Steady State and Transient Efficiencies of A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Using the Ecocar Challenge As a Non-Traditional Domain for Software and Computer Engineering Capstone Course
AC 2011-1099: USING THE ECOCAR CHALLENGE AS A NON-TRADITIONAL DOMAIN FOR SOFTWARE AND COMPUTER ENGINEERING CAPSTONE COURSE Richard Stansbury, Embry-Riddle Aeronautical Univ., Daytona Beach Richard S. Stansbury is an assistant professor of computer science and computer engineering at Embry- Riddle Aeronautical University in Daytona Beach, FL. He instructs the capstone senior design course for computer and software engineering. His current research interests include unmanned aircraft, certification issues for unmanned aircraft, mobile robotics, and applied artificial intelligence. Massood Towhidnejad, Embry-Riddle Aeronautical Univ., Daytona Beach Massood Towhidnejad is a tenure full professor of software engineering in the department of Electrical, Computer, Software and System Engineering at Embry-Riddle Aeronautical University. His teaching interests include artificial intelligence, autonomous systems, and software engineering with emphasis on software quality assurance and testing. He has been involved in research activities in the areas of software engineering, software quality assurance and testing, autonomous systems, and human factors. Page 22.1643.1 Page c American Society for Engineering Education, 2011 Using the EcoCAR Challenge as a Non-Traditional Domain for Software and Computer Engineering Capstone Course Abstract: This paper presents the opportunities provided by EcoCAR: The NeXt Challenge in supporting a capstone design course in computer and software engineering. Students participating in the course were responsible for implementing a sub-system of a plug-in hybrid electric vehicle. Being a sponsored competition organized by the Department of Energy, the project provided many unique learning opportunities for students in the course and those that they interacted with from other disciplines. This paper will discuss both the benefits of utilizing such a competition for a senior capstone design course as well as some of the challenges faced. -
Challenge-X 2008 DOE Merit Review Building on 19 Successful Years of Advanced Vehicle Technology Competitions Forrest Jehlik
Advanced Vehicle Technology Competition: Challenge-X 2008 DOE Merit Review Building on 19 successful years of advanced vehicle technology competitions Forrest Jehlik This presentation does not contain any proprietary or confidential information Outline Current Competition Program Introduction/Overview Goals and Objectives Approach Collaborations/Interactions Performance Measures and Accomplishments Next Competition Program Introduction/Overview Summary Competition Introduction DOE has had a successful 19-year history of Advanced Vehicle Technology Competitions (AVTCs): 9 Methanol Marathon and Methanol Challenge (GM) 9 Natural Gas (GM), Ethanol (GM), and Propane Vehicle Challenges (DaimlerChrysler) 9 Sunrayce 1990 9 HEV Challenge and FutureCar (with PNGV-GM/Ford/DaimlerChrysler) 9 FutureTruck (GM/Ford/DaimlerChrysler) 9 Challenge X (final year-GM) EcoCAR (the next AVTC challenge) AVTCs integrate key DOE vehicle technologies Goals and Objectives Investigate, develop, and demonstrate a broad spectrum of advanced vehicle technologies aligned with DOE’s objectives: renewable fuels, energy diversity, advanced combustion, energy storage technology, electric machines, high power electronics, fuel cells, vehicle simulation modeling, and other critical technologies Explore technical solutions that minimize petroleum consumption and reduce well-to-wheel greenhouse gas emissions relative to current production counterparts Train the next generation of engineers to bring advanced technology vehicles into production while grooming future -
Clean Fuels Advisor
TENNESSEE Clean Fuels Advisor A quarterly publication from the partnership between the Clean Cities coalitions in Tennessee and the state of Tennessee. WINTER 2008 Bringing alternative fuels and hybrids to the forefront. Alt fuels = biodiesel, electricity, ethanol, hydrogen, natural gas and propane. Biofuels Enlightenment - Zenalgae Inside this Issue In a bold move to bring algae-based biodiesel pro- Algae oil production has been lauded by the Depart- duction to Tennessee in 2008, Northington Energy, LLC ment of Energy as having a very promising future. Al- Biofuels Enlightenment - Zenalgae 1 has acquired Zenalgae of Atlanta. though most recent algae-based research has been done State Provides Alt Fuels Innovations In the last couple of years, algae’s herculean oil-pro- in the private sector, the DOE said in 1998 that experi- Grants to Local Governments & ducing characteristics have been under the microscope ments bear out that algae may be the only viable method Public Universities 1 in more ways than one, as they can generate for producing enough fuel far more oil per acre than any of today’s to displace current world MLG&W Does the Right Thing 2 food or non-food crops. While soybeans gasoline usage. —which are the main resource used today Algae, which reproduc- City of Jackson - Sold on Biodiesel 2 in the U.S. to provide an oil for making es itself and its oils every six biodiesel—produce roughly 45-50 gallons of oil per acre, hours, has created excitement in the biodiesel industry The Science of Money, the Language of Business 2 algae has the potential to produce 1,000 gallons of oil because of its potential to produce much more substan- per acre.. -
