Sep 1 2 1989

Total Page:16

File Type:pdf, Size:1020Kb

Sep 1 2 1989 DESIGN AND USE OF A LARGE-FORMAT CCD INSTRUMENT FOR THE IDENTIFICATION AND STUDY OF DISTANT GALAXY CLUSTERS by GERARD ANTHONY LUPPINO B.S. Astronomy and Physics The Pennsylvania State University (1983) SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PHYSICS at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY August, 1989 @ Massachusetts Institute of Technology 1989 Signature of Author Department of Physics August, 1989 Certified by George R. Ricker Thesis Supervisor Accepted by George Koster Chairman, Department Committee SEP 1 2 1989 ARCHjvre DESIGN AND USE OF A LARGE-FORMAT CCD INSTRUMENT FOR THE IDENTIFICATION AND STUDY OF DISTANT GALAXY CLUSTERS by GERARD A. LUPPINO SUBMT17ED TO THE DEPARTMENT OF PHYSICS OF THE MASSACHUSEITS INSTITUTE OF TECHNOLOGY ON AUGUST 1989, INPARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INPHYSICS ABSTRACT This dissertation describes a search for distant clusters of galaxies (z>0.3). Cluster candidates were selected from a sample of radio sources with steep, low-frequency spectra since such radio sources are often found in rich nearby galaxy clusters. The steep-spectrum radio source (SSRS) is thought to be produced by the confinement of the radio plasma by the thermal pressure of a hot intracluster gas; therefore, we expect clusters discovered by this selection criterion to be bright x-ray sources and excellent targets for future x-ray satellites such as ROSAT, ASTRO-D and AXAF. These objects are also more likely to be true physical associations rather than the chance superpositions of galaxies that may plague some optically selected samples, particularly those at faint magnitudes. In order to identify the optical counterpart of the SSRS and see if the radio source was part of a distant cluster of galaxies, optical images to faint limiting magnitudes were required. Therefore, an imaging instrument incorporating mosaics of CCDs was designed and built . With this instrument, it is possible to observe faint, distant clusters of galaxies with spatial resolution limited by atmospheric seeing, while at the same time covering a relatively large field of view. The major task in the creation of this instrument was the design and construction of two separate CCD camera systems; each based on different CCD mosaics. The first camera system incorporates four prototype, TI 850 x 750 virtual-phase CCDs (22.3 gim square pixels) arranged in a square pattern with the device packages abutted. The second camera system is designed to operate a four-chip CCD imager made by MIT Lincoln Laboratory. The imaging area of this CCD mosaic is 840 x 840 pixels (27 pm square pixels) formed by abutting four 840 x 420 framestore devices with seam losses less than 6 pixels. Details of the CCD camera electronics design as well as details of the mechanical design of the CCD cameras and LN 2 dewars are described. A total of 30 SSRS fields were observed with this CCD instrument mounted on the 1.3m and 2.4m telescopes of the Michigan-Dartmouth-MIT (MDM) Observatory on Kitt Peak. Additional CCD images of 5 of these radio sources were obtained with the Kitt Peak 4m telescope equipped with the KPNO prime focus CCD. Of these 30 SSRSs, 26 have been optically identified. In all, 15 of the observed fields contain visible clusters of galaxies, some of which are quite rich. Of the remaining 15 SSRSs, 6 are identified with faint galaxies , 2 are identified with poor groups, 3 are probably quasars, and 4 of the fields have uncertain or no optical counterpart. The median value for the estimated redshift of the 15 clusters is z=0.43 and the median richness is Abell Class 2. Nearly all of the radio sources have classical double-lobed morphology, and in half of the sources associated with clusters, the radio source is identified with a fainter cluster member rather than with the brightest cluster galaxy. In all cases where the cluster is BM Type I, however, the radio source is identified with the optically dominant galaxy. Observations are also presented of three distant clusters that were not part of the radio selected sample: 0414+009, an x-ray bright BL Lac object coincident with the optically dominant galaxy in a Richness Class 1 cluster; 1217+1006, a compact group containing an extremely blue (B-R) ~ 0.0 object that may be either a QSO or a BL Lac; and 1358+6245, a new, x-ray luminous (Lx (0.5-4.5 keV) = 8.4x10 44 erg s-l), extremely rich (Richness Class 3 or 4), distant cluster of galaxies (z=0.323) which exhibits the Butcher-Oemler effect with a blue galaxy fractionfb = 0.18 orfb = 0.10 depending on the background galaxy correction. ACKNOWLEDGMENTS This instrument and scientific program would not have