The Chandra 3C Snapshot Survey

Total Page:16

File Type:pdf, Size:1020Kb

The Chandra 3C Snapshot Survey TheThe ChandraChandra 3C3C SnapshotSnapshot Survey:Survey: TheThe StoryStory SoSo FarFar AlessandroAlessandro PaggiPaggi1,2 F. Massaro1,2,3,4, D. Axon5,6, B. Balmaverde1, S. A. Baum7,8, S. Bianchi9, A. Bonafede10,11,12, G. Brunetti10, A. Capetti1, C. C. Cheung13, M. Chiaberge14,15, G. Cusumano16, C. J. Donzelli17,18, W. R. Forman19, R. Gilli20, G. Giovannini10,11, P. Grandi20, M. J. Hardcastle21, D. E. Harris19, P. Kharb22, R. P. Kraft19, J. Kuraszkiewicz19, V. La Parola16, E. Liuzzo10, L. Lovisari19, F. D. Macchetto14, K.-H. Mack10, J. P. Madrid23, A. Maselli16, V. Missaglia1,19,24, R. Morganti25,26, C. P. O’Dea7,27, M. Orienti10, R. Paladino10, M. A. Prieto28,29, F. Ricci30, G. Risaliti31,32, A. Rodríguez-Ardila33,34, M. Schirmer35,36, A. Siemiginowska19, W. Sparks14, C. Stuardi10,11, E. Torresi20, G. R. Tremblay19 & B. J. Wilkes19 1INAF-Osservatorio Astrofisico di Torino – Italy; 2Istituto Nazionale di Fisica Nucleare, Sezione di Torino – Italy; 3Dipartimento di Fisica, Università degli Studi di Torino – Italy; 4Consorzio Interuniversitario per la Fisica Spaziale (CIFS) – Italy; 5Department of Physics, Rochester Institute of Technology, Carlson Center for Imaging Science – USA; 6School of Physics and Astronomy, Rochester Institute of Technology – USA; 7Department of Physics and Astronomy, University of Manitoba – Canada; 8Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology – USA; 9Dipartimento di Fisica, Università degli Studi Roma Tre – Italy; 10Istituto di Radioastronomia - INAF Bologna – Italy; 11Department of Physics and Astronomy, University of Bologna – Italy; 12Hamburger Sternwarte, Universitat Hamburg – Germany; 13Space Science Division, Naval Research Laboratory – USA; 14Space Telescope Science Institute – USA; 15Center for Astrophysical Sciences, Johns Hopkins University – USA; 16INAF-IASF Palermo – Italy; 17Instituto de Astronomía Teórica y Experimental IATE, CONICET - Observatorio Astronómico, Universidad Nacional de Córdoba – Argentina; 18Observatorio Astronomico, Universidad Nacional de Córdoba – Argentina; 19Center for Astrophysics, Harvard & Smithsonian – USA; 20INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna- Italy; 21Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire – UK; 22National Centre for Radio Astrophysics - Tata Institute of Fundamental Research – India; 23Australia Telescope National Facility, CSIRO Astronomy and Space Science – Australia; 24Dipartimento di Fisica “Ettore Pancini”, Università di Napoli Federico II – Italy; 25ASTRON, The Netherlands Institute for Radio Astronomy - The Netherlands; 26Kapteyn Astronomical Institute, University of Groningen - The Netherlands; 27School of Physics & Astronomy, Rochester Institute of Technology – USA; 28Instituto de Astrofísica de Canarias (IAC) – Spain; 29Universidad de La Laguna (ULL), Dpto. Astrofísica – Spain; 30Instituto de Astrofísica and Centro de Astroingeniería, Facultad de Física, Pontificia Universidad Católica de Chile – Chile; 31Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze – Italy; 32INAF - Osservatorio Astrofisico di Arcetri – Italy; 33Laboratório Nacional de Astrofísica/MCTIC – Brazil; 34Divisao