Me 8493-Thermal Engineering-I Unit – 1 Gas Power Cycles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Type Certificate Holder Record Teledyne Continental Motors Ownership & Name Change As of April 19, 2011 (Continental Motors, Inc.)
DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION E-233 Revision 18 CONTINENTAL C75-8, -8F, -8FH, -8FHJ, -8FJ, -8J C75-12, -12F, -12FH, -12FHJ, -12FJ, -12J C75-12B, -12BF, -12BFH C75-15, -15F C85-8, -8F, -8FHJ, -8FJ, -8J C85-12, -12F, -12FH, -12FHJ, -12FJ, -12J C85-14F C85-15, -15F November 1, 2011 TYPE CERTIFICATE DATA SHEET NO. E-233 Engines of models described herein conforming with this data sheet (which is part of type certificate No. 233) and other approved data on file with the Federal Aviation Administration, meet the minimum standards for use in certificated aircraft in accordance with pertinent aircraft data sheets and applicable portions of the Civil Air Regulations provided they are installed, operated and maintained as prescribed by the approved manufacturer's manuals and other approved instructions. Type Certificate Holder Continental Motors Mobile, Alabama 36601 Type Certificate Holder Record Teledyne Continental Motors Ownership & name change as of April 19, 2011 (Continental Motors, Inc.) Model C75-8 C75-12, -15 C85-8 C85-12, -14, -15 Type 4H0A - - - - - - Rating, ICAO or ARDC standard atmosphere Max. continuous hp., r.p.m., full throttle 75-2275 - - 85-2575 - - at sea level pressure altitude Takeoff hp., 5 min., r.p.m. full throttle at 75-2275 - - 85-2575 - - sea level pressure altitude (87-2650 for -J, -FHJ and -FJ models only) Fuel (min. grade aviation gasoline) 73 - - - - - - Lubricating oil, ambient temperature Oil Grade Below 40°F. SAE 20 - - - - - - Above 40°F. SAE 40 - - - - - - Bore and stroke, in. 4.062 x 3.625 - - - - - - Displacement, cu. in. 188 - - - - - - Compression ratio 6.3:1 - - - - - - Weight (dry), lb. -
Constant Volume Combustion Cycle for IC Engines
Constant Volume Combustion Cycle for IC Engines Jovan Dorić Assistant This paper presents an analysis of the internal combustion engine cycle in University of Novi Sad Faculty of Technical Sciences cases when the new unconventional piston motion law is used. The main goal of the presented unconventional piston motion law is to make a Ivan Klinar realization of combustion during constant volume in an engine’s cylinder. Full Professor The obtained results are shown in PV (pressure-volume) diagrams of University of Novi Sad Faculty of Technical Sciences standard and new engine cycles. The emphasis is placed on the shortcomings of the real cycle in IC engines as well as policies that would Marko Dorić contribute to reducing these disadvantages. For this paper, volumetric PhD student efficiency, pressure and temperature curves for standard and new piston University of Novi Sad Faculty of Agriculture motion law have been calculated. Also, the results of improved efficiency and power are presented. Keywords: constant volume combustion, IC engine, kinematics. 1. INTRODUCTION of an internal combustion engine, whose combustion is so rapid that the piston does not move during the Internal combustion engine simulation modelling has combustion process, and thus combustion is assumed to long been established as an effective tool for studying take place at constant volume [6]. Although in engine performance and contributing to evaluation and theoretical terms heat addition takes place at constant new developments. Thermodynamic models of the real volume, in real engine cycle heat addition at constant engine cycle have served as effective tools for complete volume can not be performed. -
Steady State and Transient Efficiencies of A
STEADY STATE AND TRANSIENT EFFICIENCIES OF A FOUR CYLINDER DIRECT INJECTION DIESEL ENGINE FOR IMPLEMENTATION IN A HYBRID ELECTRIC VEHICLE A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Masters of Science Charles Van Horn August, 2006 STEADY STATE AND TRANSIENT EFFICIENCIES OF A FOUR CYLINDER DIRECT INJECTION DIESEL ENGINE FOR IMPLEMENTATION IN A HYBRID ELECTRIC VEHICLE Charles Van Horn Thesis Approved: Accepted: Advisor Department Chair Dr. Scott Sawyer Dr. Celal Batur Faculty Reader Dean of the College Dr. Richard Gross Dr. George K. Haritos Faculty Reader Dean of the Graduate School Dr. Iqbal Husain Dr. George R. Newkome Date ii ABSTRACT The efficiencies of a four cylinder direct injection diesel engine have been investigated for the implementation in a hybrid electric vehicle (HEV). The engine was cycled through various operating points depending on the power and torque requirements for the HEV. The selected engine for the HEV is a 2005 Volkswagen 1.9L diesel engine. The 2005 Volkswagen 1.9L diesel engine was tested to develop the steady-state engine efficiencies and to evaluate the transient effects on these efficiencies. The peak torque and power curves were developed using a water brake dynamometer. Once these curves were obtained steady-state testing at various engine speeds and powers was conducted to determine engine efficiencies. Transient operation of the engine was also explored using partial throttle and variable throttle testing. The transient efficiency was compared to the steady-state efficiencies and showed a decrease from the steady- state values. -
