The Impact of Molecular Data on Our Understanding of Bee Phylogeny and Evolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Southwestern Rare and Endangered Plants
Preliminary Report on the Reproductive Biology of the Threatened Chisos Mountain Hedgehog Cactus BONNIE B. AMOS and CHRISTOS VASSILIOU Angelo State University, Texas Abstract: The Chisos Mountain hedgehog cactus (Echinocereus chisoensis, Cactaceae) is a narrow endemic restricted to an approximately 100 square mile area in Big Bend National Park, Texas. It was listed as threatened in 1987 as Echinocereus chisoensis var. chisoensis. An investigation of the reproductive biology and pollination ecology conducted in 1999 and 2000 revealed the taxon to be homogamous, self-incompatible, xenogamous, and heavily dependent upon the cactus oligolectic bee, Diadasia rinconis (Anthophoridae) for pollination. Despite infrequent bee visitation, fruit set from open pollination is high and fruits produce large numbers of seeds. Predation in 2002, probably from rodents as a result of severe drought conditions, was severe on plants, flower buds, and fruits. The Chisos Mountain hedgehog cactus, or Chisos jillo (Opuntia leptocaulis DC.), ocotillo (Fouquieria pitaya (Echinocereus chisoensis W. Marshall), is 1 of splendens K. Kunth), leatherstem (Jatropha dioica V. 20 threatened or endangered cacti listed by the de Cervantes), lechuguilla (Agave lechuguilla J. U.S. Fish and Wildlife Service for Region 2 (http: Torrey), and ceniza (Leucophyl1umf)zltescens (J. Ber- // ecos. fws.gov/ webpage/ webpage-lead.htrnl? landier) I. M. Johnston). An earlier study (Hender- lead_region=2&type=L&listings=l).In 1987 it was shott et al. 1992) did not show specific E. chisoen- added to the federal lists (53 FR 38453) of en- sis-nurse plant associations, but rather showed dangered and threatened wildlife and plants as associations as a consequence of soil conditions threatened because of its restricted distribution, that provide a hospitablL environment for a diver- low numbers, loss of viability in existing popula- sity of species or the exploitation by E. -
Classification of the Apidae (Hymenoptera)
Utah State University DigitalCommons@USU Mi Bee Lab 9-21-1990 Classification of the Apidae (Hymenoptera) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mi Part of the Entomology Commons Recommended Citation Michener, Charles D., "Classification of the Apidae (Hymenoptera)" (1990). Mi. Paper 153. https://digitalcommons.usu.edu/bee_lab_mi/153 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mi by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 4 WWvyvlrWryrXvW-WvWrW^^ I • • •_ ••^«_«).•>.• •.*.« THE UNIVERSITY OF KANSAS SCIENC5;^ULLETIN LIBRARY Vol. 54, No. 4, pp. 75-164 Sept. 21,1990 OCT 23 1990 HARVARD Classification of the Apidae^ (Hymenoptera) BY Charles D. Michener'^ Appendix: Trigona genalis Friese, a Hitherto Unplaced New Guinea Species BY Charles D. Michener and Shoichi F. Sakagami'^ CONTENTS Abstract 76 Introduction 76 Terminology and Materials 77 Analysis of Relationships among Apid Subfamilies 79 Key to the Subfamilies of Apidae 84 Subfamily Meliponinae 84 Description, 84; Larva, 85; Nest, 85; Social Behavior, 85; Distribution, 85 Relationships among Meliponine Genera 85 History, 85; Analysis, 86; Biogeography, 96; Behavior, 97; Labial palpi, 99; Wing venation, 99; Male genitalia, 102; Poison glands, 103; Chromosome numbers, 103; Convergence, 104; Classificatory questions, 104 Fossil Meliponinae 105 Meliponorytes, -
Karl Jordan: a Life in Systematics
AN ABSTRACT OF THE DISSERTATION OF Kristin Renee Johnson for the degree of Doctor of Philosophy in History of SciencePresented on July 21, 2003. Title: Karl Jordan: A Life in Systematics Abstract approved: Paul Lawrence Farber Karl Jordan (1861-1959) was an extraordinarily productive entomologist who influenced the development of systematics, entomology, and naturalists' theoretical framework as well as their practice. He has been a figure in existing accounts of the naturalist tradition between 1890 and 1940 that have defended the relative contribution of naturalists to the modem evolutionary synthesis. These accounts, while useful, have primarily examined the natural history of the period in view of how it led to developments in the 193 Os and 40s, removing pre-Synthesis naturalists like Jordan from their research programs, institutional contexts, and disciplinary homes, for the sake of synthesis narratives. This dissertation redresses this picture by examining a naturalist, who, although often cited as important in the synthesis, is more accurately viewed as a man working on the problems of an earlier