Generation of Entropy in Spark Ignition Engines

Total Page:16

File Type:pdf, Size:1020Kb

Generation of Entropy in Spark Ignition Engines Int. J. of Thermodynamics ISSN 1301-9724 Vol. 10 (No. 2), pp. 53-60, June 2007 Generation of Entropy in Spark Ignition Engines Bernardo Ribeiro, Jorge Martins*, António Nunes Universidade do Minho, Departamento de Engenharia Mecânica 4800-058 Guimarães PORTUGAL [email protected] Abstract Recent engine development has focused mainly on the improvement of engine efficiency and output emissions. The improvements in efficiency are being made by friction reduction, combustion improvement and thermodynamic cycle modification. New technologies such as Variable Valve Timing (VVT) or Variable Compression Ratio (VCR) are important for the latter. To assess the improvement capability of engine modifications, thermodynamic analysis of indicated cycles of the engines is made using the first and second laws of thermodynamics. The Entropy Generation Minimization (EGM) method proposes the identification of entropy generation sources and the reduction of the entropy generated by those sources as a method to improve the thermodynamic performance of heat engines and other devices. A computer model created and implemented in MATLAB Simulink was used to simulate the conventional Otto cycle and the various processes (combustion, free expansion during exhaust, heat transfer and fluid flow through valves and throttle) were evaluated in terms of the amount of the entropy generated. An Otto cycle, a Miller cycle (over-expanded cycle) and a Miller cycle with compression ratio adjustment are studied using the referred model in order to evaluate the amount of entropy generated in each cycle. All cycles are compared in terms of work produced per cycle. Keywords: IC engines, Miller cycle, entropy generation, over-expanded cycle 1. Introduction Under part load conditions, engines use some of the work to pump air across the partially closed Several technologies are used for the throttle valve. In the Miller cycle engine the load thermodynamic improvement of internal is controlled by inlet valve timing, eliminating combustion engines, such as VVT (Flierl and the throttle valve and the subsequent pumping Kluting, 2000) or VCR (Drangel et al. 2002). To losses (Flierl and Kluting, 2000). A comparison evaluate the potential for thermodynamic between the Otto and Miller cycles was already improvement of these and other technologies, presented in a theoretical study (Martins, 2004). numerical studies must be performed using In the same study the Miller cycle was presented different tools. EGM (Drangel et al., 2002 and as an alternative to the conventional Otto cycle Bejan, 1996) is proposed as a tool for internal engine when used under part load conditions. A combustion engine improvement based on the significant improvement to the Miller cycle may measurement of the entropy generated at several be achieved if compression ratio adjustment is processes taking place with the engine operation. used in addition to valve timing variation. With these results it is possible to define strategies for engine improvement, reducing the The Miller cycle is different from the amount of entropy generated. i conventional Otto cycle engine for it has a longer expansion. This longer expansion is achieved Spark ignition internal combustion engines, using an effective shorter intake stroke. The running at low loads, have their thermal intake valve, which in the Otto cycle closes efficiency reduced due to the effect of the throttle shortly after BDC, in the Miller cycle closes a valve that controls the engine load and by the significant time before BDC (early intake valve fact that the compression starts at low pressure. closure - EIVC), creating a depression inside the *Author to whom correspondence should be addressed Int. J. of Thermodynamics, Vol. 10 (No. 2) 53 cylinder (1-8 of Figure 1 ), or closes significantly 2. Thermodynamic Engine Model after BDC (late intake valve closure - LIVC), expelling the air and fuel mixture back to the An entropy generation analysis was applied intake manifold (5-1 of Figure 2 ). The effect is to internal combustion engines and an entropy to start the compression (point 1 of Figure 1 and generation calculation model was developed. A Figure 2 ) after the compression starting point of computer model capable of calculating the the Otto cycle, which is near BDC. In fact, in the entropy generation due to several processes Miller cycle the intake is always at atmospheric within the engine shows that the main entropy pressure, and work is not used to pump the generators in an internal combustion engine are charge into the cylinder as in the Otto cycle. At the combustion, free expansion of gas during the same time, pressure and temperature at the exhaust and intake, heat transfer and fluid flow exhaust valve opening are lower, which means through valves (including the throttle valve). A that a smaller amount of enthalpy of the exhaust scheme of this calculation model is presented in gases is lost during the exhaust process. Figure 1. This model is divided in a first law of thermodynamics model and a entropy generation It was shown in a previous work (Martins, model. 