deAstrofísica, Instituto Nacional de Pesquisas Espaciais – Brazil; 35Gemini Observatory, Southern Operations Center – Chile; 36Max-Planck-Institut für Astronomie - Germany ASTROPHYSICSASTROPHYSICS OFOF HOTHOT PLASMAPLASMA ININ EXTENDEDEXTENDED X-RAYX-RAY SOURCESSOURCES 6/12-14/20196/12-14/2019 X-Rays from Radio Galaxies X-ray emission associated with radio sources ~ 100s kpc scale (e.g., Fabian et al. 2003; Scharf et al. 2003; Erlund et al. 2006) ● SSC (Kataoka & Stawarz 2005) dominates in radio hot spots (Hardcastle et al. 2004) ● IC/CMB (Harris, & Grindlay 1979; 3C 274.1 (Ineson et al. 2013) Schwartz et al. 2000), X-ray structures 3C 6.1 (Hardcastle et al. 2004) generally aligned with radio axis (Celotti & Fabian 2004; Ghisellini et al. 2015; Wu et al. 2017) ● IC form far-IR photons from galactic starburst on ~100-200 kpc scale (Smail et al. 2009, 2012) ● Thermal emission from the hot gas of the IGM (Ineson et al. 2013, 2015; Worrall 2002; Crawford & Fabian 2003). 3C 432 (Erlund et al. 2006) A. PAGGI ASTROPHYSICS OF HOT PLASMA IN EXTENDED X-RAY SOURCES 6/12-14/2019 3CR Catalog The last revised version of the Third Cambridge Catalog (3CR) of extragalactic radio sources (Spinrad et al. 1985) is one of the best-studied samples of radio-loud AGNs ● 178 MHz radio flux-limited sample ● 9 Jy cutoff ● 0.0005<z<2.5 ● Northern hemisphere <-5° in decl. ● 298 extragalactic radio sources (158 FR II, 39 FR I radio galaxies, 57 quasars, 2 Seyferts, 2 BL Lacs, 20 unidentified, and 20 unclassified) Unbiased with respect to viewing angle, X-ray properties of the sources. It spans a wide range of redshift and radio power It has a vast multifrequency database of ground and spaced-based observations (radio: NRAO VLA, NVAS, MERLIN; infrared: Spitzer, Dicken et al. 2014; Ramírez et al. 2014; Ghaffari et al. 2017; optical: HST; Privon et al. 2008; Tremblay et al. 2009) It is an ideal sample to investigate the properties of active galaxies. A. PAGGI ASTROPHYSICS OF HOT PLASMA IN EXTENDED X-RAY SOURCES 6/12-14/2019 Chandra Snapshot Program Before 2007, only ~ 60% of 3CR extragalactic sources were observed by Chandra and ~ 35% by XMM-Newton. To extend the wavelength coverage of the 3CR catalog, we started an X- ray snapshot survey with Chandra → angular resolution comparable to optical and radio frequencies. Main goals: ● Study the X-ray emission arising from jet knots, hotspots, and nuclei of radio sources ● Search for observational evidence of AGN interactions with the hot gas in galaxies, groups, and clusters of galaxies (feedback) (Fabian 2012; Kraft et al. 2012) ● Search for galaxy clusters via the presence of extended X-ray emission unrelated to the radio structures (Belsole et al. 2007; Ineson et al. 2013; Mannering et al. 2013) A. PAGGI ASTROPHYSICS OF HOT PLASMA IN EXTENDED X-RAY SOURCES 6/12-14/2019 The Story So Far... During Chandra AO9, AO12, AO13, AO15, AO17 data acquired for 113 sources (z<1.5) with at least a snapshot (<20 ks exposure) Chandra observation: ● Flux maps in three energy bands (0.5-1 keV, 1-2 keV, and 2-7 keV) ● Basic parameters (net counts, extension ratios, fluxes, and luminosity) for the nuclei and other radio structures detected (i.e., knots, hotspots, lobes) ● X-ray spectral analysis of the brightest nuclei (Massaro et