Classification of Community Types, Successional Sequences, and Landscapes of the Copper River Delta, Alaska

Total Page:16

File Type:pdf, Size:1020Kb

Classification of Community Types, Successional Sequences, and Landscapes of the Copper River Delta, Alaska United States Department of Agriculture Classification of Community Forest Service Pacific Northwest Types, Successional Research Station General Technical Sequences, and Report PNW-GTR-469 March 2000 Landscapes of the Copper River Delta, Alaska Downloaded from http://meridian.allenpress.com/jfwm/article-supplement/73408/pdf/10_3996122017-jfwm-104_s17/ by guest on 27 September 2021 Keith Boggs Downloaded from http://meridian.allenpress.com/jfwm/article-supplement/73408/pdf/10_3996122017-jfwm-104_s17/ by guest on 27 September 2021 Author Keith Boggs is the staff vegetation ecologist, Alaska Natural Heritage Program, Environment and Natural Resources Institute, School of Arts and Sciences, University of Alaska Anchorage, 707 A Street, Anchorage, AK 99501. This publication is the result of a cooperative study between the U.S. Department of Agriculture, Forest Service, Chugach National Forest and the Alaska Natural Heritage Program. Abstract Boggs, Keith. 2000 Classification of community types, successional sequences, and landscapes of the Copper River Delta, Alaska. Gen. Tech. Rep. PNW-GTR-469. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 244 p. A classification of community types, successional sequences, and landscapes is pre- sented for the piedmont of the Copper River Delta. The classification was based on a Downloaded from http://meridian.allenpress.com/jfwm/article-supplement/73408/pdf/10_3996122017-jfwm-104_s17/ by guest on 27 September 2021 sampling of 471 sites. A total of 75 community types, 42 successional sequences, and 6 landscapes are described. The classification of community types reflects the existing vegetation communities on the landscape. The distribution, vegetation composition and structure, soils, and successional status of each community are discussed. The community types were placed within successional sequences reflecting their succes- sional trends. Geomorphic and soil development were closely aligned with vegetation succession on the study area and, consequently, are described in detail. Each succes- sional sequence was named after the oldest community type identified in the sequence and the landscape on which it occurs. Diagnostic keys, based on indicator species, are provided to aid in field identification of community types and successional sequences. The dominant landscapes, including outwash plain, tidal marsh, and floodplain, are described by using environmental processes, such as geomorphology, hydrology, and soil development, and by integrating communities and successional sequences into these processes. Keywords: Alaska, Copper River Delta, classification, community type, succession, landscape, outwash, floodplain, delta, dune, barrier island. Summary A classification is presented to provide resource managers with an understanding of the vegetation communities, successional processes, and landscapes of the Copper River Delta. A classification integrating communities, succession, and landscapes is important because vegetation succession and communities can best be described and understood by first interpreting the landscapes on which they exist. The study area is a discontinuous series of coastal deltas and alluvial piedmonts in south-central Alaska encompassing about 700,000 acres. Mountain range spurs inter- rupt the piedmont, and the largest glacial system in North America (Bering Glacier) borders the eastern side. Elevation on the study area ranges from 0 to 300 feet above sea level. Human-caused disturbance is limited primarily to timber harvesting on proximal outwash plains. The vegetation on the Copper River Delta is dynamic and unstable because of tectonic uplift and geomorphic processes, such as erosion and deposition of sediments on tide- flats and glacial river channels. Of special concern is the change in vegetation initiated by an earthquake in 1964 that uplifted the area 6 to 12 feet. Before 1964, the seaward portion of the piedmont was covered by tidal marshes dominated by sedges (Carex spp.) and mixed grass/forb communities. The earthquake lifted these marshes above the tidal influence, initiating massive changes in vegetation composition and structure. Some tidal marsh communities described as common in previous studies are now rare or absent. The uplifted tidal mudflats are presently developing tidal marshes. These vegetation