org/10.1007/s10530-018-1889-7) con- increasing at an unprecedented rate (Ricciardi et al.
    [Show full text]
  • Managing Alternative Pollinators a Handbook for Beekeepers, Growers, and Conservationists
    Managing Alternative Pollinators A Handbook for Beekeepers, Growers, and Conservationists ERIC MADER • MARLA SPIVAK • ELAINE EVANS Fair Use of this PDF file of Managing Alternative Pollinators: A Handbook for Beekeepers, Growers, and Conservationists, SARE Handbook 11, NRAES-186 By Eric Mader, Marla Spivak, and Elaine Evans Co-published by SARE and NRAES, February 2010 You can print copies of the PDF pages for personal use. If a complete copy is needed, we encourage you to purchase a copy as described below. Pages can be printed and copied for educational use. The book, authors, SARE, and NRAES should be acknowledged. Here is a sample acknowledgement: ----From Managing Alternative Pollinators: A Handbook for Beekeepers, Growers, and Conservationists, SARE Handbook 11, by Eric Mader, Marla Spivak, and Elaine Evans, and co- published by SARE and NRAES.---- No use of the PDF should diminish the marketability of the printed version. If you have questions about fair use of this PDF, contact NRAES. Purchasing the Book You can purchase printed copies on NRAES secure web site, www.nraes.org, or by calling (607) 255-7654. The book can also be purchased from SARE, visit www.sare.org. The list price is $23.50 plus shipping and handling. Quantity discounts are available. SARE and NRAES discount schedules differ. NRAES PO Box 4557 Ithaca, NY 14852-4557 Phone: (607) 255-7654 Fax: (607) 254-8770 Email: [email protected] Web: www.nraes.org SARE 1122 Patapsco Building University of Maryland College Park, MD 20742-6715 (301) 405-8020 (301) 405-7711 – Fax www.sare.org More information on SARE and NRAES is included at the end of this PDF.
    [Show full text]
  • Wisconsin Bee Identification Guide
    WisconsinWisconsin BeeBee IdentificationIdentification GuideGuide Developed by Patrick Liesch, Christy Stewart, and Christine Wen Honey Bee (Apis mellifera) The honey bee is perhaps our best-known pollinator. Honey bees are not native to North America and were brought over with early settlers. Honey bees are mid-sized bees (~ ½ inch long) and have brownish bodies with bands of pale hairs on the abdomen. Honey bees are unique with their social behavior, living together year-round as a colony consisting of thousands of individuals. Honey bees forage on a wide variety of plants and their colonies can be useful in agricultural settings for their pollination services. Honey bees are our only bee that produces honey, which they use as a food source for the colony during the winter months. In many cases, the honey bees you encounter may be from a local beekeeper’s hive. Occasionally, wild honey bee colonies can become established in cavities in hollow trees and similar settings. Photo by Christy Stewart Bumble bees (Bombus sp.) Bumble bees are some of our most recognizable bees. They are amongst our largest bees and can be close to 1 inch long, although many species are between ½ inch and ¾ inch long. There are ~20 species of bumble bees in Wisconsin and most have a robust, fuzzy appearance. Bumble bees tend to be very hairy and have black bodies with patches of yellow or orange depending on the species. Bumble bees are a type of social bee Bombus rufocinctus and live in small colonies consisting of dozens to a few hundred workers. Photo by Christy Stewart Their nests tend to be constructed in preexisting underground cavities, such as former chipmunk or rabbit burrows.