al. 2010, 2012, 2013, 2018; Stuardi et al. 2018) A. PAGGI ASTROPHYSICS OF HOT PLASMA IN EXTENDED X-RAY SOURCES 6/12-14/2019 Extended Emission Extended X-ray emission found in 18 sources A. PAGGI ASTROPHYSICS OF HOT PLASMA IN EXTENDED X-RAY SOURCES 6/12-14/2019 Hotspots 24 hotspots 3C 105 A. PAGGI ASTROPHYSICS OF HOT PLASMA IN EXTENDED X-RAY SOURCES 6/12-14/2019 Lobe Emission 13 lobes 3C 105 A. PAGGI ASTROPHYSICS OF HOT PLASMA IN EXTENDED X-RAY SOURCES 6/12-14/2019 The Power of the Snapshot 3C 459 (Maselli et al. 2018) ● Proprietary rights are immediately waived: legacy program for the whole astronomical community ● X–ray extended emission 3C 89 (Dasadia et al. 2016) around other nuclei (Balmaverde et al. 2012) ● Statistical analyses of extragalactic jets (Massaro et 3C 305 (Hardcastle et al. 2010) al. 2011) ● Follow-up observations (3C 171, 3C 305, 3C 89, 3C 459) 3C 171 (Hardcastle et al. 2010) A. PAGGI ASTROPHYSICS OF HOT PLASMA IN EXTENDED X-RAY SOURCES 6/12-14/2019 3C 17 Knots IC/CMB (Massaro et al. 2009). Gemini data: 3C 17 is part of a galaxy cluster at a redshift of z=0.220 with 12 members (Madrid et al. 2018) . A. PAGGI ASTROPHYSICS OF HOT PLASMA IN EXTENDED X-RAY SOURCES 6/12-14/2019 3C 305 CSS with X-ray radiation associated with the [O iii] emission: radio jet interactions with the circumnuclear environment (collisional ionization) or by emission from photoionized gas (Massaro et al. 2009). A. PAGGI ASTROPHYSICS OF HOT PLASMA IN EXTENDED X-RAY SOURCES 6/12-14/2019 3C 196.1 Inner cavity: past merger event (sloshing). Outer cavity: buoyantly rising bubble originating from AGN outburst (Ricci et al. 2018). A. PAGGI ASTROPHYSICS OF HOT PLASMA IN EXTENDED X-RAY SOURCES 6/12-14/2019 3C 196.1 XMM-Newton AO 18 ~ 100 ks A. PAGGI ASTROPHYSICS OF HOT PLASMA IN EXTENDED X-RAY SOURCES 6/12-14/2019 3C 187 A. PAGGI ASTROPHYSICS OF HOT PLASMA IN EXTENDED X-RAY SOURCES 6/12-14/2019 3C 187 Extended cross-cone emission, lobe emission compatible with IC/CMB (but low statistic, Paggi et al. in prep). A. PAGGI ASTROPHYSICS OF HOT PLASMA IN EXTENDED X-RAY SOURCES 6/12-14/2019 Main Results ● During AO9, AO12, AO13, AO15, AO17 (and AO20) the 3CR Chandra snapshot survey allowed us to observe 113 targets (z<1.5) ● Flux maps, net counts, fluxes, and luminosity for nuclei and other radio structures, X-ray spectral analysis of the brightest nuclei ● X–ray emission has been detected for all but two radio nuclei (3C 153 and 3C 319) ● We found extended X-ray emission in 18 sources, 11 jet knots, 13 lobes, 24 hotspots (marginal detections for other 9) ● Follow-up observations, detailed analysis for most interesting sources A. PAGGI ASTROPHYSICS OF HOT PLASMA IN EXTENDED X-RAY SOURCES 6/12-14/2019 Chandra Catalog Cool Target Cool-attitude targets for the Chandra mission: Bologna Sky Survey (B2CAT) at 408 MHz. A. PAGGI ASTROPHYSICS OF HOT PLASMA IN EXTENDED X-RAY SOURCES 6/12-14/2019 Unidentified 3CR Sources ● 25 unidentified source ● SWIFT XRT and UVOT 5 ks observations ● X-ray counterpart for 11 ● WISE counterparts for 9, with colors consistent with quasars ● No optical/UV counterpart (Maselli et al. 2016) ➔ High redshift quasars ➔ Highly obscured radio- loud active galaxies A. PAGGI ASTROPHYSICS OF HOT PLASMA IN EXTENDED X-RAY SOURCES 6/12-14/2019.