changes in turn have strongly affected such management concerns as nesting habitat for the dusky Canada goose, staging ground for shorebirds, and the moose population of the delta. This classification is divided into three sections: (1) landscape descriptions, (2) suc- cessional sequence descriptions, and (3) community type descriptions. Landscapes (analogous to landtype association from ECOMAP 1993) comprise the broadest level of the classification. Six landscapes were identified: (1) outwash plain, (2) floodplain, (3) linear dune, (4) uplifted marsh, (5) tidal marsh, and (6) barrier island-spit-coastal dune. Sediment deposition or erosion from fluvial and aeolian processes are the domi- nant driving successional forces on these landscapes. Landscape descriptions include Downloaded from http://meridian.allenpress.com/jfwm/article-supplement/73408/pdf/10_3996122017-jfwm-104_s17/ by guest on 27 September 2021 landform, distribution, effect of the 1964 earthquake, and geomorphic processes. Each landscape adds greatly to the biological, habitat, and landform diversity of the Copper River Delta, often with community types, plant species, and successional sequences showing a high fidelity to specific landscapes. The successional sequence classification level describes the full sequence of vegeta- tion succession and landform-soil development. Community types are placed within successional sequences reflecting their successional trends and pathways. Geomorphic and soil development are closely aligned with vegetation succession on the study area and, consequently, are described in detail. A total of 42 successional sequences are identified, and each is named after the oldest community type identified in the sequence and the landscape on which it occurs. A diagnostic key, based on indicator species and landform, is provided to aid in field identification of the sequences. Each successional sequence exhibits high fidelity to specific landscapes. Community types describe existing vegetation and are analogous to the plant associa- tion level of “The National Vegetation Classification Standard” (Bourgeron and Engelking 1994) and to types described at level V of “The Alaska Vegetation Classification” (Viereck and others 1992). Seventy-five communities (plus 35 under- sampled communities) are described. Community type descriptions include other studies of the region, distribution of the community type, vegetation structure and composition, environmental factors such as soils and hydrology, and how each com- munity type fits into succession. A diagnostic key, based on indicator species, is pro- vided to aid in field identification of community types. Contents 1 Introduction 4 Study Area and Climate 6 Ecological Terms and Concepts 6 Community Types, Successional Sequences, and Landscapes 9 Methods Downloaded from http://meridian.allenpress.com/jfwm/article-supplement/73408/pdf/10_3996122017-jfwm-104_s17/ by guest on 27 September 2021 10 Field Methods 14 Data Analysis 15 Rarity Status of Landscapes and Community Types 15 Landscapes 16 Community Types 17 Statewide Rare Communities 18 Landscape Descriptions 18 Overview of Processes Forming the Copper River Delta 20 Outwash Plain Landscape 24 Floodplain Landscape 26 Uplifted Marsh Landscape 29 Linear Dune Landscape 31 Tidal Marsh Landscape 35 Barrier Island-Spit-Coastal Dune Landscape 40 Key to Successional Sequences 41 Instructions 42 Key to Life Forms and Landscape Groups 43 Key to Tidal Marsh Successional Sequences 43 Key to Tree Successional Sequences 45 Other Successional Sequences 50 Successional Sequence Descriptions 50 Outwash Plain and Floodplain Successional Sequences 57 Uplifted Marsh Successional Sequences 64 Linear Dune Successional Sequences 65 Tidal Marsh Successional Sequences 68 Barrier Island-Spit-Coastal Dune Successional Sequences 72 Key to Community Types 72 Instructions 72 Key to Life Form Groups 73 Key to Tree Communities 75 Key to Shrub Communities 76 Key to Sitka Alder Communities 77 Key to Willow Communities 79 Key to Sweetgale Communities 80 Key to Dwarf Shrub Communities 80 Key to Graminoid Communities 83 Key to Forb Communities Downloaded from http://meridian.allenpress.com/jfwm/article-supplement/73408/pdf/10_3996122017-jfwm-104_s17/ by guest on 27 September 2021 85 Key to Aquatic Communities 86 Tree Community Type Descriptions 86 Picea sitchensis/Alnus crispa Community Type 87 Picea sitchensis/Bryophyte Community Type 89 Picea sitchensis/Echinopanax horridum Community Type 90 Picea sitchensis/Rubus spectabilis Community Type 91 Picea sitchensis/Sphagnum Community Type 91 Picea sitchensis/Vaccinium ovalifolium Community Type 93 Picea sitchensis/Vaccinium ovalifolium-Echinopanax horridum Community Type 95 Picea sitchensis/Vaccinium ovalifolium/Lysichiton americanum Community Type 96 Populus trichocarpa/Aruncus sylvester Community Type 97 Populus trichocarpa/Alnus crispa Community Type 99 Populus trichocarpa-Picea sitchensis Community Type 100 Populus trichocarpa/Young Community Type 102 Tsuga heterophylla/Vaccinium ovalifolium Community Type 103 Tsuga heterophylla/Vaccinium ovalifolium-Echinopanax horridum Community Type 105 Tsuga heterophylla/Vaccinium