period. This study examines the specific problems that concerned Jordan, as well as the dynamic institutional, international, theoretical and methodological context of entomology and natural history during his lifetime. It focuses upon how the context in which natural history has been done changed greatly during Jordan's life time, and discusses the role of these changes in both placing naturalists on the defensive among an array of new disciplines and attitudes in science, and providing them with new tools and justifications for doing natural history. One of the primary intents of this study is to demonstrate the many different motives and conditions through which naturalists came to and worked in natural history. -
The Bees of Sub-Saharan Africa
A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark Genus Nasutapis Michener (Fig. 36E) Nasutapis has a distinct projection medioventrally on the clypeus. This genus is monotypic (Nasutapis straussorum Michener) and endemic to KwaZulu-Natal, South Africa, and found in nests of Braunsapis facialis (Gerstaecker). 8.6.2. Subfamily Nomadinae In sub-Saharan Africa the Nomadinae comprises four tribes and six genera. They are all cleptoparasitic. Diagnostic features for the subfamily are difficult to define, but almost each tribe has a distinctive feature, except Ammobatoidini. 8.6.2.1. Tribe Nomadini Genus Nomada Scopoli (Fig. 37A) Nomadini has one genus in sub-Saharan Africa, namely Nomada. There are ten species, occurring mostly in North-East and southern Africa. 8.6.2.2. Tribe Epeolini Genus Epeolus Latreille (Fig. 37B) Epeolini has one genus in sub-Saharan Africa, namely Epeolus. There are 13 species that occur mostly on the east side of the continent, along its entire length. 8.6.2.3. Tribe Ammobatoidini Genus Ammobatoides Radoszkowski (Fig. 37C) Ammobatoidini has one genus in sub-Saharan Africa, and it is known only from the holotype of Ammobatoides braunsi Bischoff. It was collected in Willowmore, South Africa. It therefore goes without saying that it is extremely rare. 8.6.2.4. Tribe Ammobatini The Ammobatini has four sub-Saharan genera. They all comprise cleptoparasitic bees. Ammobates has its centre of diversity in the Palaearctic, as does Chiasmognathus, which occurs just north of the Afrotropical Region and intrudes into sub-Saharan Africa. Pasites is mostly Afrotropical and Sphecodopsis is endemic to southern Africa. -
Historia Natural De Macrotera Pipiyolin (Hymenoptera: Andrenidae) En La Estación De Biología Chamela, Jalisco, México
Revista Mexicana de Biodiversidad 81: 87- 96, 2010 http://dx.doi.org/10.22201/ib.20078706e.2010.001.196 Historia natural de Macrotera pipiyolin (Hymenoptera: Andrenidae) en la Estación de Biología Chamela, Jalisco, México Natural history of Macrotera pipiyolin (Hymenoptera: Andrenidae) in the Estación de Biología Chamela, Jalisco, Mexico Beatriz Rodríguez-Velez1* y Ricardo Ayala2 1Instituto de Biología, Departamento de Zoología, Universidad Nacional Autónoma de México. Apartado postal 70-153, 04510 México, D.F., México. 2Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 21, San Patricio, 48980 Jalisco, México. *Correspondencia: [email protected] Resumen. Se presenta información sobre la historia natural de Macrotera pipiyolin; el estudio se realizó en la Estación de Biología Chamela, Instituto de Biología, UNAM, entre junio y agosto de 1994. Las abejas emergieron poco después del inicio de la temporada de lluvias, su pico de actividad fue a principio de julio, presentando alrededor de 35 días activos. La actividad concuerda con la fl oración de Opuntia excelsa, planta de la que obtiene sus recursos. Las cópulas ocurren sobre las fl ores y los machos muestran 3 tipos de estrategias reproductivas: macho dominante, subordinado y patrullero. Las hembras son poliándricas y los machos polígamos. Las hembras construyen los nidos generalmente cerca de O. excelsa y tienen una distribución gregaria. Los nidos son simples, con un túnel principal y celdas, las que se cierran y desconectan del tunel una vez que se han aprovisionado y en ellas se ha depositado un huevo. Para la provisión de una celda se requiere de 2 a 18 cargas de polen. -
Intro Outline
THE REPRODUCTIVE ECOLOGY OF TWO TERRESTRIAL ORCHIDS, CALADENIA RIGIDA AND CALADENIA TENTACULATA RENATE FAAST Submitted for the degree of Doctor of Philosophy School of Earth and Environmental Sciences The University of Adelaide, South Australia December, 2009 i . DEcLARATION This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Renate Faast and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines. Published works contained within this thesis: Faast R, Farrington L, Facelli JM, Austin AD (2009) Bees and white spiders: unravelling the pollination' syndrome of C aladenia ri gída (Orchidaceae). Australian Joumal of Botany 57:315-325. Faast R, Facelli JM (2009) Grazrngorchids: impact of florivory on two species of Calademz (Orchidaceae). Australian Journal of Botany 57:361-372. Farrington L, Macgillivray P, Faast R, Austin AD (2009) Evaluating molecular tools for Calad,enia (Orchidaceae) species identification. -