been possible without the help of a large number of people. First of all, I would like to thank my thesis advisor, George Ricker, who gave me access to a large number of CCDs and allowed me to use some of the best of them in this instrument. He also provided guidance and encouragement, and allowed me the freedom to be creative in the instrument design. I am also indebted to Ian McHardy and Brin Cooke, who developed this method for searching for distant galaxy clusters, and graciously accepted me as a collaborator. I appreciate the constructive comments and advice I received from my thesis committee members, Claude Canizares, and John Tonry. I am especially grateful to John, who taught me how to think as a scientist, and changed my perspective on instrumentation, urging me to "put the science first and let the science requirements drive instrument designs." John was always there to answer questions and help me wring the most out of my data. In addition, as the reader will later discover, nearly all of the software tools I use for data reduction in this thesis were developed and kindly provided by John. Also, thanks to Paul Schechter for helpful advice and criticism during the final stages of this project. During my first three years as a graduate student, I worked closely with John Vallerga, who taught me almost everything I know about CCDs. The time I spent working with John was the most "productive fun" I ever had in the laboratory. And, I can never thank Roland Vanderspek enough. During my entire time at MIT Roland has been my best friend, companion, and advisor. He has helped me with virtually everything and I will be eternally grateful. I also appreciated the "baked goods" that often appeared when I was working on some particularly tedious or difficult problem. The designs for much of the CCD electronics used in the instrument described later are based on original designs by John Doty. I first met John when I visited MIT 6 1/2 years ago, and he greatly influenced my decision to come to MIT to work in the CCD Lab (then the Balloon Lab). I have never regretted that decision. The Center for Space Research (CSR) CCD Lab has been a great place to work: partly because of the facilities, but mostly because of the people. I thank Mark Bautz and Pat Mock for relieving me of my responsibilities for the laboratory x-ray CCD system so that I could spend my time working on optical instrumentation and the scientific program for this thesis. Mark has also been an endless source of scientific advice and information about clusters of galaxies, and I appreciate the time he spent answering many of my questions. Pat not only helped me finish some unfinished electronic designs, he designed and built the hardware to interface the laboratory CCD cameras to our SUN and MicroVAX computers. Pat also went observing for me when I was too busy. Lawrence Shing and Ed Boughan deserve the credit for debugging the electronic design for the Lincoln Laboratory CCD system and actually constructing the circuits and making them work while I was busy writing this thesis. I have also enjoyed working with (as well as sharing a house with) George Mitsuoka (thanks for all the stargate) and Steve Rosenthal. A few years ago, I got my feet wet working at MDM Observatory when George and I upgraded the MASCOT with new CCDs and electronics. George also wrote MIDAS to interface the MASCOT to one of our old generic computers. Recently, Steve wrote the CCD tool program and ultimately interfaced the MASCOT and (later) the BRICC to the MDM Observatory SUN computers. I must also thank Mike Decker, who helped me sift through many TI-4849 CCDs while I was searching for the one to use in the BRICC, and Suzan DeFreitas who helped with much of the galaxy cluster data reduction and with the construction of some of the instrument hardware. I thank Rosemary Hanlon for her help with some of the figures (and for dealing with Graphic Arts), and for her useful tips concerning WORD and the Macintosh. And thanks, Shep, for always making me laugh. CSR machinists David Breslau and Leo Rogers were responsible for actually bringing the instrument design to life. During the course of construction, their excellent suggestions often improved the instrument design and their craftsmanship and attention to detail is evident in the final product. In addition, I am especially grateful to our CSR purchaser, Dan Calileo, who was always able to obtain the parts and services I required. I would like to thank Barry Burke and his co-workers in Group 87 at MIT Lincoln Laboratory for their marvelous CCDs. I have enjoyed working with Barry and I am grateful for the education he has given me concerning some of the details of CCD design and manufacture.