    [Show full text]
  • The Bees of Sub-Saharan Africa
    A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark Genus Nasutapis Michener (Fig. 36E) Nasutapis has a distinct projection medioventrally on the clypeus. This genus is monotypic (Nasutapis straussorum Michener) and endemic to KwaZulu-Natal, South Africa, and found in nests of Braunsapis facialis (Gerstaecker). 8.6.2. Subfamily Nomadinae In sub-Saharan Africa the Nomadinae comprises four tribes and six genera. They are all cleptoparasitic. Diagnostic features for the subfamily are difficult to define, but almost each tribe has a distinctive feature, except Ammobatoidini. 8.6.2.1. Tribe Nomadini Genus Nomada Scopoli (Fig. 37A) Nomadini has one genus in sub-Saharan Africa, namely Nomada. There are ten species, occurring mostly in North-East and southern Africa. 8.6.2.2. Tribe Epeolini Genus Epeolus Latreille (Fig. 37B) Epeolini has one genus in sub-Saharan Africa, namely Epeolus. There are 13 species that occur mostly on the east side of the continent, along its entire length. 8.6.2.3. Tribe Ammobatoidini Genus Ammobatoides Radoszkowski (Fig. 37C) Ammobatoidini has one genus in sub-Saharan Africa, and it is known only from the holotype of Ammobatoides braunsi Bischoff. It was collected in Willowmore, South Africa. It therefore goes without saying that it is extremely rare. 8.6.2.4. Tribe Ammobatini The Ammobatini has four sub-Saharan genera. They all comprise cleptoparasitic bees. Ammobates has its centre of diversity in the Palaearctic, as does Chiasmognathus, which occurs just north of the Afrotropical Region and intrudes into sub-Saharan Africa. Pasites is mostly Afrotropical and Sphecodopsis is endemic to southern Africa.
    [Show full text]
  • Ejt-719 Williams Altanchimeg Byvaltsev.Indd
    European Journal of Taxonomy 719: 1–120 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.719.1107 www.europeanjournaloftaxonomy.eu 2020 · Williams P.H. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Monograph urn:lsid:zoobank.org:pub:A4500016-C219-4353-B81C-5E0BB520547F Widespread polytypic species or complexes of local species? Revising bumblebees of the subgenus Melanobombus world-wide (Hymenoptera, Apidae, Bombus) Paul H. WILLIAMS 1,*, Dorjsuren ALTANCHIMEG 2, Alexandr BYVALTSEV 3, Roland DE JONGHE 4, Saleem JAFFAR 5, George JAPOSHVILI 6, Sih KAHONO 7, Huan LIANG 8, Maurizio MEI 9, Alireza MONFARED 10, Tshering NIDUP 11, Rifat RAINA 12, Zongxin REN 13, Chawatat THANOOSING 14, Yanhui ZHAO 15 & Michael C. ORR 16 1,14 Natural History Museum, Cromwell Road, London SW7 5BD, UK. 2 Institute of General and Experimental Biology, Peace Avenue 54b, Ulaanbaatar 13330, Mongolia. 3 Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia. 4 Langstraat 105, B-2260 Westerlo, Belgium. 5 South China Agricultural University, Guangzhou 510642, China. 6 Agricultural University of Georgia, 240 Agmashenebli Alley, Tbilisi, Georgia. 7 Indonesian Institute of Sciences (LIPI), Jakarta, Indonesia. 8,13,15 Kunming Institute of Botany (Chinese Academy of Sciences), 132 Lanhei Road, Kunming, Yunnan 650201, China. 9 Università di Roma ‘Sapienza’, Piazzale Valerio Massimo 6, Roma 00162, Italy. 10 Yasouj University, Zirtol, Yasouj, Iran. 11 Sherubtse College, Royal University of Bhutan, Trashigang, Bhutan. 12 Zoological Survey of India, Pali Road, Jodhpur 342005, Rajasthan, India. 16 Institute of Zoology (Chinese Academy of Sciences), 1 Beichen West Road, Chaoyang, Beijing 100101, China.