Recommended publications
  • Also Available in PDF
    University of Hawai‘i, Institute for Astronomy Publications in Calendar Year 2000 PUBLICATIONS Investigating the Link between Cometary and Interstellar Material. A&A, 353, 1101–1114 (2000) The following articles and books were published dur- ing calendar year 2000. The names of IfA authors Boehnhardt, H.; Hainaut, O.; Delahodde, C.; West, R.; are in boldface. For an html version of this list Meech, K.; Marsden, B. A Pencil-Beam Search for Dis- with links, go to http://www.ifa.hawaii.edu/publications/ tant TNOs at the ESO NTT. In Minor Bodies in the Outer 2000pubs.html. More recent publications are listed at Solar System, ed. A. Fitzsimmons, D. Jewitt, & R. M. http://www.ifa.hawaii.edu/publications/preprints/. West. ESO Astrophysics Symposia (Springer), 117–123 (2000) Barger, A. J.; Cowie, L. L.; Richards, E. A. Mapping the Evolution of High-Redshift Dusty Galaxies with Submil- Boesgaard, A. M. Review of Stellar Abundance Results from limeter Observations of a Radio-selected Sample. AJ, Large Telescopes. Proc. SPIE, 4005, 142–149 (2000) 119, 2092–2109 (2000) Boesgaard, A. M.; Stephens, A.; King, J. R.; Deliyannis, Barucci, M. A.; Romon, J.; Doressoundiram, A.; Tholen, C. P. Chemical Abundances in Globular Cluster Turn-Off D. J. Compositional Surface Diversity in the Trans-Nep- Stars from Keck/HIRES Observations. Proc. SPIE, 4005, tunian Objects. AJ, 120, 496–500 (2000) 274–284 (2000) Baudoz, P.; Mouillet, D.; Beuzit, J.-L.; Mekarnia, D.; Rab- Brandner, W.; Grebel, E. K.; Chu, Y.; Dottori, H.; Brandl, bia, Y.; Gay, J.; Schneider, J.-L. First Results of the B.; Richling, S.; Yorke, H.
    [Show full text]
  • The Applicability of Far-Infrared Fine-Structure Lines As Star Formation
    A&A 568, A62 (2014) Astronomy DOI: 10.1051/0004-6361/201322489 & c ESO 2014 Astrophysics The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types? Ilse De Looze1, Diane Cormier2, Vianney Lebouteiller3, Suzanne Madden3, Maarten Baes1, George J. Bendo4, Médéric Boquien5, Alessandro Boselli6, David L. Clements7, Luca Cortese8;9, Asantha Cooray10;11, Maud Galametz8, Frédéric Galliano3, Javier Graciá-Carpio12, Kate Isaak13, Oskar Ł. Karczewski14, Tara J. Parkin15, Eric W. Pellegrini16, Aurélie Rémy-Ruyer3, Luigi Spinoglio17, Matthew W. L. Smith18, and Eckhard Sturm12 1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium e-mail: [email protected] 2 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle Str. 2, 69120 Heidelberg, Germany 3 Laboratoire AIM, CEA, Université Paris VII, IRFU/Service d0Astrophysique, Bat. 709, 91191 Gif-sur-Yvette, France 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 6 Laboratoire d0Astrophysique de Marseille − LAM, Université Aix-Marseille & CNRS, UMR7326, 38 rue F. Joliot-Curie, 13388 Marseille CEDEX 13, France 7 Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK 8 European Southern Observatory, Karl
    [Show full text]
  • Jet-Powered Molecular Hydrogen Emission from Radio Galaxies
    JET-POWERED MOLECULAR HYDROGEN EMISSION FROM RADIO GALAXIES The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Ogle, Patrick, Francois Boulanger, Pierre Guillard, Daniel A. Evans, Robert Antonucci, P. N. Appleton, Nicole Nesvadba, and Christian Leipski. “JET-POWERED MOLECULAR HYDROGEN EMISSION FROM RADIO GALAXIES.” The Astrophysical Journal 724, no. 2 (November 11, 2010): 1193–1217. © 2010 The American Astronomical Society As Published http://dx.doi.org/10.1088/0004-637x/724/2/1193 Publisher IOP Publishing Version Final published version Citable link http://hdl.handle.net/1721.1/95698 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal, 724:1193–1217, 2010 December 1 doi:10.1088/0004-637X/724/2/1193 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. JET-POWERED MOLECULAR HYDROGEN EMISSION FROM RADIO GALAXIES Patrick Ogle1, Francois Boulanger2, Pierre Guillard1, Daniel A. Evans3, Robert Antonucci4, P. N. Appleton5, Nicole Nesvadba2, and Christian Leipski6 1 Spitzer Science Center, California Institute of Technology, Mail Code 220-6, Pasadena, CA 91125, USA; [email protected] 2 Institut d’Astrophysique Spatiale, Universite Paris-Sud 11, Bat. 121, 91405 Orsay Cedex, France 3 MIT Center for Space Research, Cambridge, MA 02139, USA 4 Physics Department, University of California, Santa Barbara, CA 93106, USA 5 NASA Herschel Science Center, California Institute of Technology, Mail Code 100-22, Pasadena, CA 91125, USA 6 Max-Planck Institut fur¨ Astronomie (MPIA), Konigstuhl¨ 17, D-69117 Heidelberg, Germany Received 2009 November 10; accepted 2010 September 22; published 2010 November 11 ABSTRACT H2 pure-rotational emission lines are detected from warm (100–1500 K) molecular gas in 17/55 (31% of) radio galaxies at redshift z<0.22 observed with the Spitzer IR Spectrograph.