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Monoicous Species Pairs in the Mniaceae (Bryophyta); Morphology, Sexual Condition and Distiribution
    ISSN 2336-3193 Acta Mus. Siles. Sci. Natur., 68: 67-81, 2019 DOI: 10.2478/cszma-2019-0008 Published: online 1 July 2019, print July 2019 On the hypothesis of dioicous − monoicous species pairs in the Mniaceae (Bryophyta); morphology, sexual condition and distiribution Timo Koponen On the hypothesis of dioicous − monoicous species pairs in the Mniaceae (Bryophyta); morphology, sexual condition and distiribution. – Acta Mus. Siles. Sci. Natur., 68: 67-81, 2019. Abstract: Some early observations seemed to show that, in the Mniaceae, the doubling of the chromo- some set affects a change from dioicous to monoicous condition, larger size of the gametophyte including larger leaf cell size, and to a wider range of the monoicous counterpart. The Mniaceae taxa are divided into four groups based on their sexual condition and morphology. 1. Dioicous – monoicous counterparts which can be distinguished by morphological characters, 2. Dioicous – monoicous taxa which have no morphological, deviating characters, 3. Monoicous species mostly with diploid chromosome number for which no dioicous counterpart is known, and 4. The taxa in Mniaceae with only dioicous plants. Most of the monoicous species of the Mniaceae have wide ranges, but a few of them are endemics in geographically isolated areas. The dioicous species have either a wide holarctic range or a limited range in the forested areas of temperate and meridional North America, Europe and SE Asia, or in subtropical Asia. Some of the monoicous species are evidently autodiploids and a few of them are allopolyploids from cross-sections of two species. Quite recently, several new possible dioicous – monoicous relationships have been discovered.
    [Show full text]
  • Checklist of the Vascular Plants of Redwood National Park
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks.
    [Show full text]
  • Molecular Phylogeny of Chinese Thuidiaceae with Emphasis on Thuidium and Pelekium
    Molecular Phylogeny of Chinese Thuidiaceae with emphasis on Thuidium and Pelekium QI-YING, CAI1, 2, BI-CAI, GUAN2, GANG, GE2, YAN-MING, FANG 1 1 College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China. 2 College of Life Science, Nanchang University, 330031 Nanchang, China. E-mail: [email protected] Abstract We present molecular phylogenetic investigation of Thuidiaceae, especially on Thudium and Pelekium. Three chloroplast sequences (trnL-F, rps4, and atpB-rbcL) and one nuclear sequence (ITS) were analyzed. Data partitions were analyzed separately and in combination by employing MP (maximum parsimony) and Bayesian methods. The influence of data conflict in combined analyses was further explored by two methods: the incongruence length difference (ILD) test and the partition addition bootstrap alteration approach (PABA). Based on the results, ITS 1& 2 had crucial effect in phylogenetic reconstruction in this study, and more chloroplast sequences should be combinated into the analyses since their stability for reconstructing within genus of pleurocarpous mosses. We supported that Helodiaceae including Actinothuidium, Bryochenea, and Helodium still attributed to Thuidiaceae, and the monophyletic Thuidiaceae s. lat. should also include several genera (or species) from Leskeaceae such as Haplocladium and Leskea. In the Thuidiaceae, Thuidium and Pelekium were resolved as two monophyletic groups separately. The results from molecular phylogeny were supported by the crucial morphological characters in Thuidiaceae s. lat., Thuidium and Pelekium. Key words: Thuidiaceae, Thuidium, Pelekium, molecular phylogeny, cpDNA, ITS, PABA approach Introduction Pleurocarpous mosses consist of around 5000 species that are defined by the presence of lateral perichaetia along the gametophyte stems. Monophyletic pleurocarpous mosses were resolved as three orders: Ptychomniales, Hypnales, and Hookeriales (Shaw et al.