2004) that the Miller cycle only with intake valve 1st law model closure time variation brings some improvement Wall Temperature dS gen due to to engine cycle efficiency. However the same Heat transfer ratio heat transfer cycle with a compression ratio adjustment brings Engine geometry Intake/Exhaust dS gen due to free a significant improvement to the thermal conditions (p, T, ρ, ...) expansion Cylinder conditions efficiency of the theoretical cycle. The (p, T, ...) compression ratio adjustment is made in order to Mass transfer ratio Cylinder mass dS due to maintain the same effective compression ratio, caracteristics gen S combustion Σ ∫dS gen gen just to avoid knock onset. As the intake valve (cp, cv, ρ, R) closure is delayed, the effective compression Flow mass caracteristics dS gen due to flow through valves ratio of the engine decreases and the maximum (cp, cv, ρ, R) temperature and pressure inside the cylinder decrease, leading to less efficient cycles. This dS gen due to Throttle valve effect should be inverted by increasing the effective compression ratio. Figure 1. Computer model structure for entropy generation calculation. 3 A single zone model is based on the first law of thermodynamics expressed as: dU = dQ − dW + hindmin − houtdmout (1) Pressure From (1) temperature can be calculated by dT 2 the integration of : dt 4 6 1 dT dmcyl patm 5 m c ()T + Tc ()T = 7 8 cyl v dt ,v m dt Volume (2) dQ dV dm Figure 1. Miller cycle with EIVC . = p + ‡”T c ()T i dt dt i p i dt 3 And pressure is calculated from the integration of: Pressure dp dV dmi dT V + p = T∑ Ri + ∑ Rimi ⇔ dt dt i dt i dt (3) dmi dT dV 2 T∑ Ri + ∑ Rimi − p dp dt dt dt ⇔ = i i 4 dt V 6 patm 5 1 where mcyl is the mass of working fluid Volume dmi Figure 2. Miller cycle with LIVC . trapped in the cylinder and is the flow rate dt of each species i through the valves. 54 Int. J. of Thermodynamics, Vol. 10 (No. 2) In the model, heat from combustion is In the case of the free expansion process, supplied using a Wiebe function (Heywood, the lost work is calculated by the enthalpy of the 1988): engine gases: m+1 m& m& θ − θ0 S& gen,enthalpy = ∑ ()h − h0 − ∑ ()h − h0 xb = 1− exp− a (4) T T ∆θ in 0 out 0 (12) With a = 5 and m = 2, θ0 is the spark time where h is the enthalpy of each chemical species at the beginning of combustion in crank angle inducted or exhausted from the cylinder and h0 is and ∆θ is the burning interval in crank angle. the enthalpy of the same chemical species at The heat release rate is given by: environment conditions, considering normal atmospheric conditions of pressure and dQ dx = Q b (5) temperature. dθ R dθ Entropy generated in a combustion process where: may be calculated using the adiabatic Q = η m Q (6) combustion chamber model. As there is no mass, R c f LHV heat or work transferred, any change in the and (Abd Alla, 2002) system entropy during the combustion process is directly caused by the process itself. Entropy η = η − .1 6082 + .4 6509λ − .2 0764λ2 c c max ( ) generation due to combustion can be calculated (7) by the difference in entropy of the combustion where, Blair (1999) ηc max = 9.0 products and reactants: To calculate the mass flow through the n n S& = m s − m s valve two situations are considered depending on gen,comb ∑ & pi pi ∑ & ri ri (13) the flow regime (i.e. relation between the i=1 i=1 pressures up and downstream). The flow rate where subscripts pi and ri are products and through the valve is given by (Heywood, 1988): reactants respectively, s is the entropy and m& is 2/1 the mass burning rate. 1 γ−1 C A p p γ 2γ p γ During the operation of the engine, heat is m = D r u d 1 − d & 2/1 exchanged between the cylinder charge and the ()RT pu γ −1 pu u cylinder walls and then between the engine and the surrounding environment. Applying the (8) second law of thermodynamics to the cylinder When the flow is choked, i.e. the flow results in: speed equals the speed of sound: Q& Q& cyl γ S& = w − (14) gen,heat T T pd 2 γ−1 w cyl ≤ (9) pu γ +1 where Q& w and Q& cyl is the heat transferred from Then the flow rate is given by: the cylinder content to the cylinder walls. Q& w (γ+1) 2/ (γ−1) CDAR pu 2/1 2 and Q& have the same value but different signs m& = γ (10) cyl 2/1 γ +1 ()RTu and Tw and Tcyl are respectively the wall temperature and the cylinder gas temperature.