Certificated Aircraft Engines
CERTIFICATED AIRCRAFT ENGINES SSP1101 DECEMBER 2013 652 Oliver Street Williamsport, PA 17701 U.S.A. Phone: Main OfficeU.S. and Canada Toll Free +1 (800) 2583279 Direct +1 (570) 3236181 Sales Department +1 (570) 3277278 Facsimile +1 (570) 3277101 Visit us on the World Wide Web at: http://www.lycoming.com ©2013 Avco Corporation All Rights Reserved. Lycoming Engines is a division of Avco Corporation. TABLE OF CONTENTS PISTON CERTIFICATED ENGINES – (4) Four Cylinder Series ....................................................................................................................................................... 1 (6) Six Cylinder Series ....................................................................................................................................................... 16 (8) Eight Cylinder Series .................................................................................................................................................... 32 PISTON ENGINE INSTALLATIONS (4) Four Cylinder Installations............................................................................................................................................ 33 (6) Six Cylinder Installations.............................................................................................................................................. 42 TURBOCHARGED .................................................................................................................................................... 46 GEARED................................................................................................................................................................... -
This Photo Shows a 1935 Ford Station Wagon in Brigham City, Utah
www.earlyfordv8victoria.com P.O. Box 53517 Broadmead RPO Victoria, British Columbia V8X 5K2 This photo shows a 1935 Ford Station Wagon in Brigham City, Utah. Actually is the US Mail route Woodie. We think that’s Bruce Somers holding up the door! Page | 1 NOVEMBER 2019 TABLE OF CONTENTS: 1. Club Executive – contact information. 2. 2019 Club agenda & events. 3. Minutes. November 12th, regular club meeting. 4. Club news – updates, breaking news. 5. Tech talk – V8 members input, Q&A. Suggestions News. 6. Photos – Nostalgia EFV8 109, local and worldwide. 7. Buy & sell – parts, restorations, collections. Wanted dead or alive 8. Committees – contacts, functions, updates, help. 9. Fun page – caution, members contributing. 10. Miscellaneous – news and other interests. Contributions always appreciated The next regular club meeting will be held on January 14th , 2020 at Berwick House. 7:30 PM. 4062 Shelbourne St. CU there. Page | 2 NOVEMBER 2019 Early Ford V8 Club R.G. #109 2020 Position Name Telephone Email President Chris Chown 250 595 0312 [email protected] Vice President Mike Mortimer 250 477 0547 [email protected] Treasurer Jim Banks 250 433 4021 [email protected] Secretary Al Wills 250 474 4909 [email protected] Directors Dennis Mounce 250 478 6440 d&[email protected] Lauri Stevens 250 478 7565 [email protected] Chris Chown 250 595 0312 [email protected] Jim Jennings 250 477 5594 [email protected] Bill Pritchard 250 656 7029 [email protected] Don Landels 250 588 1300 [email protected] First Past Bill Pritchard 250 656 7029 [email protected] President Page | 3 NOVEMBER 2019 2019 Club Agenda & Events ACTIVITY AGENDA – January through December JAN 8 REGULAR CLUB MEETING 7:30 AT THE VICTORIAN JAN 19 CHRISTMAS PARTY SHAS Schoolhouse. -
Hybrid Electric Vehicles: a Review of Existing Configurations and Thermodynamic Cycles
Review Hybrid Electric Vehicles: A Review of Existing Configurations and Thermodynamic Cycles Rogelio León , Christian Montaleza , José Luis Maldonado , Marcos Tostado-Véliz * and Francisco Jurado Department of Electrical Engineering, University of Jaén, EPS Linares, 23700 Jaén, Spain; [email protected] (R.L.); [email protected] (C.M.); [email protected] (J.L.M.); [email protected] (F.J.) * Correspondence: [email protected]; Tel.: +34-953-648580 Abstract: The mobility industry has experienced a fast evolution towards electric-based transport in recent years. Recently, hybrid electric vehicles, which combine electric and conventional combustion systems, have become the most popular alternative by far. This is due to longer autonomy and more extended refueling networks in comparison with the recharging points system, which is still quite limited in some countries. This paper aims to conduct a literature review on thermodynamic models of heat engines used in hybrid electric vehicles and their respective configurations for series, parallel and mixed powertrain. It will discuss the most important models of thermal energy in combustion engines such as the Otto, Atkinson and Miller cycles which are widely used in commercial hybrid electric vehicle models. In short, this work aims at serving as an illustrative but descriptive document, which may be valuable for multiple research and academic purposes. Keywords: hybrid electric vehicle; ignition engines; thermodynamic models; autonomy; hybrid configuration series-parallel-mixed; hybridization; micro-hybrid; mild-hybrid; full-hybrid Citation: León, R.; Montaleza, C.; Maldonado, J.L.; Tostado-Véliz, M.; Jurado, F. Hybrid Electric Vehicles: A Review of Existing Configurations 1. Introduction and Thermodynamic Cycles. -