    [Show full text]
  • National List of Vascular Plant Species That Occur in Wetlands 1996
    National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt.
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • Vascular Plants of the Coastal Dunes of Humboldt County, California
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 4-2019 Vascular Plants of the Coastal Dunes of Humboldt County, California James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Vascular Plants of the Coastal Dunes of Humboldt County, California" (2019). Botanical Studies. 41. https://digitalcommons.humboldt.edu/botany_jps/41 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. VASCULAR PLANTS OF THE COASTAL DUNES OF HUMBOLDT COUNTY, CALIFORNIA Compiled by James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University Arcata, California Ninth Edition • August 2019 Amaryllidaceae — Onion or Amaryllis Family F E R N S Allium unifolium •One-leaved onion Dennstaedtiaceae — Bracken Fern Family Anacardiaceae — Cashew Family Pteridium aquilinum var. pubescens • Bracken fern Toxicodendron diversilobum • Poison-oak Ophioglossaceae — Adder’s-tongue Family Apocynaceae — Dogbane or Milkweed Family Botrychium multifidum • Leathery
    [Show full text]
  • VH Flora Complete Rev 18-19
    Flora of Vinalhaven Island, Maine Macrolichens, Liverworts, Mosses and Vascular Plants Javier Peñalosa Version 1.4 Spring 2019 1. General introduction ------------------------------------------------------------------------1.1 2. The Setting: Landscape, Geology, Soils and Climate ----------------------------------2.1 3. Vegetation of Vinalhaven Vegetation: classification or description? --------------------------------------------------3.1 The trees and shrubs --------------------------------------------------------------------------3.1 The Forest --------------------------------------------------------------------------------------3.3 Upland spruce-fir forest -----------------------------------------------------------------3.3 Deciduous woodlands -------------------------------------------------------------------3.6 Pitch pine woodland ---------------------------------------------------------------------3.6 The shore ---------------------------------------------------------------------------------------3.7 Rocky headlands and beaches ----------------------------------------------------------3.7 Salt marshes -------------------------------------------------------------------------------3.8 Shrub-dominated shoreline communities --------------------------------------------3.10 Freshwater wetlands -------------------------------------------------------------------------3.11 Streams -----------------------------------------------------------------------------------3.11 Ponds -------------------------------------------------------------------------------------3.11
    [Show full text]
  • <I>Sphagnum</I> Peat Mosses
    ORIGINAL ARTICLE doi:10.1111/evo.12547 Evolution of niche preference in Sphagnum peat mosses Matthew G. Johnson,1,2,3 Gustaf Granath,4,5,6 Teemu Tahvanainen, 7 Remy Pouliot,8 Hans K. Stenøien,9 Line Rochefort,8 Hakan˚ Rydin,4 and A. Jonathan Shaw1 1Department of Biology, Duke University, Durham, North Carolina 27708 2Current Address: Chicago Botanic Garden, 1000 Lake Cook Road Glencoe, Illinois 60022 3E-mail: [email protected] 4Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvagen¨ 18D, SE-752 36, Uppsala, Sweden 5School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, Canada 6Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden 7Department of Biology, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland 8Department of Plant Sciences and Northern Research Center (CEN), Laval University Quebec, Canada 9Department of Natural History, Norwegian University of Science and Technology University Museum, Trondheim, Norway Received March 26, 2014 Accepted September 23, 2014 Peat mosses (Sphagnum)areecosystemengineers—speciesinborealpeatlandssimultaneouslycreateandinhabitnarrowhabitat preferences along two microhabitat gradients: an ionic gradient and a hydrological hummock–hollow gradient. In this article, we demonstrate the connections between microhabitat preference and phylogeny in Sphagnum.Usingadatasetof39speciesof Sphagnum,withan18-locusDNAalignmentandanecologicaldatasetencompassingthreelargepublishedstudies,wetested