Recommended publications
  • Also Available in PDF
    University of Hawai‘i, Institute for Astronomy Publications in Calendar Year 2000 PUBLICATIONS Investigating the Link between Cometary and Interstellar Material. A&A, 353, 1101–1114 (2000) The following articles and books were published dur- ing calendar year 2000. The names of IfA authors Boehnhardt, H.; Hainaut, O.; Delahodde, C.; West, R.; are in boldface. For an html version of this list Meech, K.; Marsden, B. A Pencil-Beam Search for Dis- with links, go to http://www.ifa.hawaii.edu/publications/ tant TNOs at the ESO NTT. In Minor Bodies in the Outer 2000pubs.html. More recent publications are listed at Solar System, ed. A. Fitzsimmons, D. Jewitt, & R. M. http://www.ifa.hawaii.edu/publications/preprints/. West. ESO Astrophysics Symposia (Springer), 117–123 (2000) Barger, A. J.; Cowie, L. L.; Richards, E. A. Mapping the Evolution of High-Redshift Dusty Galaxies with Submil- Boesgaard, A. M. Review of Stellar Abundance Results from limeter Observations of a Radio-selected Sample. AJ, Large Telescopes. Proc. SPIE, 4005, 142–149 (2000) 119, 2092–2109 (2000) Boesgaard, A. M.; Stephens, A.; King, J. R.; Deliyannis, Barucci, M. A.; Romon, J.; Doressoundiram, A.; Tholen, C. P. Chemical Abundances in Globular Cluster Turn-Off D. J. Compositional Surface Diversity in the Trans-Nep- Stars from Keck/HIRES Observations. Proc. SPIE, 4005, tunian Objects. AJ, 120, 496–500 (2000) 274–284 (2000) Baudoz, P.; Mouillet, D.; Beuzit, J.-L.; Mekarnia, D.; Rab- Brandner, W.; Grebel, E. K.; Chu, Y.; Dottori, H.; Brandl, bia, Y.; Gay, J.; Schneider, J.-L. First Results of the B.; Richling, S.; Yorke, H.
    [Show full text]
  • The Applicability of Far-Infrared Fine-Structure Lines As Star Formation
    A&A 568, A62 (2014) Astronomy DOI: 10.1051/0004-6361/201322489 & c ESO 2014 Astrophysics The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types? Ilse De Looze1, Diane Cormier2, Vianney Lebouteiller3, Suzanne Madden3, Maarten Baes1, George J. Bendo4, Médéric Boquien5, Alessandro Boselli6, David L. Clements7, Luca Cortese8;9, Asantha Cooray10;11, Maud Galametz8, Frédéric Galliano3, Javier Graciá-Carpio12, Kate Isaak13, Oskar Ł. Karczewski14, Tara J. Parkin15, Eric W. Pellegrini16, Aurélie Rémy-Ruyer3, Luigi Spinoglio17, Matthew W. L. Smith18, and Eckhard Sturm12 1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium e-mail: [email protected] 2 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle Str. 2, 69120 Heidelberg, Germany 3 Laboratoire AIM, CEA, Université Paris VII, IRFU/Service d0Astrophysique, Bat. 709, 91191 Gif-sur-Yvette, France 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 6 Laboratoire d0Astrophysique de Marseille − LAM, Université Aix-Marseille & CNRS, UMR7326, 38 rue F. Joliot-Curie, 13388 Marseille CEDEX 13, France 7 Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK 8 European Southern Observatory, Karl
    [Show full text]
  • Jet-Powered Molecular Hydrogen Emission from Radio Galaxies
    JET-POWERED MOLECULAR HYDROGEN EMISSION FROM RADIO GALAXIES The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Ogle, Patrick, Francois Boulanger, Pierre Guillard, Daniel A. Evans, Robert Antonucci, P. N. Appleton, Nicole Nesvadba, and Christian Leipski. “JET-POWERED MOLECULAR HYDROGEN EMISSION FROM RADIO GALAXIES.” The Astrophysical Journal 724, no. 2 (November 11, 2010): 1193–1217. © 2010 The American Astronomical Society As Published http://dx.doi.org/10.1088/0004-637x/724/2/1193 Publisher IOP Publishing Version Final published version Citable link http://hdl.handle.net/1721.1/95698 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal, 724:1193–1217, 2010 December 1 doi:10.1088/0004-637X/724/2/1193 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. JET-POWERED MOLECULAR HYDROGEN EMISSION FROM RADIO GALAXIES Patrick Ogle1, Francois Boulanger2, Pierre Guillard1, Daniel A. Evans3, Robert Antonucci4, P. N. Appleton5, Nicole Nesvadba2, and Christian Leipski6 1 Spitzer Science Center, California Institute of Technology, Mail Code 220-6, Pasadena, CA 91125, USA; [email protected] 2 Institut d’Astrophysique Spatiale, Universite Paris-Sud 11, Bat. 121, 91405 Orsay Cedex, France 3 MIT Center for Space Research, Cambridge, MA 02139, USA 4 Physics Department, University of California, Santa Barbara, CA 93106, USA 5 NASA Herschel Science Center, California Institute of Technology, Mail Code 100-22, Pasadena, CA 91125, USA 6 Max-Planck Institut fur¨ Astronomie (MPIA), Konigstuhl¨ 17, D-69117 Heidelberg, Germany Received 2009 November 10; accepted 2010 September 22; published 2010 November 11 ABSTRACT H2 pure-rotational emission lines are detected from warm (100–1500 K) molecular gas in 17/55 (31% of) radio galaxies at redshift z<0.22 observed with the Spitzer IR Spectrograph.