Recommended publications
  • Constant Volume Combustion Cycle for IC Engines
    Constant Volume Combustion Cycle for IC Engines Jovan Dorić Assistant This paper presents an analysis of the internal combustion engine cycle in University of Novi Sad Faculty of Technical Sciences cases when the new unconventional piston motion law is used. The main goal of the presented unconventional piston motion law is to make a Ivan Klinar realization of combustion during constant volume in an engine’s cylinder. Full Professor The obtained results are shown in PV (pressure-volume) diagrams of University of Novi Sad Faculty of Technical Sciences standard and new engine cycles. The emphasis is placed on the shortcomings of the real cycle in IC engines as well as policies that would Marko Dorić contribute to reducing these disadvantages. For this paper, volumetric PhD student efficiency, pressure and temperature curves for standard and new piston University of Novi Sad Faculty of Agriculture motion law have been calculated. Also, the results of improved efficiency and power are presented. Keywords: constant volume combustion, IC engine, kinematics. 1. INTRODUCTION of an internal combustion engine, whose combustion is so rapid that the piston does not move during the Internal combustion engine simulation modelling has combustion process, and thus combustion is assumed to long been established as an effective tool for studying take place at constant volume [6]. Although in engine performance and contributing to evaluation and theoretical terms heat addition takes place at constant new developments. Thermodynamic models of the real volume, in real engine cycle heat addition at constant engine cycle have served as effective tools for complete volume can not be performed.
    [Show full text]
  • Hybrid Electric Vehicles: a Review of Existing Configurations and Thermodynamic Cycles
    Review Hybrid Electric Vehicles: A Review of Existing Configurations and Thermodynamic Cycles Rogelio León , Christian Montaleza , José Luis Maldonado , Marcos Tostado-Véliz * and Francisco Jurado Department of Electrical Engineering, University of Jaén, EPS Linares, 23700 Jaén, Spain; [email protected] (R.L.); [email protected] (C.M.); [email protected] (J.L.M.); [email protected] (F.J.) * Correspondence: [email protected]; Tel.: +34-953-648580 Abstract: The mobility industry has experienced a fast evolution towards electric-based transport in recent years. Recently, hybrid electric vehicles, which combine electric and conventional combustion systems, have become the most popular alternative by far. This is due to longer autonomy and more extended refueling networks in comparison with the recharging points system, which is still quite limited in some countries. This paper aims to conduct a literature review on thermodynamic models of heat engines used in hybrid electric vehicles and their respective configurations for series, parallel and mixed powertrain. It will discuss the most important models of thermal energy in combustion engines such as the Otto, Atkinson and Miller cycles which are widely used in commercial hybrid electric vehicle models. In short, this work aims at serving as an illustrative but descriptive document, which may be valuable for multiple research and academic purposes. Keywords: hybrid electric vehicle; ignition engines; thermodynamic models; autonomy; hybrid configuration series-parallel-mixed; hybridization; micro-hybrid; mild-hybrid; full-hybrid Citation: León, R.; Montaleza, C.; Maldonado, J.L.; Tostado-Véliz, M.; Jurado, F. Hybrid Electric Vehicles: A Review of Existing Configurations 1. Introduction and Thermodynamic Cycles.