Anthophila List
Filename: cuic_bee_database. -
Supplementary Information
Supplementary Information Molecular traces of alternative social organization in a termite genome Supplementary Figures Supplementary Figure 1. Coverage depth of assembled genome Supplementary Figure 2. Venn diagram of models predictions for Z. nevadensis protein coding genes. Supplementary Figure 3. Venn diagrams of termite protein coding genes clustered with other arthropod proteins by orthoMCL procedure. Supplementary Figure 4. NCBI taxonomy classification for candidate outgroups. This topology illustrates evolutionary relationships between Neoptera and the three lineages proposed as outgroups to replace the distant and fast evolving D. pulex. Amino acids Nucleotides ML Bayes Supplementary Figure 5. Phylogenetic analyses showing agreement across the obtained topologies. Species names are abbreviated using the first letter of the genus in capital and the three first letters of the species (e.g. ‘Apis’ correspond to A. pisum and not to the bee A. mellifera which abbreviation is ‘Amel’). Supplementary Figure 6. Osiris gene cluster in Z. nevadensis and five reference species. Genes are represented as squares with arrows indicating orientation. Gene names are indicated above while the subfamily classification and gene length are given below. A white cross in the square indicates non-detection of the corresponding domain with the Pfam recommended threshold. Intergenic space is also indicated, with a double large slash to notify genomic sequences larger than 1 Mb. Distinct scaffolds are separated by a vertical line. Supplementary Figure 7. Phylogeny of the Yellow gene family. For the protocol, refer to S5.3, for the mapping of protein IDs to species refer to Supplementary Table 13. Supplementary Figure 8. Phylogenetic analysis of the Zootermopsis nevadensis species tree. -
Components of Nest Provisioning Behavior in Solitary Bees (Hymenoptera: Apoidea)*
Apidologie 39 (2008) 30–45 Available online at: c INRA/DIB-AGIB/ EDP Sciences, 2008 www.apidologie.org DOI: 10.1051/apido:2007055 Review article Components of nest provisioning behavior in solitary bees (Hymenoptera: Apoidea)* John L. Neff Central Texas Melittological Institute, 7307 Running Rope, Austin, Texas 78731, USA Received 13 June 2007 – Revised 28 September 2007 – Accepted 1 October 2007 Abstract – The components of nest provisioning behavior (resources per cell, transport capacity, trip dura- tion, trips per cell) are examined for a data set derived from the literature and various unpublished studies. While there is a trade-off between transport capacity and trips required per cell, the highest provisioning rates are achieved by bees carrying very large pollen loads at intermediate trip durations. Most solitary bees appear to be either egg or resource limited, so sustained provisioning rates over one cell per day are unusual. Provisioning rate / body size / transport capacity / solitary bees / trip duration 1. INTRODUCTION tradeoffs between provisioning one large cell or two small cells direct, indirect, or nonex- There is a vast literature on the foraging tac- istent? Are provisioning rates related to body tics of bees: what kinds of flowers to visit, how size? long to spend on a flower, how many flowers Provisioning rate is a general term and can in an inflorescence to visit, when to turn, and simply refer to the rate (mass per unit time) so forth. Much of this work is done within a at which foragers bring various food items framework of whether a forager should max- (pollen, nectar, oils, carrion, or whatever) to imize harvesting rate or foraging efficiency their nests. -
Novitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