    [Show full text]
  • Not Yet Imagined: a Study of Hubble Space Telescope Operations
    NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR NOT YET IMAGINED NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR National Aeronautics and Space Administration Office of Communications NASA History Division Washington, DC 20546 NASA SP-2020-4237 Library of Congress Cataloging-in-Publication Data Names: Gainor, Christopher, author. | United States. NASA History Program Office, publisher. Title: Not Yet Imagined : A study of Hubble Space Telescope Operations / Christopher Gainor. Description: Washington, DC: National Aeronautics and Space Administration, Office of Communications, NASA History Division, [2020] | Series: NASA history series ; sp-2020-4237 | Includes bibliographical references and index. | Summary: “Dr. Christopher Gainor’s Not Yet Imagined documents the history of NASA’s Hubble Space Telescope (HST) from launch in 1990 through 2020. This is considered a follow-on book to Robert W. Smith’s The Space Telescope: A Study of NASA, Science, Technology, and Politics, which recorded the development history of HST. Dr. Gainor’s book will be suitable for a general audience, while also being scholarly. Highly visible interactions among the general public, astronomers, engineers, govern- ment officials, and members of Congress about HST’s servicing missions by Space Shuttle crews is a central theme of this history book. Beyond the glare of public attention, the evolution of HST becoming a model of supranational cooperation amongst scientists is a second central theme. Third, the decision-making behind the changes in Hubble’s instrument packages on servicing missions is chronicled, along with HST’s contributions to our knowledge about our solar system, our galaxy, and our universe.
    [Show full text]
  • Science with the Square Kilometer Array
    Science with the Square Kilometer Array edited by: A.R. Taylor and R. Braun March 1999 Cover image: The Hubble Deep Field Courtesy of R. Williams and the HDF Team (ST ScI) and NASA. Contents Executive Summary 6 1 Introduction 10 1.1 ANextGenerationRadioObservatory . 10 1.2 The Square Kilometre Array Concept . 12 1.3 Instrumental Sensitivity . 15 1.4 Contributors................................ 18 2 Formation and Evolution of Galaxies 20 2.1 TheDawnofGalaxies .......................... 20 2.1.1 21-cm Emission and Absorption Mechanisms . 22 2.1.2 PreheatingtheIGM ....................... 24 2.1.3 Scenarios: SKA Imaging of Cosmological H I .......... 25 2.2 LargeScale Structure and GalaxyEvolution . ... 28 2.2.1 A Deep SKA H I Pencil Beam Survey . 29 2.2.2 Large scale structure studies from a shallow, wide area survey 31 2.2.3 The Lyα forest seen in the 21-cm H I line............ 32 2.2.4 HighRedshiftCO......................... 33 2.3 DeepContinuumFields. .. .. 38 2.3.1 ExtragalacticRadioSources . 38 2.3.2 The SubmicroJansky Sky . 40 2.4 Probing Dark Matter with Gravitational Lensing . .... 42 2.5 ActivityinGalacticNuclei . 46 2.5.1 The SKA and Active Galactic Nuclei . 47 2.5.2 Sensitivity of the SKA in VLBI Arrays . 52 2.6 Circum-nuclearMegaMasers . 53 2.6.1 H2Omegamasers ......................... 54 2.6.2 OHMegamasers.......................... 55 2.6.3 FormaldehydeMegamasers. 55 2.6.4 The Impact of the SKA on Megamaser Studies . 56 2.7 TheStarburstPhenomenon . 57 2.7.1 TheimportanceofStarbursts . 58 2.7.2 CurrentRadioStudies . 58 2.7.3 The Potential of SKA for Starburst Studies . 61 3 4 CONTENTS 2.8 InterstellarProcesses .