    [Show full text]
  • Development of Miller Cycle Gas Engine for Cogeneration
    4. 9 & FR0105396 DEVELOPMENT OF MILLER CYCLE GAS ENGINE FOR COGENERATION DEVELOPPEMENT D UN MOTEUR A GAZ A CYCLE DE MILLER DESTINE A LA COGENERATION N. Tsukida , A.Sakakura, Y.Murata, and K. Okamoto Tokyo Gas CO.,LTD , Japan T.Abe and T. Takemoto Yanmar Diesel Engine CO.,LTD , Japan ABSTRACT We have developed a 300 kW gas engine cogeneration system for practical use that uses natural gas.Using a gas engine operated under conditions with an excess air ratio X =1 that is able to use a three way catalyst to purify the exhaust gases,we were able to achieve high efficiency through the application of the Miller Cycle, as well as a low NOx output. In terms of product specifications, we were able to achieve an electrical efficiency of 34.2% and a heat recovery efficiency of 49.3%, making an overall efficiency of 83.5% as a cogeneration system. RESUME Nous avons developpe un systeme de cogeneration de 300 kW avec moteur au gaz natural et tout a fait utilisable dans la pratique. Avec un moteur a gaz fonctionnant dans les conditions d ’un rapport d ’exces d ’air de X = 1 et capable d ’utiliser un catalyseur trois voies pour purifier les gaz d ’echappement, nous avons ete en mesure d ’obtenir un rendement eleve en appliquant le Cycle de Miller, et d ’obtenir egalement une faible emission d ’oxydes d ’azote. En termes de performances techniques du produit, nous avons obtenu un rendement electrique de 34,2 % et un rendement de recuperation thermique de 49,3 %, ce qui donne un rendement total de 83,5 % pour le systeme de cogeneration.
    [Show full text]
  • Thermodynamics of Power Generation
    THERMAL MACHINES AND HEAT ENGINES Thermal machines ......................................................................................................................................... 1 The heat engine ......................................................................................................................................... 2 What it is ............................................................................................................................................... 2 What it is for ......................................................................................................................................... 2 Thermal aspects of heat engines ........................................................................................................... 3 Carnot cycle .............................................................................................................................................. 3 Gas power cycles ...................................................................................................................................... 4 Otto cycle .............................................................................................................................................. 5 Diesel cycle ........................................................................................................................................... 8 Brayton cycle .....................................................................................................................................
    [Show full text]
  • An Analytic Study of Applying Miller Cycle to Reduce Nox Emission from Petrol Engine Yaodong Wang, Lin Lin, Antony P
    An analytic study of applying miller cycle to reduce nox emission from petrol engine Yaodong Wang, Lin Lin, Antony P. Roskilly, Shengchuo Zeng, Jincheng Huang, Yunxin He, Xiaodong Huang, Huilan Huang, Haiyan Wei, Shangping Li, et al. To cite this version: Yaodong Wang, Lin Lin, Antony P. Roskilly, Shengchuo Zeng, Jincheng Huang, et al.. An analytic study of applying miller cycle to reduce nox emission from petrol engine. Applied Thermal Engineering, Elsevier, 2007, 27 (11-12), pp.1779. 10.1016/j.applthermaleng.2007.01.013. hal-00498945 HAL Id: hal-00498945 https://hal.archives-ouvertes.fr/hal-00498945 Submitted on 9 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript An analytic study of applying miller cycle to reduce nox emission from petrol engine Yaodong Wang, Lin Lin, Antony P. Roskilly, Shengchuo Zeng, Jincheng Huang, Yunxin He, Xiaodong Huang, Huilan Huang, Haiyan Wei, Shangping Li, J Yang PII: S1359-4311(07)00031-2 DOI: 10.1016/j.applthermaleng.2007.01.013 Reference: ATE 2070 To appear in: Applied Thermal Engineering Received Date: 5 May 2006 Revised Date: 2 January 2007 Accepted Date: 14 January 2007 Please cite this article as: Y.