    [Show full text]
  • Not Yet Imagined: a Study of Hubble Space Telescope Operations
    NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR NOT YET IMAGINED NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR National Aeronautics and Space Administration Office of Communications NASA History Division Washington, DC 20546 NASA SP-2020-4237 Library of Congress Cataloging-in-Publication Data Names: Gainor, Christopher, author. | United States. NASA History Program Office, publisher. Title: Not Yet Imagined : A study of Hubble Space Telescope Operations / Christopher Gainor. Description: Washington, DC: National Aeronautics and Space Administration, Office of Communications, NASA History Division, [2020] | Series: NASA history series ; sp-2020-4237 | Includes bibliographical references and index. | Summary: “Dr. Christopher Gainor’s Not Yet Imagined documents the history of NASA’s Hubble Space Telescope (HST) from launch in 1990 through 2020. This is considered a follow-on book to Robert W. Smith’s The Space Telescope: A Study of NASA, Science, Technology, and Politics, which recorded the development history of HST. Dr. Gainor’s book will be suitable for a general audience, while also being scholarly. Highly visible interactions among the general public, astronomers, engineers, govern- ment officials, and members of Congress about HST’s servicing missions by Space Shuttle crews is a central theme of this history book. Beyond the glare of public attention, the evolution of HST becoming a model of supranational cooperation amongst scientists is a second central theme. Third, the decision-making behind the changes in Hubble’s instrument packages on servicing missions is chronicled, along with HST’s contributions to our knowledge about our solar system, our galaxy, and our universe.
    [Show full text]
  • Science with the Square Kilometer Array
    Science with the Square Kilometer Array edited by: A.R. Taylor and R. Braun March 1999 Cover image: The Hubble Deep Field Courtesy of R. Williams and the HDF Team (ST ScI) and NASA. Contents Executive Summary 6 1 Introduction 10 1.1 ANextGenerationRadioObservatory . 10 1.2 The Square Kilometre Array Concept . 12 1.3 Instrumental Sensitivity . 15 1.4 Contributors................................ 18 2 Formation and Evolution of Galaxies 20 2.1 TheDawnofGalaxies .......................... 20 2.1.1 21-cm Emission and Absorption Mechanisms . 22 2.1.2 PreheatingtheIGM ....................... 24 2.1.3 Scenarios: SKA Imaging of Cosmological H I .......... 25 2.2 LargeScale Structure and GalaxyEvolution . ... 28 2.2.1 A Deep SKA H I Pencil Beam Survey . 29 2.2.2 Large scale structure studies from a shallow, wide area survey 31 2.2.3 The Lyα forest seen in the 21-cm H I line............ 32 2.2.4 HighRedshiftCO......................... 33 2.3 DeepContinuumFields. .. .. 38 2.3.1 ExtragalacticRadioSources . 38 2.3.2 The SubmicroJansky Sky . 40 2.4 Probing Dark Matter with Gravitational Lensing . .... 42 2.5 ActivityinGalacticNuclei . 46 2.5.1 The SKA and Active Galactic Nuclei . 47 2.5.2 Sensitivity of the SKA in VLBI Arrays . 52 2.6 Circum-nuclearMegaMasers . 53 2.6.1 H2Omegamasers ......................... 54 2.6.2 OHMegamasers.......................... 55 2.6.3 FormaldehydeMegamasers. 55 2.6.4 The Impact of the SKA on Megamaser Studies . 56 2.7 TheStarburstPhenomenon . 57 2.7.1 TheimportanceofStarbursts . 58 2.7.2 CurrentRadioStudies . 58 2.7.3 The Potential of SKA for Starburst Studies . 61 3 4 CONTENTS 2.8 InterstellarProcesses .