    [Show full text]
  • The Universe Contents 3 HD 149026 B
    History . 64 Antarctica . 136 Utopia Planitia . 209 Umbriel . 286 Comets . 338 In Popular Culture . 66 Great Barrier Reef . 138 Vastitas Borealis . 210 Oberon . 287 Borrelly . 340 The Amazon Rainforest . 140 Titania . 288 C/1861 G1 Thatcher . 341 Universe Mercury . 68 Ngorongoro Conservation Jupiter . 212 Shepherd Moons . 289 Churyamov- Orientation . 72 Area . 142 Orientation . 216 Gerasimenko . 342 Contents Magnetosphere . 73 Great Wall of China . 144 Atmosphere . .217 Neptune . 290 Hale-Bopp . 343 History . 74 History . 218 Orientation . 294 y Halle . 344 BepiColombo Mission . 76 The Moon . 146 Great Red Spot . 222 Magnetosphere . 295 Hartley 2 . 345 In Popular Culture . 77 Orientation . 150 Ring System . 224 History . 296 ONIS . 346 Caloris Planitia . 79 History . 152 Surface . 225 In Popular Culture . 299 ’Oumuamua . 347 In Popular Culture . 156 Shoemaker-Levy 9 . 348 Foreword . 6 Pantheon Fossae . 80 Clouds . 226 Surface/Atmosphere 301 Raditladi Basin . 81 Apollo 11 . 158 Oceans . 227 s Ring . 302 Swift-Tuttle . 349 Orbital Gateway . 160 Tempel 1 . 350 Introduction to the Rachmaninoff Crater . 82 Magnetosphere . 228 Proteus . 303 Universe . 8 Caloris Montes . 83 Lunar Eclipses . .161 Juno Mission . 230 Triton . 304 Tempel-Tuttle . 351 Scale of the Universe . 10 Sea of Tranquility . 163 Io . 232 Nereid . 306 Wild 2 . 352 Modern Observing Venus . 84 South Pole-Aitken Europa . 234 Other Moons . 308 Crater . 164 Methods . .12 Orientation . 88 Ganymede . 236 Oort Cloud . 353 Copernicus Crater . 165 Today’s Telescopes . 14. Atmosphere . 90 Callisto . 238 Non-Planetary Solar System Montes Apenninus . 166 How to Use This Book 16 History . 91 Objects . 310 Exoplanets . 354 Oceanus Procellarum .167 Naming Conventions . 18 In Popular Culture .
    [Show full text]
  • Evolution of Galactic Star Formation in Galaxy Clusters and Post-Starburst Galaxies
    Evolution of galactic star formation in galaxy clusters and post-starburst galaxies Marcel Lotz M¨unchen2020 Evolution of galactic star formation in galaxy clusters and post-starburst galaxies Marcel Lotz Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Marcel Lotz aus Frankfurt am Main M¨unchen, den 16. November 2020 Erstgutachter: Prof. Dr. Andreas Burkert Zweitgutachter: Prof. Dr. Til Birnstiel Tag der m¨undlichen Pr¨ufung:8. Januar 2021 Contents Zusammenfassung viii 1 Introduction 1 1.1 A brief history of astronomy . .1 1.2 Cosmology . .5 1.2.1 The Cosmological Principle and our expanding Universe . .6 1.2.2 Dark matter, dark energy and the ΛCDM cosmological model . .9 1.2.3 Chronology of the Universe . 13 1.3 Galaxy properties . 16 1.3.1 Morphology . 17 1.3.2 Colour . 20 1.4 Galaxy evolution . 22 1.4.1 Galaxy formation . 22 1.4.2 Star formation and feedback . 24 1.4.3 Mergers . 25 1.4.4 Galaxy clusters and environmental quenching . 26 1.4.5 Post-starburst galaxies . 29 2 State-of-the-art simulations 33 2.1 Brief introduction to numerical simulations . 33 2.1.1 Treatment of the gravitational force . 34 2.1.2 Varying hydrodynamic approaches . 35 2.2 Magneticum Pathfinder simulations . 39 2.2.1 Smoothed particle hydrodynamics . 39 2.2.2 Details of the Magneticum Pathfinder simulations . 40 3 Gone after one orbit: How cluster environments quench galaxies 45 3.1 Data sample . 46 3.1.1 Observational comparison with CLASH . 46 3.2 Velocity-anisotropy Profiles .