    [Show full text]
  • Heat Cycles, Heat Engines, & Real Devices
    Heat Cycles, Heat Engines, & Real Devices John Jechura – [email protected] Updated: January 4, 2015 Topics • Heat engines / heat cycles . Review of ideal‐gas efficiency equations . Efficiency upper limit –Carnot Cycle • Water as working fluid in Rankine Cycle . Role of rotating equipment inefficiency • Advanced heat cycles . Reheat & heat recycle • Organic Rankine Cycle • Real devices . Gas & steam turbines 2 Heat Engines / Heat Cycles • Carnot cycle . Most efficient heat cycle possible Hot Reservoir @ T H • Rankine cycle Q H . Usually uses water (steam) as working fluid W . Creates the majority of electric power used net throughout the world Q C . Can use any heat source, including solar thermal, Cold Sink @ T coal, biomass, & nuclear C • Otto cycle . Approximates the pressure & volume of the combustion chamber of a spark‐ignited engine WQQ • Diesel cycle net H C th QQ . Approximates the pressure & volume of the HH combustion chamber of the Diesel engine 3 Carnot Cycle • Most efficient heat cycle possible • Steps . Reversible isothermal expansion of gas at TH. Combination of heat absorbed from hot reservoir & work done on the surroundings. Reversible isentropic & adiabatic expansion of the gas to TC. No heat transferred & work done on the surroundings. Reversible isothermal compression of gas at TC. Combination of heat released to cold sink & work done on the gas by the surroundings. Reversible isentropic & adiabatic compression of the gas to TH. No heat transferred & work done on the gas by the surroundings. • Thermal efficiency QQHC TT HC T C th th 1 QTTHHH 4 Rankine/Brayton Cycle • Different application depending on working fluid . Rankine cycle to describe closed steam cycle.
    [Show full text]
  • 3.5 the Internal Combustion Engine (Otto Cycle)
    Thermodynamics and Propulsion Next: 3.6 Diesel Cycle Up: 3. The First Law Previous: 3.4 Refrigerators and Heat Contents Index Subsections 3.5.1 Efficiency of an ideal Otto cycle 3.5.2 Engine work, rate of work per unit enthalpy flux 3.5 The Internal combustion engine (Otto Cycle) [VW, S & B: 9.13] The Otto cycle is a set of processes used by spark ignition internal combustion engines (2-stroke or 4- stroke cycles). These engines a) ingest a mixture of fuel and air, b) compress it, c) cause it to react, thus effectively adding heat through converting chemical energy into thermal energy, d) expand the combustion products, and then e) eject the combustion products and replace them with a new charge of fuel and air. The different processes are shown in Figure 3.8: 1. Intake stroke, gasoline vapor and air drawn into engine ( ). 2. Compression stroke, , increase ( ). 3. Combustion (spark), short time, essentially constant volume ( ). Model: heat absorbed from a series of reservoirs at temperatures to . 4. Power stroke: expansion ( ). 5. Valve exhaust: valve opens, gas escapes. 6. ( ) Model: rejection of heat to series of reservoirs at temperatures to . 7. Exhaust stroke, piston pushes remaining combustion products out of chamber ( ). We model the processes as all acting on a fixed mass of air contained in a piston-cylinder arrangement, as shown in Figure 3.10. Figure 3.8: The ideal Otto cycle Figure 3.9: Sketch of an actual Otto cycle Figure 3.10: Piston and valves in a four-stroke internal combustion engine The actual cycle does not have the sharp transitions between the different processes that the ideal cycle has, and might be as sketched in Figure 3.9.