    [Show full text]
  • The Universe Contents 3 HD 149026 B
    History . 64 Antarctica . 136 Utopia Planitia . 209 Umbriel . 286 Comets . 338 In Popular Culture . 66 Great Barrier Reef . 138 Vastitas Borealis . 210 Oberon . 287 Borrelly . 340 The Amazon Rainforest . 140 Titania . 288 C/1861 G1 Thatcher . 341 Universe Mercury . 68 Ngorongoro Conservation Jupiter . 212 Shepherd Moons . 289 Churyamov- Orientation . 72 Area . 142 Orientation . 216 Gerasimenko . 342 Contents Magnetosphere . 73 Great Wall of China . 144 Atmosphere . .217 Neptune . 290 Hale-Bopp . 343 History . 74 History . 218 Orientation . 294 y Halle . 344 BepiColombo Mission . 76 The Moon . 146 Great Red Spot . 222 Magnetosphere . 295 Hartley 2 . 345 In Popular Culture . 77 Orientation . 150 Ring System . 224 History . 296 ONIS . 346 Caloris Planitia . 79 History . 152 Surface . 225 In Popular Culture . 299 ’Oumuamua . 347 In Popular Culture . 156 Shoemaker-Levy 9 . 348 Foreword . 6 Pantheon Fossae . 80 Clouds . 226 Surface/Atmosphere 301 Raditladi Basin . 81 Apollo 11 . 158 Oceans . 227 s Ring . 302 Swift-Tuttle . 349 Orbital Gateway . 160 Tempel 1 . 350 Introduction to the Rachmaninoff Crater . 82 Magnetosphere . 228 Proteus . 303 Universe . 8 Caloris Montes . 83 Lunar Eclipses . .161 Juno Mission . 230 Triton . 304 Tempel-Tuttle . 351 Scale of the Universe . 10 Sea of Tranquility . 163 Io . 232 Nereid . 306 Wild 2 . 352 Modern Observing Venus . 84 South Pole-Aitken Europa . 234 Other Moons . 308 Crater . 164 Methods . .12 Orientation . 88 Ganymede . 236 Oort Cloud . 353 Copernicus Crater . 165 Today’s Telescopes . 14. Atmosphere . 90 Callisto . 238 Non-Planetary Solar System Montes Apenninus . 166 How to Use This Book 16 History . 91 Objects . 310 Exoplanets . 354 Oceanus Procellarum .167 Naming Conventions . 18 In Popular Culture .
    [Show full text]
  • Evolution of Galactic Star Formation in Galaxy Clusters and Post-Starburst Galaxies
    Evolution of galactic star formation in galaxy clusters and post-starburst galaxies Marcel Lotz M¨unchen2020 Evolution of galactic star formation in galaxy clusters and post-starburst galaxies Marcel Lotz Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Marcel Lotz aus Frankfurt am Main M¨unchen, den 16. November 2020 Erstgutachter: Prof. Dr. Andreas Burkert Zweitgutachter: Prof. Dr. Til Birnstiel Tag der m¨undlichen Pr¨ufung:8. Januar 2021 Contents Zusammenfassung viii 1 Introduction 1 1.1 A brief history of astronomy . .1 1.2 Cosmology . .5 1.2.1 The Cosmological Principle and our expanding Universe . .6 1.2.2 Dark matter, dark energy and the ΛCDM cosmological model . .9 1.2.3 Chronology of the Universe . 13 1.3 Galaxy properties . 16 1.3.1 Morphology . 17 1.3.2 Colour . 20 1.4 Galaxy evolution . 22 1.4.1 Galaxy formation . 22 1.4.2 Star formation and feedback . 24 1.4.3 Mergers . 25 1.4.4 Galaxy clusters and environmental quenching . 26 1.4.5 Post-starburst galaxies . 29 2 State-of-the-art simulations 33 2.1 Brief introduction to numerical simulations . 33 2.1.1 Treatment of the gravitational force . 34 2.1.2 Varying hydrodynamic approaches . 35 2.2 Magneticum Pathfinder simulations . 39 2.2.1 Smoothed particle hydrodynamics . 39 2.2.2 Details of the Magneticum Pathfinder simulations . 40 3 Gone after one orbit: How cluster environments quench galaxies 45 3.1 Data sample . 46 3.1.1 Observational comparison with CLASH . 46 3.2 Velocity-anisotropy Profiles .