Thermodynamics of Power Generation
THERMAL MACHINES AND HEAT ENGINES Thermal machines ......................................................................................................................................... 1 The heat engine ......................................................................................................................................... 2 What it is ............................................................................................................................................... 2 What it is for ......................................................................................................................................... 2 Thermal aspects of heat engines ........................................................................................................... 3 Carnot cycle .............................................................................................................................................. 3 Gas power cycles ...................................................................................................................................... 4 Otto cycle .............................................................................................................................................. 5 Diesel cycle ........................................................................................................................................... 8 Brayton cycle ..................................................................................................................................... -
New Battery to Last 10 Times As Long
Energy Grants Back Plug-In Cars, Ethanol By Sholnn Freeman Washington Post Staff Writer Wednesday, January 24, 2007; Page D03 The Department of Energy announced yesterday $17 million in grants to support the development of battery technology for plug-in hybrid vehicles and ethanol, two areas in the energy debate where officials in Washington and Detroit are closely aligned. The money will be offered as two grants, one for $14 million for the plug-in technology and the other for $3 million for ethanol. The money for battery development is intended to improve the technology's performance. The $3 million in ethanol grants will support engineering advances to improve how flex-fuel engines use the E85 blend… Foreign automakers are stepping up complaints that U.S. government policy is unfairly backing ethanol and plug-ins at the expense of diesels and traditional gas-electric hybrids, such as the Toyota Prius. Toyota is pushing to continue federal incentives for the cars. Diesel-engine makers and European automakers such as BMW and DaimlerChrysler are asking for more federal support for diesel technology http://www.washingtonpost.com/wp-dyn/content/article/2007/01/23/AR2007012300870.html Ford Edge plug-in hybrid concept does 41mpg Mobilemag.com – USA. That HySeries Drive concept that was making the rounds at the Detroit Auto Show has been unleashed on the public in the form of the Ford Edge, launching the venerable American automaker firmly into the plug-in electric market. The new vehicle, running on a flexible powertrain, can guarantee up to 41mpg with no emissions. The innovative HySeries Drive uses a combination of gas engine, diesel engine, and fuel cell to achieve that rather remarkable mpg figure, which increases to 80 if you don't top 50 miles a day and, in the best cases, 400 miles between fill-ups. -
Review of the Fundamentals Thermal Sciences
Review of the Fundamentals Reading Problems Review Chapter 3 and property tables More specifically, look at: 3.2 ! 3.4, 3.6, 3.7, 8.4, 8.5, 8.6, 8.8 Thermal Sciences The thermal sciences involve the storage, transfer and conversion of energy. Thermodynamics HeatTransfer Conservationofmass Conduction Conservationofenergy Convection Secondlawofthermodynamics Radiation HeatTransfer Properties Conjugate Thermal Thermodynamics Systems Engineering FluidsMechanics FluidMechanics Fluidstatics Conservationofmomentum Mechanicalenergyequation Modeling Thermodynamics: the study of energy, energy transformations and its relation to matter. The anal- ysis of thermal systems is achieved through the application of the governing conservation equations, namely Conservation of Mass, Conservation of Energy (1st law of thermodynam- ics), the 2nd law of thermodynamics and the property relations. Heat Transfer: the study of energy in transit including the relationship between energy, matter, space and time. The three principal modes of heat transfer examined are conduction, con- vection and radiation, where all three modes are affected by the thermophysical properties, geometrical constraints and the temperatures associated with the heat sources and sinks used to drive heat transfer. Fluid Mechanics: the study of fluids at rest or in motion. While this course will not deal exten- sively with fluid mechanics we will be influenced by the governing equations for fluid flow, namely Conservation of Momentum and Conservation of Mass. 1 Examples of Energy Conversion windmills -
Tennessee Engineer Newsletter, Spring 2007
engineerg Vol. IX • Issue II • Spring 2007 A Newsletter for Alumni and Friends of the University of Tennessee’s College of Engineering Computer Science Merging with Electrical Engineering Energy for a Better Environment and Computer Engineering Department The term “global climate change” has made Plant, housed within the Department of The new Min Kao Electrical and Computer Engineer- its way from headlines to classrooms as Mechanical, Aerospace and Biomedical ing Building will now be home to a re-named and re- more and more professors turn toward their Engineering (MABE). The project started in invigorated department: the Department of Electrical research fields to contribute answers to the 2004 during UT’s Environmental Semester, Engineering and Computer Science (EECS). global energy problem. in which the university facilitated a grant competition for environmentally-related The merger of the Department of Electrical and “It is scientifically proven, without a doubt, projects. John Miller, mechanical engineer- Computer Engineering (ECE) and the Department of that global warming is a fact and human ing master’s student from the UT chapter of Computer Science (CS) was announced by UT Pro- activity plays a role,” said Dr. Loren Crabtree, the Society of Automotive Engineers (SAE), vost Robert Holub November 17, 2006. The joining of chancellor of the University of Tennessee, won the competition with a proposal for an the two departments will be official July 1, 2007. Knoxville. “The question now is how do on-campus biodiesel production plant. After we deal with population, energy and the “We have a task force working right now to final- Miller graduated, the project lost steam until ize details of the merger,” said Dr. -
New Fuel Economy Testing
MotorWeek Transcripts AUTOWORLD 'CHALLENGE X STUDENT COMPETITION' JOHN DAVIS: Automotive technology is evolving at a rapid clip, and so are the engineering practices used to develop new cars and trucks. This can be a problem for our nation’s colleges and universities, since today’s graduates can’t design tomorrow’s cars with yesterday’s knowledge. To provide hands-on experience actually developing an advanced-technology vehicle using industry practices, The US Department of Energy’s latest design competition invites North America’s brightest students to step up to… Challenge X. STUDENTS: This is where its really at. Everything is changing. This is where the jobs are going to be. It is really exciting and we will do what it takes. We will do the best. DAVIS: 2008 marks the fourth and final year for the Challenge X competition, in which teams from 17 engineering schools were given a stock 2005 Chevy Equinox and tasked with improving its emissions and fuel economy. The use of renewable fuels and advanced technologies was encouraged, and sponsors provided funding, technical support, and more importantly the advanced hardware needed to make their designs a reality. Headline sponsor General Motors provided the vehicles as well as mentoring support for each team, and allowed the competition to mimic its Global Vehicle Design Process, by which GM develops its own prototype vehicles. Year one of the competition focused on modeling, vehicle simulation, and deciding which approach to take. All chose some form of hybrid electric drivetrain, and many schools chose to burn biodiesel or ethanol while a few ambitious teams opted for Hydrogen fuel. -
Modeling and Simulation of a Hybrid Electric Vehicle for the Challenge X Competition
Modeling and Simulation of a Hybrid Electric Vehicle for the Challenge X Competition Submitted to: The Engineering Honors Committee 119 Hitchcock Hall College of Engineering The Ohio State University Columbus, OH 43210 By Michael Arnett 4091 Millsboro Rd W Mansfield, OH 44903 Dr. Giorgio Rizzoni, Advisor May 20, 2005 Abstract: As the market shifts toward larger vehicles and growing concerns regarding petroleum consumption and emissions emerge, automakers have begun to explore new vehicle propulsion solutions. General Motors and The Department of Energy have joined together to create the Challenge X competition to explore hybrid-electric vehicles as one such solution. Seventeen teams across the United State will experience “real-world” HEV development over the three year competition. This process begins with vehicle architecture selection, modeling and simulation. A dynamic model of a hybrid-electric powertrain is developed here. This model is then implemented into two Simulink based simulators: the quasi-static cX-SIM, the dynamic cX-DYN. These simulators are used to validate the control strategy being developed for the Challenge X vehicle. Verification will include optimal performance in regards to fuel consumption, battery state-of-charge, and drivability. Techniques of validating the model and simulators using a rolling chassis are also being implemented. Preliminary data from the quasi-static simulator and the rolling chassis is presented herein. Acknowledgements: I would like to thank Dr. Giorgio Rizzoni, Joe Morbitzer, Osvaldo Barbarisi, Kerem Koprubasi, Jason Disalvo, John Neal and Christopher C. Mabry, for all of the help and support they have given me throughout the duration of this research. ii Table Contents CHAPTER 1: INTRODUCTION .............................................................................................................. -