    [Show full text]
  • Miller-Cycle on a Heavy Duty Diesel Engine
    Miller-cycle on a heavy duty diesel engine Henrik Dembinski Clive Lewis Master of Science Thesis MMK 2009:1 MFM124 KTH Industrial Engineering and Management Machine Design SE-100 44 STOCKHOLM Master of Science Thesis MMK2 2009:1 MFM124 Miller-cycle on a heavy duty diesel engine Clive Lewis Henrik Dembinski Approved Examiner Supervisor 090128 Prof. Hans-Erik Ångström Prof. Hans-Erik Ångström Commissioner Contact person Scania CV AB Stefan Olsson 1. Sammanfattning Denna report beskriver ett examensarbete inom ämnet förbränningsmotorteknik och är utfört på Scania CV AB i Södertälje i sammarbete med Kungliga Tekniska Högskolan i Stockholm. Fordonsindustrin står inför nya utmaningar när en större fokusering på koldioxid (CO2) utsläpp från väg-gående fordon efterfrågas, vilket är direkt kopplat till fordonets bränsleförbrukning. Detta skall klaras av med lägre övriga emissioner i form av kväveoxider (NOx) och rök som är de två stora problemområdena för en dieselmotor. Scania vill därför undersöka potentialen med Miller cykling och om detta koncept skulle kunna implementeras på en lågeffektsmotor. Idén är att byta hög effekt mot verkningsgrad på motorer i motorprogrammet som inte utnyttjar hela grundmotorns effektpotential. Med Miller cykling menas senare- eller tidigarelagd stängning av insugsventilen och på så sätt öka graden expansionsarbete i förhållande till kompressionsarbete, dvs. öka den indikerade verkningsgraden. Då detta medför en minskning i effektiv slagvolym då cylindern inte fylls med luft helt måste kompensering i laddtryck göras för att motorn skall få samma luftmängd. En del kompressionsarbete görs då alltså utanför cylindern som belastar turbosystemet och inte motorn. En ny turbomatchning måste således göras då förflyttningar i turbomappen görs på ett mindre fördelaktigt sätt.
    [Show full text]
  • Performance Analysis of a Diesel Cycle Under the Restriction of Maximum Cycle Temperature with Considerations of Heat Loss, Friction, and Variable Specific Heats S.S
    Vol. 120 (2011) ACTA PHYSICA POLONICA A No. 6 Performance Analysis of a Diesel Cycle under the Restriction of Maximum Cycle Temperature with Considerations of Heat Loss, Friction, and Variable Specific Heats S.S. Houa;¤ and J.C. Linb aDepartment of Mechanical Engineering, Kun Shan University, Tainan City 71003, Taiwan, ROC bDepartment of General Education, Transworld University, Touliu City, Yunlin County 640, Taiwan, ROC (Received November 11, 2010) The objective of this study is to examine the influences of heat loss characterized by a percentage of fuel’s energy, friction and variable specific heats of working fluid on the performance of an air standard Diesel cycle with the restriction of maximum cycle temperature. A more realistic and precise relationship between the fuel’s chemical energy and the heat leakage that is constituted on a pair of inequalities is derived through the resulting temperature. The variations in power output and thermal efficiency with compression ratio, and the relations between the power output and the thermal efficiency of the cycle are presented. The results show that the power output as well as the efficiency where maximum power output occurs will increase with the increase of maximum cycle temperature. The temperature-dependent specific heats of working fluid have a significant influence on the performance. The power output and the working range of the cycle increase while the efficiency decreases with increasing specific heats of working fluid. The friction loss has a negative effect on the performance. Therefore, the power output and efficiency of the cycle decrease with increasing friction loss. It is noteworthy that the effects of heat loss characterized by a percentage of fuel’s energy, friction and variable specific heats of working fluid on the performance of a Diesel-cycle engine are significant and should be considered in practice cycle analysis.
    [Show full text]
  • Turbocharging & Miller Cycle
    DRIVING AUTOMOTIVE INNOVATION 2 Turbocharging & Miller Cycle • Turbocharging enables engine downsizing for significant fuel economy benefits without performance compromise. • More stringent regulation is demanding more efficiency from internal combustion engines. • One solution to increasing engine efficiency is by adopting a Miller Cycle strategy. • Technologies available today including, VNT (variable nozzle turbines) Turbochargers, Variable Valve Timing & Valve Lift, and Direct Injection, allow engines to use higher levels of Miller to meet future regulation. © 2015 by Honeywell International Inc. All rights reserved. 3 How a Turbocharger Works © 2015 by Honeywell International Inc. All rights reserved. Small Engine Fuel Economy, Big Engine Performance © 2015 by Honeywell International Inc. All rights reserved. 4 Modern Turbo Gasoline Engines No-Compromise Solution More Stringent Regulations 3L 6 Cylinders 2L 4 Cylinders Enacted Targets* Naturally Aspirated Turbocharged MPG Improvement By 2021 MPG Improvement By 2020 MPG Improvement By 2025 240 = 240 Horsepower Horsepower MPG Improvement By 2022 +30% +25% 20% Torque Fuel Efficiency MPG Improvement CO2 By 2017 * Source ICCT Fuel Economy Standards – August 2015 Light Vehicles Only. MPG Improvement vs 2014 Levels. † Equivalent Standards to Euro 5 (5mg/km PM, 60-180mg/km NOx) and Euro 6 (5mg/km PM, 60-80mg/km NOx) © 2015 by Honeywell International Inc. All rights reserved. Turbochargers are a Key Enabler to Current & Future Regulation © 2015 by Honeywell International Inc. All rights reserved. Increasing Gasoline Engine Efficiency Normal Combustion 70 65 Piston 60 Flame Propagation 55 Knock 50 Piston 45 ɣ = 1.4 Ideal conversion efficiency [%] Ideal conversion efficiency Increasing Compression Ratio 40 4 6 8 10 12 14 16 18 Geometric Compression Ratio => Ɛ [-] © 2015 by Honeywell International Inc.