    [Show full text]
  • Eric Agol – Bibliography
    Eric Agol | Curriculum Vitae Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195-1580 Ó (206) 543-7106 • Q [email protected] • faculty.washington.edu/agol/ Professor of Astronomy, Adjunct Professor of Physics. Previous Employment University of Washington Seattle + Professor 2017 – present Department of Astronomy; Adjunct in Physics. University of Washington Seattle + Associate Professor 2009 –2017 University of Washington Seattle + Assistant Professor 2003 – 2009 Caltech Pasadena + Chandra Fellow 2000 – 2003 Johns Hopkins University Baltimore + Postdoctoral Fellow 1997 – 2000 Education Academic Qualifications................................................... ........................................... University of California Santa Barbara + PhD, Department of Physics, Astrophysics 1992–1997 University of California Berkeley + BA, Physics and Mathematics 1988–1992 Dissertation................................................... ................................................... ......... + ‘The Effects of Magnetic Fields, Absorption, and Relativity on the Polarization of Accretion Disks around Supermassive Black Holes.’ Advisor: Omer Blaes. Selected Research Accomplishments: + Created grid of models for Quasars (Hubeny, Agol et al. 2000; Agol 1997). + Computed optically-thin general-relativistic ray-tracing model, and proposed experiment for imaging the shadow of the Galactic Center black hole (Falcke, Melia & Agol 2000), which culminated in the Event Horizon Telescope. + Derived fast, analytic transit model for
    [Show full text]
  • Garth Illingworth Publications to June 2020
    Garth Illingworth Publications to June 2020 Garth D. Illingworth has a total of 624 publications of which 316 are refereed. Total citations 41420 with an h-index of 113 (as of June 2020). 624. The GREATS H β + [O III] luminosity function and galaxy properties at z ∼ 8: walking the way of JWST, De Barros, S., Oesch, P. A., Labbé, I., Stefanon, M., González, V., Smit, R., Bouwens, R. J., & Illingworth, G. D., (2019), Monthly Notices of the Royal Astronomical Society, 489, 2355. 623. The Hubble Legacy Field GOODS-S Photometric Catalog, Whitaker, K. E., Ashas, M., Illingworth, G., Magee, D., Leja, J., Oesch, P., van Dokkum, P., Mowla, L., Bouwens, R., Franx, M., Holden, B., Labbé, I., Rafelski, M., Teplitz, H., & Gonzalez, V., (2019), The Astrophysical Journal Supplement Series, 244, 16. 622. The Brightest z ≳ 8 Galaxies over the COSMOS UltraVISTA Field, Stefanon, M., Labbé, I., Bouwens, R. J., Oesch, P., Ashby, M. L. N., Caputi, K. I., Franx, M., Fynbo, J. P. U., Illingworth, G. D., Le Fèvre, O., Marchesini, D., McCracken, H. J., Milvang- Jensen, B., Muzzin, A., & van Dokkum, P., (2019), The Astrophysical Journal, 883, 99. 621. The Super Eight Galaxies: Properties of a Sample of Very Bright Galaxies at 7 < z < 8, Bridge, J. S., Holwerda, B. W., Stefanon, M., Bouwens, R. J., Oesch, P. A., Trenti, M., Bernard, S. R., Bradley, L. D., Illingworth, G. D., Kusmic, S., Magee, D., Morishita, T., Roberts-Borsani, G. W., Smit, R., & Steele, R. L., (2019), The Astrophysical Journal, 882, 42. 620. Newly Discovered Bright z∼ 9-10 Galaxies and Improved Constraints on Their Prevalence Using the Full CANDELS Area, Bouwens, R.