    [Show full text]
  • Eric Agol – Bibliography
    Eric Agol | Curriculum Vitae Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195-1580 Ó (206) 543-7106 • Q [email protected] • faculty.washington.edu/agol/ Professor of Astronomy, Adjunct Professor of Physics. Previous Employment University of Washington Seattle + Professor 2017 – present Department of Astronomy; Adjunct in Physics. University of Washington Seattle + Associate Professor 2009 –2017 University of Washington Seattle + Assistant Professor 2003 – 2009 Caltech Pasadena + Chandra Fellow 2000 – 2003 Johns Hopkins University Baltimore + Postdoctoral Fellow 1997 – 2000 Education Academic Qualifications................................................... ........................................... University of California Santa Barbara + PhD, Department of Physics, Astrophysics 1992–1997 University of California Berkeley + BA, Physics and Mathematics 1988–1992 Dissertation................................................... ................................................... ......... + ‘The Effects of Magnetic Fields, Absorption, and Relativity on the Polarization of Accretion Disks around Supermassive Black Holes.’ Advisor: Omer Blaes. Selected Research Accomplishments: + Created grid of models for Quasars (Hubeny, Agol et al. 2000; Agol 1997). + Computed optically-thin general-relativistic ray-tracing model, and proposed experiment for imaging the shadow of the Galactic Center black hole (Falcke, Melia & Agol 2000), which culminated in the Event Horizon Telescope. + Derived fast, analytic transit model for
    [Show full text]
  • Garth Illingworth Publications to June 2020
    Garth Illingworth Publications to June 2020 Garth D. Illingworth has a total of 624 publications of which 316 are refereed. Total citations 41420 with an h-index of 113 (as of June 2020). 624. The GREATS H β + [O III] luminosity function and galaxy properties at z ∼ 8: walking the way of JWST, De Barros, S., Oesch, P. A., Labbé, I., Stefanon, M., González, V., Smit, R., Bouwens, R. J., & Illingworth, G. D., (2019), Monthly Notices of the Royal Astronomical Society, 489, 2355. 623. The Hubble Legacy Field GOODS-S Photometric Catalog, Whitaker, K. E., Ashas, M., Illingworth, G., Magee, D., Leja, J., Oesch, P., van Dokkum, P., Mowla, L., Bouwens, R., Franx, M., Holden, B., Labbé, I., Rafelski, M., Teplitz, H., & Gonzalez, V., (2019), The Astrophysical Journal Supplement Series, 244, 16. 622. The Brightest z ≳ 8 Galaxies over the COSMOS UltraVISTA Field, Stefanon, M., Labbé, I., Bouwens, R. J., Oesch, P., Ashby, M. L. N., Caputi, K. I., Franx, M., Fynbo, J. P. U., Illingworth, G. D., Le Fèvre, O., Marchesini, D., McCracken, H. J., Milvang- Jensen, B., Muzzin, A., & van Dokkum, P., (2019), The Astrophysical Journal, 883, 99. 621. The Super Eight Galaxies: Properties of a Sample of Very Bright Galaxies at 7 < z < 8, Bridge, J. S., Holwerda, B. W., Stefanon, M., Bouwens, R. J., Oesch, P. A., Trenti, M., Bernard, S. R., Bradley, L. D., Illingworth, G. D., Kusmic, S., Magee, D., Morishita, T., Roberts-Borsani, G. W., Smit, R., & Steele, R. L., (2019), The Astrophysical Journal, 882, 42. 620. Newly Discovered Bright z∼ 9-10 Galaxies and Improved Constraints on Their Prevalence Using the Full CANDELS Area, Bouwens, R.