AMERICAN MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2640, pp. 1-24, figs. 1-36, tables 1-3 January 3, 1978 The Bionomics and Immature Stages of the Cleptoparasitic Bee Genus Protepeolus (Anthophoridae, Nomadinae) JEROME G. ROZEN, JR.,' KATHLEEN R. EICKWORT,2 AND GEORGE C. EICKWORT3 ABSTRACT Protepeolus singularis was found attacking cells numerous biological dissimilarities. The first in- in nests of Diadasia olivacea in southeastern Ari- star Protepeolus attacks and kills the pharate last zona. The following biological information is pre- larval instar of the host before consuming the sented: behavior of adult females while searching provisions, a unique feature for nomadine bees. for host nests; intraspecific interactions of fe- First and last larval instars and the pupa are males at the host nesting site; interactions with described taxonomically and illustrated. Brief host adults; oviposition; and such larval activities comparative descriptions of the other larval in- as crawling, killing the host, feeding, defecation, stars are also given. Larval features attest to the and cocoon spinning. In general, adult female be- common origin of Protepeolus and the other havior corresponds to that of other Nomadinae. Nomadinae. Cladistic analysis using 27 characters Females perch for extended periods near nest of mature larvae of the Nomadinae demonstrates entrances and avoid host females, which attack that Isepeolus is a sister group to all the other parasites when encountered. Females apparently Nomadinae known from larvae, including Pro- learn the locations of host nests and return to tepeolus, and that Protepeolus is a sister group to them frequently. -
Positive and Negative Impacts of Non-Native Bee Species Around the World
Supplementary Materials: Positive and Negative Impacts of Non-Native Bee Species around the World Laura Russo Table S1. Selected references of potential negative impacts of Apis or Bombus species. Bold, underlined, and shaded text refers to citations with an empirical component while unbolded text refers to papers that refer to impacts only from a hypothetical standpoint. Light grey shading indicates species for which neither positive nor negative impacts have been recorded. “But see” refers to manuscripts that show evidence or describe the opposite of the effect and is capitalized when only contradictory studies could be found. Note that Apis mellifera scutellata (the “Africanized” honeybee), is treated separately given the abundance of research specifically studying that subspecies. Altering Non-native Nesting Floral Pathoens/ Invasive Introgres Decrease Pollination Species Sites Resources Parasites Weeds sion Plant Fitness Webs Apis cerana [1] [2] [1–3] [4] Apis dorsata Apis florea [5] [5] [37,45] But see [8–19] but [27–35] but [36–38] [39–43] [38,46,47] Apis mellifera [9,23–26] [4] [6,7] see [6,20–22] see [6] but see [44] [48,49] but see [50] Apis mellifera [51] but see [55–57] scutellata [52–54] Bombus [58,59] hortorum Bombus But see But see [60] [61] hypnorum [60] Bombus [62] [62,63] [26,64–66] [62] impatiens Bombus lucorum Bombus [28,58,59,6 [39] but see [67,68] [69,70] [36,39] ruderatus 9,71,72] [73] Bombus [59] subterraneous [67,70,74,75, [29,58,72,9 Bombus [25,26,70,7 [38,39,68,81,97,98 [4,76,88, [47,76,49,86,97 [74–76] 77–84] but 1–95] but terrestris 6,87–90] ] 99,100] ,101–103] see [85,86] see [96] Insects 2016, 7, 69; doi:10.3390/insects7040069 www.mdpi.com/journal/insects Insects 2016, 7, 69 S2 of S8 Table S2. -
Effects of Invasive Plant Species on Native Bee Communities in the Southern Great Plains
EFFECTS OF INVASIVE PLANT SPECIES ON NATIVE BEE COMMUNITIES IN THE SOUTHERN GREAT PLAINS By KAITLIN M. O’BRIEN Bachelor of Science in Rangeland Ecology & Management Texas A&M University College Station, Texas 2015 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 2017 EFFECTS OF INVASIVE PLANT SPECIES ON NATIVE BEE COMMUNITIES IN THE SOUTHERN GREAT PLAINS Thesis Approved: Dr. Kristen A. Baum Thesis Adviser Dr. Karen R. Hickman Dr. Dwayne Elmore ii ACKNOWLEDGEMENTS I would like to begin by thanking my advisor, Dr. Kristen Baum, for all of her guidance and expertise throughout this research project. She is an exemplary person to work with, and I am so grateful to have shared my graduate school experience with her. I would also like to recognize my committee members, Dr. Karen Hickman and Dr. Dwayne Elmore, both of whom provided valuable insight to this project. A huge thank you goes out to the Southern Plains Network of the National Park Service, specifically Robert Bennetts and Tomye Folts-Zettner. Without them, this project would not exist, and I am forever grateful to have been involved with their network and parks, both as a research student and summer crew member. A special thank you for Jonathin Horsely, who helped with plot selection, summer sampling, and getting my gear around. I would also like to thank the Baum Lab members, always offering their support and guidance as we navigated through graduate school. And lastly, I would like to thank my family, especially my fiancé Garrett, for believing in me and supporting me as I pursued my goals.