Generation of Entropy in Spark Ignition Engines
Int. J. of Thermodynamics ISSN 1301-9724 Vol. 10 (No. 2), pp. 53-60, June 2007 Generation of Entropy in Spark Ignition Engines Bernardo Ribeiro, Jorge Martins*, António Nunes Universidade do Minho, Departamento de Engenharia Mecânica 4800-058 Guimarães PORTUGAL [email protected] Abstract Recent engine development has focused mainly on the improvement of engine efficiency and output emissions. The improvements in efficiency are being made by friction reduction, combustion improvement and thermodynamic cycle modification. New technologies such as Variable Valve Timing (VVT) or Variable Compression Ratio (VCR) are important for the latter. To assess the improvement capability of engine modifications, thermodynamic analysis of indicated cycles of the engines is made using the first and second laws of thermodynamics. The Entropy Generation Minimization (EGM) method proposes the identification of entropy generation sources and the reduction of the entropy generated by those sources as a method to improve the thermodynamic performance of heat engines and other devices. A computer model created and implemented in MATLAB Simulink was used to simulate the conventional Otto cycle and the various processes (combustion, free expansion during exhaust, heat transfer and fluid flow through valves and throttle) were evaluated in terms of the amount of the entropy generated. An Otto cycle, a Miller cycle (over-expanded cycle) and a Miller cycle with compression ratio adjustment are studied using the referred model in order to evaluate the amount of entropy generated in each cycle. All cycles are compared in terms of work produced per cycle. Keywords: IC engines, Miller cycle, entropy generation, over-expanded cycle 1. -
Thermodynamics of Power Generation
THERMAL MACHINES AND HEAT ENGINES Thermal machines ......................................................................................................................................... 1 The heat engine ......................................................................................................................................... 2 What it is ............................................................................................................................................... 2 What it is for ......................................................................................................................................... 2 Thermal aspects of heat engines ........................................................................................................... 3 Carnot cycle .............................................................................................................................................. 3 Gas power cycles ...................................................................................................................................... 4 Otto cycle .............................................................................................................................................. 5 Diesel cycle ........................................................................................................................................... 8 Brayton cycle ..................................................................................................................................... -
An Analytic Study of Applying Miller Cycle to Reduce Nox Emission from Petrol Engine Yaodong Wang, Lin Lin, Antony P
An analytic study of applying miller cycle to reduce nox emission from petrol engine Yaodong Wang, Lin Lin, Antony P. Roskilly, Shengchuo Zeng, Jincheng Huang, Yunxin He, Xiaodong Huang, Huilan Huang, Haiyan Wei, Shangping Li, et al. To cite this version: Yaodong Wang, Lin Lin, Antony P. Roskilly, Shengchuo Zeng, Jincheng Huang, et al.. An analytic study of applying miller cycle to reduce nox emission from petrol engine. Applied Thermal Engineering, Elsevier, 2007, 27 (11-12), pp.1779. 10.1016/j.applthermaleng.2007.01.013. hal-00498945 HAL Id: hal-00498945 https://hal.archives-ouvertes.fr/hal-00498945 Submitted on 9 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript An analytic study of applying miller cycle to reduce nox emission from petrol engine Yaodong Wang, Lin Lin, Antony P. Roskilly, Shengchuo Zeng, Jincheng Huang, Yunxin He, Xiaodong Huang, Huilan Huang, Haiyan Wei, Shangping Li, J Yang PII: S1359-4311(07)00031-2 DOI: 10.1016/j.applthermaleng.2007.01.013 Reference: ATE 2070 To appear in: Applied Thermal Engineering Received Date: 5 May 2006 Revised Date: 2 January 2007 Accepted Date: 14 January 2007 Please cite this article as: Y. -
Cryogenic Refrigeration Using an Acoustic Stirling Expander
