Insect Study Merit Badge Pamphlet 35911
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deathwatch Beetle DIAGNOSTIC MORPHOLOGY Xestobium Rufovillosum (De Adults
Deathwatch Beetle DIAGNOSTIC MORPHOLOGY Xestobium rufovillosum (De Adults: • Dark grayish-brown to shiny- reddish brown • Cylindrical body, pulls in legs and plays dead when disturbed • 4 - 6 mm long GENERAL INFORMATION The death watch beetle (family Anobiidae) a wood-boring beetle is Immature Stage: often mistaken for the common • Strongly hook-shaped larva furniture beetle, but there are no • Creamy white color with golden hairs • Actively mobile until premium food source is found longitudinal rows of pits on the wing cases like those on the furniture beetle. