Engine Testing This Page Intentionally Left Blank Engine Testing Theory and Practice

Total Page:16

File Type:pdf, Size:1020Kb

Engine Testing This Page Intentionally Left Blank Engine Testing Theory and Practice Engine Testing This page intentionally left blank Engine Testing Theory and Practice Third edition A.J. Martyr M.A. Plint AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Butterworth-Heinemann is an imprint of Elsevier Butterworth-Heinemann is an imprint of Elsevier Linacre House, Jordan Hill, Oxford OX2 8DP 30 Corporate Drive, Suite 400, Burlington, MA 01803 First edition 1995 Reprinted 1996 (twice), 1997 (twice) Second edition 1999 Reprinted 2001, 2002 Third edition 2007 Copyright © 2007, A.J. Martyr and M.A. Plint. Published by Elsevier Ltd. All rights reserved The right of A.J. Martyr and M.A. Plint to be identified as the authors of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988 No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax: (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress ISBN-13: 978-0-7506-8439-2 For information on all Butterworth-Heinemann publications visit our web site at http://books.elsevier.com Printed and bound in the UK 0708091010987654321 Working together to grow libraries in developing countries www.elsevier.com | www.bookaid.org | www.sabre.org Contents Preface vii Acknowledgements ix Introduction xi Units and conversion factors xv 1 Test facility specification, system integration and project organization 1 2 The test cell as a thermodynamic system 14 3 Vibration and noise 21 4 Test cell and control room design: an overall view 47 5 Ventilation and air conditioning 72 6 Test cell cooling water and exhaust gas systems 108 7 Fuel and oil storage, supply and treatment 129 8 Dynamometers and the measurement of torque 144 9 Coupling the engine to the dynamometer 170 10 Electrical design considerations 197 11 Test cell control and data acquisition 216 12 Measurement of fuel, combustion air and oil consumption 242 13 Thermal efficiency, measurement of heat and mechanical losses 263 14 The combustion process and combustion analysis 282 15 The test department organization, health and safety management, risk assessment correlation of results and design of experiments 308 16 Exhaust emissions 324 17 Tribology, fuel and lubrication testing 354 18 Chassis or rolling road dynamometers 368 19 Data collection, handling, post-test processing, engine calibration and mapping 395 20 The pursuit and definition of accuracy: statistical analysis of test results 408 Index 423 This page intentionally left blank Preface The preface of this book is probably the least read section of all; however, it is the only part in which I can pay tribute to my friend and co-author of the first two editions, Dr Michael Plint, who died suddenly in November 1998, only four days after the publication of the second edition. All the work done by Michael in the previous editions has stood up to the scrutiny of our readers and my own subsequent experience. In this edition, I have attempted to bring our work up to date by revising the content to cover the changing legislation, techniques and some of the new tools of our industry. In a new Chapter 1, I have also sought to suggest some good practices, based on my own 40 years of experience, aimed at minimizing the problems of project organization that are faced by all parties involved in the specification, modification, building and commissioning of engine test laboratories. The product of an engine test facility is data and byproduct is the experience gained by the staff and hopefully retained by the company. These data have to be relevant to the experiments being run, and every component of the test facility has to play its part, within an integrated whole, in ensuring that the test data are as valid and uncorrupted as possible, within the sensible limits of the facility’s role. It was our intention when producing the first edition to create an eclectic source of information that would assist any engineer faced with the many design and operational problems of both engine testing and engine test facilities. In the intervening years, the problems have become more difficult as the nature of the engine control has changed significantly, while the time and legislative pressures have increased. However, it is the laws of physics that rule supreme in our world and they can continue to cause problems in areas outside the specialization of many individual readers. I hope that this third edition helps the readers involved in some aspect of engine testing to gain a holistic view of the whole interactive package that makes up a test facility and to avoid, or solve, some of the problems that they may meet in our industry. Having spoken to a number of readers of the two proceeding editions of this book I have reorganized the contents of most of the chapters in order to reflect the way in which the book is used. Writing this edition has, at times, been a lonely and wearisome task that would not have been completed without the support of my wife Diana and my friends. Many people have assisted me with their expert advice in the task of writing this third edition. I have to thank all my present AVL colleagues in the UK and Austria, particularly Stuart Brown, David Moore and Colin Freeman who have shared many viii Preface of my experiences in the test industry over the last 20 years, also Dave Rogers, Craig Andrews, Hans Erlach and finally Gerhard Müller for his invaluable help with the complexities of electrical distribution circuits. A.J. Martyr Inkberrow 22 September 2006 Acknowledgements Figures 3.6, 3.13, 3.15 and 3.16 Reprinted from Industrial Noise Control, Fader, by permission of John Wiley and Sons Ltd Figure 3.9 Reprinted from technical literature of Type TSC by courtesy of Christie and Grey Ltd, UK Figure 3.14 Reprinted from Encyclopaedia of Science and Technology, Vol. 12, 1987, by kind permission of McGraw-Hill Inc., New York Figure 5.3 Reprinted from CIBSE Guide C, section C4, by permission of the Char- tered Institution of Building Services Engineers Figure 5.10 Reprinted from I.H.V.E. Psychometric Chart, by permission of the Chartered Institution of Building Services Engineers Figure 7.1 Reprinted from BS799. Extracts from British Standards are reprinted with the permission of BSI. Complete copies can be obtained by post from BSI Sales, Linford Wood, Milton Keynes, MK14 6LE, UK Figure 7.2 Reprinted from The Storage and Handling of Petroleum Liquids, Hughes and Swindells, with the kind permission of Edward Arnold Publishers Figure 7.3 Reprinted from ‘Recommendations for pre-treatment and cleaning of heavy fuel oil’ with the kind permission of Alfa Laval Ltd Figure 8.3 Reprinted from Drawing no. GP10409 (Carl Shenck AG, Germany) Figures 8.4 and 8.5 Reprinted from Technical Documentation T 32 FN, with the kind permission of Hottinger Baldwin Messtechnik GmbH, Germany Figures 8.6 and 8.7 Illustration courtesy of Ricardo Test Automation Ltd Figures 8.9, 8.10 and 8.11 Reprinted with permission of Froude Consine, UK Figure 8.12 Reprinted from technical literature, Wichita Ltd Figure 9.4 Reprinted from Practical Solution of Torsional Vibration Problems, 3rd edition, W. Ker-Wilson, 1956 Figure 9.7 Reprinted from literature, with the kind permission of British Autoguard Ltd Figures 9.8 and 9.11 Reprinted from sales and technical literature, with the kind permission of Twilfex Ltd Figure 12.2 Reprinted from Paper ISATA, 1982, R.A. Haslett, with the kind permis- sion of Cussons Ltd Figure 12.4 Reprinted from Technology News with the kind permission of Petroleum Review Figure 14.7 Reprinted from SAE 920 462 (SAE International Ltd) Figure 17.1 From Schmiertechnik und Tribologie 29, H. 3, 1982, p. 91, Vincent Verlag Hannover (now: Tribologie und Schmierungstechnik) x Acknowledgements Figures 17.2 and 17.3 Reprinted by permission of the Council of the Institution of Mechanical Engineers from ‘The effect of viscosity grade on piston ring wear’, S.L. Moore, Proc. I. Mech. E C184/87 Figure 18.2 Illustration courtesy of Ricardo Test Automation Ltd Figures 2.3, 5.4, 5.5, 5.6, 5.7, 6.8, 7.5, 7.6, 10.5 10.8, 14.9, 14.10, 14.11, 16.1, 16.2, 16.5, 16.7, 16.8 and 18.4 Reprinted by kind permission of AVL List GmbH Introduction Over the working lifetime of the authors the subject of internal engine development and testing has changed, from being predominantly within the remit of mechanical engineers, into a task that is well beyond the remit of any one discipline that requires a team of specialists covering, in addition to mechanical engineering, electronics, power electrics, acoustics, software, computer sciences and chemical analysis, all supported by expertise in building services and diverse legislation.
Recommended publications
  • Steady State and Transient Efficiencies of A
    STEADY STATE AND TRANSIENT EFFICIENCIES OF A FOUR CYLINDER DIRECT INJECTION DIESEL ENGINE FOR IMPLEMENTATION IN A HYBRID ELECTRIC VEHICLE A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Masters of Science Charles Van Horn August, 2006 STEADY STATE AND TRANSIENT EFFICIENCIES OF A FOUR CYLINDER DIRECT INJECTION DIESEL ENGINE FOR IMPLEMENTATION IN A HYBRID ELECTRIC VEHICLE Charles Van Horn Thesis Approved: Accepted: Advisor Department Chair Dr. Scott Sawyer Dr. Celal Batur Faculty Reader Dean of the College Dr. Richard Gross Dr. George K. Haritos Faculty Reader Dean of the Graduate School Dr. Iqbal Husain Dr. George R. Newkome Date ii ABSTRACT The efficiencies of a four cylinder direct injection diesel engine have been investigated for the implementation in a hybrid electric vehicle (HEV). The engine was cycled through various operating points depending on the power and torque requirements for the HEV. The selected engine for the HEV is a 2005 Volkswagen 1.9L diesel engine. The 2005 Volkswagen 1.9L diesel engine was tested to develop the steady-state engine efficiencies and to evaluate the transient effects on these efficiencies. The peak torque and power curves were developed using a water brake dynamometer. Once these curves were obtained steady-state testing at various engine speeds and powers was conducted to determine engine efficiencies. Transient operation of the engine was also explored using partial throttle and variable throttle testing. The transient efficiency was compared to the steady-state efficiencies and showed a decrease from the steady- state values.
    [Show full text]
  • POLITECNICO DI TORINO Didactic Test-Bench of a Vehicle's Engine
    POLITECNICO DI TORINO Department of Control and Computer Engineering MASTER DEGREE IN MECHATRONICS ENGINEERING Didactic Test-Bench of a Vehicle’s Engine Supervisor: Prof. Raffaella Sesana Company Tutor: Prof. Daniela Maffiodo Candidato Dionysia Varvarigou October 2018 Abstract A vehicle’s engine is a combination of mechanical, electical and electronic components with capabilities of converting chemical to mechanical energy. It is widely used in evey kind of transportation system, such as vehicles, trains, airoplanes e.t.c. Test-bench is a tool for anykind of testing, of any kind of device, depending on the purpose of the project. In general, it includes integrations of mechanical parts, electrical connections, embedded systems, e.t.c. Test-bench is able to lead to verification of working condition, detecting faulty components, monitoring testings for data analysis, including evolutions of devices and development of testing projects. Developing a test-bench for didactic purposes and giving the chance to the students for hands-on the engine and the testing procedure, is a challenging research project. This written thesis presents an integrated didactic and an implemented by hand research, for the collaboration of the institution Filos and Politecnico di Torino. This work comes after the already existing engine, instrumentation, actuators and ECU and their dependencies on the integration with the embedded systems, electronic components and electrical connections. The approach permits the creation of a team of three students to develop parts of this thesis. This thesis report presents the design parts, the connectors mapping, the testing procedures, data acquisition, results analysis, and a project for future work. The results show the good and defective working condition of the engine, as a tool for the students to use and to evolve.
    [Show full text]
  • Design of a Test Stand for Alternate Fuel and Ignition Systems Testing
    Graduate Theses, Dissertations, and Problem Reports 2009 Design of a test stand for alternate fuel and ignition systems testing Patrick Wildfire West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Wildfire, Patrick, "Design of a test stand for alternate fuel and ignition systems testing" (2009). Graduate Theses, Dissertations, and Problem Reports. 2085. https://researchrepository.wvu.edu/etd/2085 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Design of a Test Stand for Alternate Fuel and Ignition Systems Testing Patrick Wildfire, BSME A Thesis Submitted to the College of Engineering and Mineral Resources At West Virginia University In Partial Fulfillment of the Requirements For the Degree of Master of Science in Mechanical Engineering Dr. James E. Smith, Committee Chairperson Dr. Gregory J. Thompson Dr. Franz A. Pertl Department: Mechanical and Aerospace Engineering West Virginia University Morgantown, WV 2009 Keywords: Engine, Test Stand, Plasma, QWCCR © 2009 Patrick Wildfire Abstract Design of a Test Stand for Alternate Fuel and Ignition Systems Testing Patrick E.
    [Show full text]
  • Black Carbon Measurement Methods and Emission Factors from Ships
    Black Carbon Measurement Methods and Emission Factors from Ships December 2016 Prepared for: International Council on Clean Transportation: Dr. Dan Rutherford, Program Director and Dr. Bryan Comer, Researcher 1225 Eye St. NW, Suite 900 Washington, DC 20005 +1 (202) 407-8345 Report Prepared by: University of California, Riverside: Dr. Kent Johnson, Dr. Wayne Miller, Dr. Tom Durbin, Yu (Jade) Jiang, Jiacheng (Joey) Yang, Dr. George Karavalakis, and Dr. David Cocker Task 1 Contributions University of California, Riverside Emmanuel Fofi, Dr. Heejung Jung, Yue Lin, Dr. Akua Asa-Awuku, and Dr. Roya Bahreini National Research Council Canada: Dr. Kevin Thomson, Dr. Stéphanie Gagné Environment and Climate Change Canada: Dr. Tak Chan Sun Set Laboratories: Dr. Bob Cary Minnesota State University, Dr. Jacob Swanson Inventory Section Contribution Easter Research Group Dr. John Koupal Acknowledgement Research team for the Task 1 Marine Black Carbon ICCT Project Equipment in-kind loans Task 1 o HTDMA AVL Filter Smoke Number (FSN) Task 1-3 o MAAP SunSet Labs SemiCont EC/OC California Air Resources Board EEPS South Coast Air Quality Management NTK-Sparkplugs Stack OBD NOX /PM/PN District (SC-AQMD) Aethalometer Sensor National Resource Canada o Two (2) LIIs Contractors o RAMAN, Dr. Gavin McMeeking, Handix Scientific, LLC o TEM analysis Environment and Climate Change Faculty, Technical Support, and Graduate Canada Students o LII Dr. Kelley Barsanti, Lindsay Hatch o Rotating disk dilutor Don Pacocha, Eddie O’Neil, Mark Villa, o CPC David Buote (E.C.), Danny Gomez, Rachael UC Riverside Hirst, and Lauren Aycock o GC by GC Paul Van Rooy, Justin Hernandez Dingle, o AMS and Eric Peng o SMPS o CPC o PAX 375 nm 2 Table of Contents Acknowledgement ...............................................................................................................
    [Show full text]
  • The Development of a Small Diesel Engine Test Bench Employing an Electric Dynamometer
    The Development of a Small Diesel Engine Test Bench Employing an Electric Dynamometer by Eben Grobbelaar Thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering (Mechanical) in the Faculty of Engineering at Stellenbosch University Supervisor: Mr Richard Walter Haines March 2017 Stellenbosch University https://scholar.sun.ac.za DECLARATION By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: March 2017 Copyright © 2017 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za Abstract Global efforts to combat climate change, reduce greenhouse gas emissions and increase energy security has led to renewed interest in the use of biofuels as an alternative to fossil fuels. Therefore, it has become increasingly important to understand the effects that the use of biofuel has on the performance and emissions of internal combustion engines. The subject of this report is the development of a small diesel engine test bench employing an electric dynamometer. The purpose of the project is to establish an engine testing platform which can be used to test small quantities of biofuel, as well as to expand the testing capabilities of the Biofuel Test Facility at Stellenbosch University. In this report, a review of the literature surrounding various aspects of engine performance testing and engine indicating testing is presented.
    [Show full text]
  • Design of a New Engine Dynamometer Test Stand for Driving Cycle Simulation
    JournalJournal ofof KONESKONES PowertrainPowertrain andand Transport,Transport, Vol.Vol. 21, No. 4 2014 ISSN: 1231-4005 e-ISSN: 2354-0133 ICID: 1130477 DOI: 10.5604/12314005.1130477 DESIGN OF A NEW ENGINE DYNAMOMETER TEST STAND FOR DRIVING CYCLE SIMULATION 0LFKDá.ĊGHU5DIDá*U]HV]F]\N ODIUT Automex Sp. z o.o. Marynarki Polskiej Street 55D, 80-557 Gdansk, Poland tel.:+48 58 5220620, fax: +48 58 5220621 e-mail: [email protected], [email protected] -HU]\0HUNLV]3DZHá)Xü3LRWU/LMHZVNL Poznan University of Technology, Institute of Combustion Engines and Transport Piotrowo Street 3, 60-965 Poznan, Poland tel.:+48 61 6652207, fax: +48 61 6652204 e-mail: [email protected] [email protected], [email protected] Abstract Dynamic combustion engine test stand allows a very accurate analysis of the engine work. The prototype of such a system was developed and built in a cooperation of Poznan University of Technology with the ODIUT Automex company. The system consists of an asynchronous motor controlled by a regenerative variable-frequency drive with an ability to return braking energy back to the power system. Together they permit to set very precise work points of the combustion engine in every time moment, unlike test stands with eddy current dynamometer, which are only able to brake the engine. Measuring system is used to gather data from all sensors, especially torque sensor, which records the torque on a drive shaft. Sensors are connected to electronic boards, which provide signal processing, and data acquisition. Fuel mass flow meter with temperature and pressure control allows regulating the parameters of fuel supplied to the engine.
    [Show full text]
  • The Performance and Emissions Characteristics Of
    THE PERFORMANCE AND EMISSIONS CHARACTERISTICS OF HEAVY FUELS IN A SMALL, SPARK IGNITION ENGINE Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Mechanical Engineering By Jon-Russell J. Groenewegen Dayton, Ohio December, 2011 THE PERFORMANCE AND EMISSIONS CHARACTERISTICS OF HEAVY FUELS IN A SMALL, SPARK IGNITION ENGINE Name: Groenewegen, Jon-Russell Jacob APPROVED BY: ___________________________ _______________________________ Sukh S. Sidhu, Ph.D. Kevin Hallinan, Ph.D. Advisory Committee Chairperson Committee Member Division Head Professor Metal and Ceramics Division Mechanical and Aerospace Engineering Group Leader, Sustainable Environmental Technologies Group ___________________________________ Fred Schauer, Ph.D. Committee Member Mechanical Engineer AFRL/RZTC Propulsion Directorate ____________________________ __________________________________ John G. Weber, Ph.D. Tony E. Saliba, Ph.D. Associate Dean Dean, School of Engineering School of Engineering & Wilke Distinguished Professor ii ABSTRACT THE PERFORMANCE AND EMISSIONS CHARACTERISTICS OF HEAVY FUELS IN A SMALL, SPARK IGNITION ENGINE Name: Groenewegen, Jon-Russell Jacob University of Dayton Advisor: Sukh Sidhu, Ph.D. This thesis research was conducted in pursuit of the DoD’s plan for the universal use of a heavy, low volatility hydrocarbon fuel, and the increased interest in bio-derived fuels for small Unmanned Aircraft Systems (UAS’s). Currently a majority of small UAS’s use small spark ignition engines for their high power densities. Typically, these systems use commercial off-the-shelf power plants that are not optimized for fuel efficiency. Increased fuel efficiency is being pursued alongside the ability to utilize military heavy fuels. A test stand using a 33.5 cc four-stroke, spark ignition, air-cooled, single cylinder engine was constructed.
    [Show full text]
  • Development of Test Methodology for Evaluation of Fuel Economy in Motorcycle Engines
    Cleveland State University EngagedScholarship@CSU ETD Archive 2014 Development of Test Methodology for Evaluation of Fuel Economy in Motorcycle Engines Alexander Michlberger Cleveland State University Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive Part of the Mechanical Engineering Commons How does access to this work benefit ou?y Let us know! Recommended Citation Michlberger, Alexander, "Development of Test Methodology for Evaluation of Fuel Economy in Motorcycle Engines" (2014). ETD Archive. 855. https://engagedscholarship.csuohio.edu/etdarchive/855 This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an authorized administrator of EngagedScholarship@CSU. For more information, please contact [email protected]. DEVELOPMENT OF TEST METHODOLOGY FOR EVALUATION OF FUEL ECONOMY IN MOTORCYCLE ENGINES ALEXANDER MICHLBERGER Bachelor of Science in Mechanical Engineering University of Akron May, 2010 Submitted in partial fulfillment of requirements for the degree MASTER OF SCIENCE IN MECHANICAL ENGINEERING at the CLEVELAND STATE UNIVERSITY Spring 2014 We hereby approve this thesis For ALEXANDER MICHLBERGER Candidate for the Master of Science in Mechanical Engineering Degree for the Department of Mechanical Engineering And CLEVELAND STATE UNIVERSITY’S College of Graduate Studies by ________________________________________________ Dr. Jerzy T. Sawicki, Thesis Committee Chairperson Department of Mechanical Engineering ______________________ Date ________________________________________________ Dr. Stephen F. Duffy, Thesis Committee Member Department of Civil Engineering ______________________ Date ________________________________________________ Dr. Ana V. Stankovic, Thesis Committee Member Department of Electrical and Computer Engineering ______________________ Date Student’s Date of Defense: 4/11/2014 AKNOWLEDGEMENTS I would like to sincerely thank Dr.
    [Show full text]