    [Show full text]
  • Insects of Larose Forest (Excluding Lepidoptera and Odonates)
    Insects of Larose Forest (Excluding Lepidoptera and Odonates) • Non-native species indicated by an asterisk* • Species in red are new for the region EPHEMEROPTERA Mayflies Baetidae Small Minnow Mayflies Baetidae sp. Small minnow mayfly Caenidae Small Squaregills Caenidae sp. Small squaregill Ephemerellidae Spiny Crawlers Ephemerellidae sp. Spiny crawler Heptageniiidae Flatheaded Mayflies Heptageniidae sp. Flatheaded mayfly Leptophlebiidae Pronggills Leptophlebiidae sp. Pronggill PLECOPTERA Stoneflies Perlodidae Perlodid Stoneflies Perlodid sp. Perlodid stonefly ORTHOPTERA Grasshoppers, Crickets and Katydids Gryllidae Crickets Gryllus pennsylvanicus Field cricket Oecanthus sp. Tree cricket Tettigoniidae Katydids Amblycorypha oblongifolia Angular-winged katydid Conocephalus nigropleurum Black-sided meadow katydid Microcentrum sp. Leaf katydid Scudderia sp. Bush katydid HEMIPTERA True Bugs Acanthosomatidae Parent Bugs Elasmostethus cruciatus Red-crossed stink bug Elasmucha lateralis Parent bug Alydidae Broad-headed Bugs Alydus sp. Broad-headed bug Protenor sp. Broad-headed bug Aphididae Aphids Aphis nerii Oleander aphid* Paraprociphilus tesselatus Woolly alder aphid Cicadidae Cicadas Tibicen sp. Cicada Cicadellidae Leafhoppers Cicadellidae sp. Leafhopper Coelidia olitoria Leafhopper Cuernia striata Leahopper Draeculacephala zeae Leafhopper Graphocephala coccinea Leafhopper Idiodonus kelmcottii Leafhopper Neokolla hieroglyphica Leafhopper 1 Penthimia americana Leafhopper Tylozygus bifidus Leafhopper Cercopidae Spittlebugs Aphrophora cribrata
    [Show full text]
  • Bees of Sub-Saharan Africa Poster
    Bees of Sub-Saharan Africa It is estimated that there are around 30 000 bee species worldwide of which about 20 500 have been described, 2755 occur in sub-Saharan Africa and about 1200 occur in South Africa. Bees, in many shapes and sizes, pollinate about 80% of all flowering plants and 75% of the vegetables, fruits and nuts we eat. The symbols next to each bee indicate their sociality, where they nest and where they get their food. Megachilidae are long tongued bees with two submarginal cells on their wings that collect pollen Apidae are long tongued bees with two or three submarginal wing cells that collect pollen on their hind legs. under their abdomens. The group comprises almost every type of nest building behaviour. Most are solitary but some are social. Parasitism includes social parasites, cleptoparasites and robbers. ♂ ♂ ♀ ♀ ♀ ♀ ♀ ♂ C ♀ C ♀ ♂ F Pasites ♀ appletoni C C F Cleft Cuckoo Ammobates ♀ Nomada gigas Bee auster Gnathanthidium Wasp Cuckoo Sandwalker prionognathum Bee Cuckoo Bee F Big Jawed Afromelecta fulvohirta Euaspis abdominalis Xylocopa lugubris Fidelia braunsiana Redtailed Cuckoo Bee Carder Bee Coelioxys circumscriptus Large Carpenter Bee Pathwork Cuckoo Bee Pot Bee Cone Cuckoo Bee ♀ ♂ ♀ ♀ ♂ C ♂ ♀ F ♂ C ♂ ♀ ♀ ♂ ♀ ♀ F ♀ ♂ F Ceratina Sphecodopsis Icteranthidium ♀ ♂ Schwarzia emmae moerenhouti Max Cuckoo Bee vespericena F grohmani Small Carpenter Bee Cape Cuckoo Ridge Cheeked Bee C F Hoplitis similis Carder Bee F Lithurgus spiniferus Big Resin Bee Aglaoapis trifasciata Stone Bee Toothed Cuckoo Bee F ♀ ♂ ♀ ♂ Aspidosmia arnoldi ♀ ♂ Ugly Faced Carder Bee ♀ F ♀ ♀ Thyreus pictus Xylocopa scioensis F F Neon Cuckoo Bee Afroheriades sp. ♀ Large Carpenter Bee Compsomelissa Macrogalea candida African Resin Bee Ochreriades F ♀ Stenoheriades sp.