    [Show full text]
  • Celestron Nexstar Evolution Schmidt-Cassegrain Telescope Specifications
    Appendix A Troubleshooting Checklist Troubleshooting Steps for the SkyPortal Alignment If you are having difficulty with your SkyPortal system, please review these steps before calling for technical support: 1. Do you have a fully charged the battery in your mobile device (iPad, iPhone, Android device)? If Yes then proceed, if No, please charge your device’s bat- tery before moving forward. 2. Have you disabled the “Sleep” mode on your smart device? 3. Is the tripod relatively level? 4. When Locking the Altitude and Azimuth Axises, be sure they are securely tightened. You may want to try this with the mount off fi rst to see how much pressure is required to lock the axis. 5. Low voltage: Whenever the mount experiences low voltage you may have prob- lems. We strongly encourage all users to fully charge both the mount and smart device prior to the observing session. See step 1! 6. Have you properly aligned the StarPointer red-dot fi nder? 7. Are you using your lowest power, widest fi eld eyepiece for the alignment procedure? 8. Is the ambient temperature below 32 °F or above 95 °F? If so, take measures to protect your smart device from these cold or heat extremes. © Springer International Publishing Switzerland 2016 165 J.L. Chen, The NexStar Evolution and SkyPortal User’s Guide, The Patrick Moore Practical Astronomy Series, DOI 10.1007/978-3-319-32539-2 166 Appendix A 9. Are the alignment stars in different parts of the sky, and at least 10° apart. The Celestron SkyAlign process requires three alignment stars for accurate searches.
    [Show full text]
  • Beyond Earth a CHRONICLE of DEEP SPACE EXPLORATION, 1958–2016
    Beyond Earth A CHRONICLE OF DEEP SPACE EXPLORATION, 1958–2016 Asif A. Siddiqi Beyond Earth A CHRONICLE OF DEEP SPACE EXPLORATION, 1958–2016 by Asif A. Siddiqi NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Office of Communications NASA History Division Washington, DC 20546 NASA SP-2018-4041 Library of Congress Cataloging-in-Publication Data Names: Siddiqi, Asif A., 1966– author. | United States. NASA History Division, issuing body. | United States. NASA History Program Office, publisher. Title: Beyond Earth : a chronicle of deep space exploration, 1958–2016 / by Asif A. Siddiqi. Other titles: Deep space chronicle Description: Second edition. | Washington, DC : National Aeronautics and Space Administration, Office of Communications, NASA History Division, [2018] | Series: NASA SP ; 2018-4041 | Series: The NASA history series | Includes bibliographical references and index. Identifiers: LCCN 2017058675 (print) | LCCN 2017059404 (ebook) | ISBN 9781626830424 | ISBN 9781626830431 | ISBN 9781626830431?q(paperback) Subjects: LCSH: Space flight—History. | Planets—Exploration—History. Classification: LCC TL790 (ebook) | LCC TL790 .S53 2018 (print) | DDC 629.43/509—dc23 | SUDOC NAS 1.21:2018-4041 LC record available at https://lccn.loc.gov/2017058675 Original Cover Artwork provided by Ariel Waldman The artwork titled Spaceprob.es is a companion piece to the Web site that catalogs the active human-made machines that freckle our solar system. Each space probe’s silhouette has been paired with its distance from Earth via the Deep Space Network or its last known coordinates. This publication is available as a free download at http://www.nasa.gov/ebooks. ISBN 978-1-62683-043-1 90000 9 781626 830431 For my beloved father Dr.
    [Show full text]
  • Counterparts of Far Eastern Guest Stars: Novae, Supernovae, Or Something Else?
    MNRAS 000,1{21 (2020) Preprint 12 June 2020 Compiled using MNRAS LATEX style file v3.0 Counterparts of Far Eastern Guest Stars: Novae, supernovae, or something else? Hoffmann, Susanne M.,1? Vogt, Nikolaus,2 1Physikalisch-Astronomische Fakult¨at, Friedrich-Schiller-Universit¨at Jena, Germany 2Instituto de F´ısica y Astronom´ıa, Universidad de Valpara´ıso, Chile Accepted 2020 May 28. Received 2020 May 20; in original form 2020 April 28 ABSTRACT Historical observations of transients are crucial for studies of their long-term evolution. This paper forms part of a series of papers in which we develop methods for the analysis of ancient data of transient events and their usability in modern science. Prior research on this subject by other authors has focused on looking for historical supernovae and our earlier work focused on cataclysmic binaries as classical novae. In this study we consider planetary nebulae, symbiotic stars, supernova remnants and pulsars in the search fields of our test sample. We present the possibilities for these object types to flare up visually, give a global overview on their distribution and discuss the objects in our search fields individually. To summarise our results, we provide a table of the most likely identifications of the historical sightings in our test sample and outline our method in order to apply it to further historical records in future works. Highlights of our results include a re-interpretation of two separate sightings as one supernova observation from May 667 to June 668 CE, the remnant of which could possibly be SNR G160.9+02.6.
    [Show full text]