    [Show full text]
  • Celestron Nexstar Evolution Schmidt-Cassegrain Telescope Specifications
    Appendix A Troubleshooting Checklist Troubleshooting Steps for the SkyPortal Alignment If you are having difficulty with your SkyPortal system, please review these steps before calling for technical support: 1. Do you have a fully charged the battery in your mobile device (iPad, iPhone, Android device)? If Yes then proceed, if No, please charge your device’s bat- tery before moving forward. 2. Have you disabled the “Sleep” mode on your smart device? 3. Is the tripod relatively level? 4. When Locking the Altitude and Azimuth Axises, be sure they are securely tightened. You may want to try this with the mount off fi rst to see how much pressure is required to lock the axis. 5. Low voltage: Whenever the mount experiences low voltage you may have prob- lems. We strongly encourage all users to fully charge both the mount and smart device prior to the observing session. See step 1! 6. Have you properly aligned the StarPointer red-dot fi nder? 7. Are you using your lowest power, widest fi eld eyepiece for the alignment procedure? 8. Is the ambient temperature below 32 °F or above 95 °F? If so, take measures to protect your smart device from these cold or heat extremes. © Springer International Publishing Switzerland 2016 165 J.L. Chen, The NexStar Evolution and SkyPortal User’s Guide, The Patrick Moore Practical Astronomy Series, DOI 10.1007/978-3-319-32539-2 166 Appendix A 9. Are the alignment stars in different parts of the sky, and at least 10° apart. The Celestron SkyAlign process requires three alignment stars for accurate searches.
    [Show full text]
  • Beyond Earth a CHRONICLE of DEEP SPACE EXPLORATION, 1958–2016
    Beyond Earth A CHRONICLE OF DEEP SPACE EXPLORATION, 1958–2016 Asif A. Siddiqi Beyond Earth A CHRONICLE OF DEEP SPACE EXPLORATION, 1958–2016 by Asif A. Siddiqi NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Office of Communications NASA History Division Washington, DC 20546 NASA SP-2018-4041 Library of Congress Cataloging-in-Publication Data Names: Siddiqi, Asif A., 1966– author. | United States. NASA History Division, issuing body. | United States. NASA History Program Office, publisher. Title: Beyond Earth : a chronicle of deep space exploration, 1958–2016 / by Asif A. Siddiqi. Other titles: Deep space chronicle Description: Second edition. | Washington, DC : National Aeronautics and Space Administration, Office of Communications, NASA History Division, [2018] | Series: NASA SP ; 2018-4041 | Series: The NASA history series | Includes bibliographical references and index. Identifiers: LCCN 2017058675 (print) | LCCN 2017059404 (ebook) | ISBN 9781626830424 | ISBN 9781626830431 | ISBN 9781626830431?q(paperback) Subjects: LCSH: Space flight—History. | Planets—Exploration—History. Classification: LCC TL790 (ebook) | LCC TL790 .S53 2018 (print) | DDC 629.43/509—dc23 | SUDOC NAS 1.21:2018-4041 LC record available at https://lccn.loc.gov/2017058675 Original Cover Artwork provided by Ariel Waldman The artwork titled Spaceprob.es is a companion piece to the Web site that catalogs the active human-made machines that freckle our solar system. Each space probe’s silhouette has been paired with its distance from Earth via the Deep Space Network or its last known coordinates. This publication is available as a free download at http://www.nasa.gov/ebooks. ISBN 978-1-62683-043-1 90000 9 781626 830431 For my beloved father Dr.
    [Show full text]
  • Counterparts of Far Eastern Guest Stars: Novae, Supernovae, Or Something Else?
    MNRAS 000,1{21 (2020) Preprint 12 June 2020 Compiled using MNRAS LATEX style file v3.0 Counterparts of Far Eastern Guest Stars: Novae, supernovae, or something else? Hoffmann, Susanne M.,1? Vogt, Nikolaus,2 1Physikalisch-Astronomische Fakult¨at, Friedrich-Schiller-Universit¨at Jena, Germany 2Instituto de F´ısica y Astronom´ıa, Universidad de Valpara´ıso, Chile Accepted 2020 May 28. Received 2020 May 20; in original form 2020 April 28 ABSTRACT Historical observations of transients are crucial for studies of their long-term evolution. This paper forms part of a series of papers in which we develop methods for the analysis of ancient data of transient events and their usability in modern science. Prior research on this subject by other authors has focused on looking for historical supernovae and our earlier work focused on cataclysmic binaries as classical novae. In this study we consider planetary nebulae, symbiotic stars, supernova remnants and pulsars in the search fields of our test sample. We present the possibilities for these object types to flare up visually, give a global overview on their distribution and discuss the objects in our search fields individually. To summarise our results, we provide a table of the most likely identifications of the historical sightings in our test sample and outline our method in order to apply it to further historical records in future works. Highlights of our results include a re-interpretation of two separate sightings as one supernova observation from May 667 to June 668 CE, the remnant of which could possibly be SNR G160.9+02.6.
    [Show full text]