    [Show full text]
  • Efectos De La Fragmentación Del Hábitat Sobre Himenópteros Antófilos (Insecta) En El Bosque Chaqueño Serrano
    Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Doctorado en Ciencias Biológicas Manuscrito de Tesis para optar al título de Dra. en Ciencias Biológicas Efectos de la fragmentación del hábitat sobre himenópteros antófilos (Insecta) en el Bosque Chaqueño Serrano Doctorando: Bióloga Mariana Laura Musicante Directora: Dra. Adriana Salvo Co-Director: Dr. Leonardo Galetto Centro de Investigaciones Entomológicas de Córdoba (CIEC) Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Córdoba, Argentina 2013 Comisión Asesora Dr. Marcelo Aizen Laboratorio Ecotono-Centro Regional Universitario Bariloche (CRUB), Universidad Nacional del Comahue e Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), San Carlos de Bariloche. Departamento de Botánica, Museo Argentino de Ciencias Naturales, Buenos Aires. Dr. Marcelo Cabido Instituto Multidisciplinario de Biología Vegetal-CONICT. Universidad Nacional de Córdoba. Dra. Adriana Salvo Centro de Investigaciones Entomológicas de Córdoba. Instituto Multidisciplinario de Biología Vegetal-CONICT Universidad Nacional de Córdoba. Defensa Oral y Pública Lugar y fecha: Calificación: Tribunal ______________________________ _____________________________________ Firma Aclaración ______________________________ _____________________________________ Firma Aclaración ______________________________ ____________________________________ Firma Aclaración A esos pequeños seres que zumbaban ayer y a los que todavía zumban hoy Efectos de la fragmentación del hábitat
    [Show full text]
  • The Impact of Molecular Data on Our Understanding of Bee Phylogeny and Evolution
    EN58CH04-Danforth ARI 5 December 2012 7:55 The Impact of Molecular Data on Our Understanding of Bee Phylogeny and Evolution Bryan N. Danforth,1∗ Sophie Cardinal,2 Christophe Praz,3 Eduardo A.B. Almeida,4 and Denis Michez5 1Department of Entomology, Cornell University, Ithaca, New York 14853; email: [email protected] 2Canadian National Collection of Insects, Agriculture Canada, Ottawa, Ontario K1A 0C6, Canada; email: [email protected] 3Institute of Biology, University of Neuchatel, Emile-Argand 11, 2009 Neuchatel, Switzerland; email: [email protected] 4Departamento de Biologia, FFCLRP-Universidade de Sao˜ Paulo, 14040-901 Ribeirao˜ Preto, Sao˜ Paulo, Brazil; email: [email protected] 5University of Mons, Laboratory of Zoology, 7000 Mons, Belgium; email: [email protected] Annu. Rev. Entomol. 2013. 58:57–78 Keywords First published online as a Review in Advance on Hymenoptera, Apoidea, bees, molecular systematics, sociality, parasitism, August 28, 2012 plant-insect interactions The Annual Review of Entomology is online at ento.annualreviews.org Abstract by 77.56.160.109 on 01/14/13. For personal use only. This article’s doi: Our understanding of bee phylogeny has improved over the past fifteen years 10.1146/annurev-ento-120811-153633 as a result of new data, primarily nucleotide sequence data, and new methods, Copyright c 2013 by Annual Reviews. primarily model-based methods of phylogeny reconstruction. Phylogenetic All rights reserved Annu. Rev. Entomol. 2013.58:57-78. Downloaded from www.annualreviews.org studies based on single or, more commonly, multilocus data sets have helped ∗ Corresponding author resolve the placement of bees within the superfamily Apoidea; the relation- ships among the seven families of bees; and the relationships among bee subfamilies, tribes, genera, and species.
    [Show full text]