    [Show full text]
  • Air Standard Assumptions Some Definitions for Reciprocation Engines
    Air Standard Assumptions In power engines, energy is provided by burning fuel within the system boundaries, i.e., internal combustion engines. The following assumptions are commonly known as the air- standard assumptions: 1- The working fluid is air, which continuously circulates in a closed loop (cycle). Air is considered as ideal gas. 2- All the processes in (ideal) power cycles are internally reversible. 3- Combustion process is modeled by a heat-addition process from an external source. 4- The exhaust process is modeled by a heat-rejection process that restores the working fluid (air) at its initial state. Assuming constant specific heats, (@25°C) for air, is called cold-air-standard assumption. Some Definitions for Reciprocation Engines: The reciprocation engine is one the most common machines that is being used in a wide variety of applications from automobiles to aircrafts to ships, etc. Intake Exhaust valve valve TDC Bore Stroke BDC Fig. 3-1: Reciprocation engine. Top dead center (TDC): The position of the piston when it forms the smallest volume in the cylinder. Bottom dead center (BDC): The position of the piston when it forms the largest volume in the cylinder. Stroke: The largest distance that piston travels in one direction. Bore: The diameter of the piston. M. Bahrami ENSC 461 (S 11) IC Engines 1 Clearance volume: The minimum volume formed in the cylinder when the piston is at TDC. Displacement volume: The volume displaced by the piston as it moves between the TDC and BDC. Compression ratio: The ratio of maximum to minimum (clearance) volumes in the cylinder: V V r max BDC Vmin VTDC Mean effective pressure (MEP): A fictitious (constant throughout the cycle) pressure that if acted on the piston will produce the work.
    [Show full text]
  • Machinery/Automation
    Machinery/Automation Miniature Blimps for Surveillance and Collection of Samples These robots could follow complex three-dimensional trajectories through buildings. NASA’s Jet Propulsion Laboratory, Pasadena, California Miniature blimps are under develop- structures on Earth. The widely per- 1.2 kg. It can be filled in 30 seconds ment as robots for use in exploring the ceived need for means to thwart attacks from the small bottle shown on the thick, cold, nitrogen atmosphere of Sat- on buildings and to mitigate the effects table in the figure. This blimp also op- urn’s moon, Titan. Similar blimps can of such attacks has prompted considera- erates under radio control and carries a also be used for surveillance and collec- tion of the use of robots. Relative to video camera. This blimp has been tion of biochemical samples in build- “rover”-type (wheeled) robots that have equipped with an ultralight (170 g) au- ings, caves, subways, and other, similar been considered for such uses, minia- tomatic pilot manufactured commer- ture blimps offer the advantage of abil- cially for radio-controlled small air- ity to move through the air in any direc- planes. This autopilot enables the tion and, hence, to perform tasks that control system of the blimp to utilize are difficult or impossible for wheeled the Global Positioning System in fol- robots, including climbing stairs and lowing a trajectory through as many as looking through windows. In addition, 60 different waypoints. This autopilot miniature blimps are expected to have also utilizes ultrasound for precise mea- greater range and to cost less, relative to surement and control of altitude when wheeled robots.
    [Show full text]