CRYOGENIC REFRIGERATION USING AN ACOUSTIC STIRLING EXPANDER Masters Thesis by Nick Emery Department of Mechanical Engineering, University of Canterbury Christchurch, New Zealand Abstract A single-stage pulse tube cryocooler was designed and fabricated to provide cooling at 50 K for a high temperature superconducting (HTS) magnet, with a nominal electrical input frequency of 50 Hz and a maximum mean helium working gas pressure of 2.5 MPa. Sage software was used for the thermodynamic design of the pulse tube, with an initially predicted 30 W of cooling power at 50 K, and an input indicated power of 1800 W. Sage was found to be a useful tool for the design, and although not perfect, some correlation was established. The fabricated pulse tube was closely coupled to a metallic diaphragm pressure wave generator (PWG) with a 60 ml swept volume. The pulse tube achieved a lowest no-load temperature of 55 K and provided 46 W of cooling power at 77 K with a p-V input power of 675 W, which corresponded to 19.5% of Carnot COP. Recommendations included achieving the specified displacement from the PWG under the higher gas pressures, design and development of a more practical co-axial pulse tube and a multi-stage configuration to achieve the power at lower temperatures required by HTS. ii Acknowledgements The author acknowledges: His employer, Industrial Research Ltd (IRL), New Zealand, for the continued support of this work, Alan Caughley for all his encouragement, help and guidance, New Zealand’s Foundation for Research, Science and Technology for funding, University of Canterbury – in particular Alan Tucker and Michael Gschwendtner for their excellent supervision and helpful input, David Gedeon for his Sage software and great support, Mace Engineering for their manufacturing assistance, my wife Robyn for her support, and HTS-110 for creating an opportunity and pathway for the commercialisation of the device. -
National Advisory Committee for Aeronautics
- I 0 N NATIONAL ADVISORY COMMITTEE 0 FOR AERONAUTICS z U TECHNICAL NOTE No. 1790 INVESTIGATION OF ICING CHARACTERISTICS OF TYPICAL LIGHT-AIRPLANE ENGINE INDUCTION SYSTEMS By Willard D. Coles Lewis Flight Propulsion Laboratory Cleveland, Ohio .AL 'IBR. MANtJACTJ, U, -951 EULVEDA BlVD. LES. 45, LiL w77 Washington February 1949 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TECHNICAL NOTE NO. 1790 INVESTIGATION OF ICING CHARACTERISTICS OF TYPICAL LIGHT-AIRPLANE ENGINE INDUCTION SYSTE By Willard D. Coles SUMMARY The icing characteristics of two typical light-airplane engine induction systems were investigated using the carburetors and mani- folds of engines in the horsepower ranges from 65 to 85 and 165 to 185. The smaller system consisted of a float-type carburetor with an unheated manifold and the larger system consisted of a single- barrel pressure-type carburetor with an oil-jacketed manifold. Carburetor-air temperature and humidity limits of visible and serious Icing were determined for various engine power conditions. Several .methods of achieving ice-free induction systems are dis- cussed along with estimates of surface heating requirements of the various induct ion-system components. A study was also made of the icing characteristics of a typical light-airplane air scoop with an exposed filter and a modified system that provided a normal ram inlet with the filter located in a position to Induce inertia separation of the free water from the charge air. The principle of operation of float-type carburetors is proved to make them inherently more susceptible to icing at the throttle plate than pressure-type carburetors.. The results indicated that proper jacketing and heating of all parts exposed to the fuel spray can satisfactorily reduce or eliminate icing in the float-type carburetor and the manifold. -
Chapter 9, Problem 16. an Air-Standard Cycle Is Executed in A
COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Problem 16. An air-standard cycle is executed in a closed system and is composed of the following four processes: 1-2 Isentropic compression from 100 kPa and 27°C to 1 MPa 2-3 P = constant heat addition in amount of 2800 kJ/kg 3-4 v = constant heat rejection to 100 kPa 4-1 P = constant heat rejection to initial state (a) Show the cycle on P-v and T-s diagrams. (b) Calculate the maximum temperature in the cycle. (c) Determine the thermal efficiency. Assume constant specific heats at room temperature. * Problems designated by a “C” are concept questions, and students are encouraged to answer them all. Problems designated by an “E” are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text. Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles, © 2006 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Problem 37. The compression ratio of an air-standard Otto cycle is 9.5. Prior to the isentropic compression process, the air is at 100 kPa, 35°C, and 600 cm3. The temperature at the end of the isentropic expansion process is 800 K. Using specific heat values at room temperature, determine (a) the highest temperature and pressure in the cycle; (b) the amount of heat transferred in, in kJ; (c) the thermal efficiency; and (d) the mean effective pressure.