Vation Is Left As an Cise
408 Chapter 9 Gas Power Systems 70 60 ~ I=" 50 ,:; u 40 'u"'" .....!.::: 30 0;" E 20 ~ ~ 10 0 5 10 15 20 .... Figure 9.6 Thermal efficiency of the cold air· Compression ralio, r standard Diesel cycle, k = 1.4. where r is the compression ratio and rc the cutoff ratio. The derivation is left as an cise. This relationship is shown in Fig. 9,6 for k = 1.4. Equation 9.13 for the Diesel differs from Eq. 9.8 for the Otto cycle only by the term in brackets, which for " > greater than unity. Thus, when the compression ratio is the same, the thermal the cold air-standard Diesel cycle would be less than that of the cold air-standard cycle. In the next example, we illustrate the analysis of the air-standard Diesel cycle. 1 II. I Q., ~ h 'I ....., ~',"1""": " .} ....I.-J,. l_ L ' ...... h,. "L b~ f .... l. Qt\VJ(",. / 'I".... tl.. ? r -J L...,.., U I'~J l.'''''/',; 1;1' J ... ,," j.,,>-I. '" At the beginning of the compression process of an air-standard Diesel cycle operating with a compression ratio of 18 , the perature is 300 K and the pressure is 0.1 MPa. The cutoC:( ratio for the cycle is 2. Determine (a) the temperature and at the end of each process of the cycle, (b) the thermal ' fficiency, (c) the mean effective pressure, in MPa. SOLUTION f'{UW ~ ' .... m c ..'( J ;(....clv4.. 'j ....;Y'\ j~..ll ~ ; ......'c.. Known: An air-standard Diesel cycle is executed with specified conditions at the beginning of the compression stroke. -
Performance Analysis of a Diesel Cycle Under the Restriction of Maximum Cycle Temperature with Considerations of Heat Loss, Friction, and Variable Specific Heats S.S
Vol. 120 (2011) ACTA PHYSICA POLONICA A No. 6 Performance Analysis of a Diesel Cycle under the Restriction of Maximum Cycle Temperature with Considerations of Heat Loss, Friction, and Variable Specific Heats S.S. Houa;¤ and J.C. Linb aDepartment of Mechanical Engineering, Kun Shan University, Tainan City 71003, Taiwan, ROC bDepartment of General Education, Transworld University, Touliu City, Yunlin County 640, Taiwan, ROC (Received November 11, 2010) The objective of this study is to examine the influences of heat loss characterized by a percentage of fuel’s energy, friction and variable specific heats of working fluid on the performance of an air standard Diesel cycle with the restriction of maximum cycle temperature. A more realistic and precise relationship between the fuel’s chemical energy and the heat leakage that is constituted on a pair of inequalities is derived through the resulting temperature. The variations in power output and thermal efficiency with compression ratio, and the relations between the power output and the thermal efficiency of the cycle are presented. The results show that the power output as well as the efficiency where maximum power output occurs will increase with the increase of maximum cycle temperature. The temperature-dependent specific heats of working fluid have a significant influence on the performance. The power output and the working range of the cycle increase while the efficiency decreases with increasing specific heats of working fluid. The friction loss has a negative effect on the performance. Therefore, the power output and efficiency of the cycle decrease with increasing friction loss. It is noteworthy that the effects of heat loss characterized by a percentage of fuel’s energy, friction and variable specific heats of working fluid on the performance of a Diesel-cycle engine are significant and should be considered in practice cycle analysis. -
Engine Testing This Page Intentionally Left Blank Engine Testing Theory and Practice
Engine Testing This page intentionally left blank Engine Testing Theory and Practice Third edition A.J. Martyr M.A. Plint AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Butterworth-Heinemann is an imprint of Elsevier Butterworth-Heinemann is an imprint of Elsevier Linacre House, Jordan Hill, Oxford OX2 8DP 30 Corporate Drive, Suite 400, Burlington, MA 01803 First edition 1995 Reprinted 1996 (twice), 1997 (twice) Second edition 1999 Reprinted 2001, 2002 Third edition 2007 Copyright © 2007, A.J. Martyr and M.A. Plint. Published by Elsevier Ltd. All rights reserved The right of A.J. Martyr and M.A. Plint to be identified as the authors of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988 No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax: (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.