    [Show full text]
  • Humboldt Bay and Eel River Estuary Benthic Habitat Project
    Humboldt Bay and Eel River Estuary Benthic Habitat Project Susan Schlosser and Annie Eicher Published by California Sea Grant College Program Scripps Institution of Oceanography University of California San Diego 9500 Gilman Drive #0231 La Jolla CA 92093-0231 (858) 534-4446 www.csgc.ucsd.edu Publication No. T-075 This document was supported in part by the National Sea Grant College Program of the U.S. Department of Commerce’s National Oceanic and Atmospheric Administration, and produced under NOAA grant number NA10OAR4170060, project number C/P-1 through the California Sea Grant College Program. The views expressed herein do not necessarily reflect the views of any of those organizations. Sea Grant is a unique partnership of public and private sectors, combining research, education, and outreach for public service. It is a national network of universities meeting changing environmental and economic needs of people in our coastal, ocean, and Great Lakes regions. Photographs: All photographs taken by S. Schlosser, A. Eicher or D. Marshall unless otherwise noted. Suggested citation: Schlosser, S., and A. Eicher. 2012. The Humboldt Bay and Eel River Estuary Benthic Habitat Project. California Sea Grant Publication T-075. 246 p. This document and individual maps can be downloaded from: http://ca-sgep.ucsd.edu/ humboldthabitats Humboldt Bay and Eel River Estuary Benthic Habitat Project Final Report to the California State Coastal Conservancy Agreement Number 06-085 August 2012 Susan Schlosser1 and Annie Eicher2 1 California Sea Grant, 2 Commercial Street Suite 4, Eureka, CA 95501 2 HT Harvey & Associates, Arcata, CA Acknowledgements The co-authors of the Humboldt Bay and Eel River Estuary Benthic Habitat Report have many people to thank who were involved in this project.
    [Show full text]
  • Bryophyte Diversity and Vascular Plants
    DISSERTATIONES BIOLOGICAE UNIVERSITATIS TARTUENSIS 75 BRYOPHYTE DIVERSITY AND VASCULAR PLANTS NELE INGERPUU TARTU 2002 DISSERTATIONES BIOLOGICAE UNIVERSITATIS TARTUENSIS 75 DISSERTATIONES BIOLOGICAE UNIVERSITATIS TARTUENSIS 75 BRYOPHYTE DIVERSITY AND VASCULAR PLANTS NELE INGERPUU TARTU UNIVERSITY PRESS Chair of Plant Ecology, Department of Botany and Ecology, University of Tartu, Estonia The dissertation is accepted for the commencement of the degree of Doctor philosophiae in plant ecology at the University of Tartu on June 3, 2002 by the Council of the Faculty of Biology and Geography of the University of Tartu Opponent: Ph.D. H. J. During, Department of Plant Ecology, the University of Utrecht, Utrecht, The Netherlands Commencement: Room No 218, Lai 40, Tartu on August 26, 2002 © Nele Ingerpuu, 2002 Tartu Ülikooli Kirjastuse trükikoda Tiigi 78, Tartu 50410 Tellimus nr. 495 CONTENTS LIST OF PAPERS 6 INTRODUCTION 7 MATERIAL AND METHODS 9 Study areas and field data 9 Analyses 10 RESULTS 13 Correlation between bryophyte and vascular plant species richness and cover in different plant communities (I, II, V) 13 Environmental factors influencing the moss and field layer (II, III) 15 Effect of vascular plant cover on the growth of bryophytes in a pot experiment (IV) 17 The distribution of grassland bryophytes and vascular plants into different rarity forms (V) 19 Results connected with nature conservation (I, II, V) 20 DISCUSSION 21 CONCLUSIONS 24 SUMMARY IN ESTONIAN. Sammaltaimede mitmekesisus ja seosed soontaimedega. Kokkuvõte 25 < TÄNUSÕNAD. Acknowledgements 28 REFERENCES 29 PAPERS 33 2 5 LIST OF PAPERS The present thesis is based on the following papers which are referred to in the text by the Roman numerals.
    [Show full text]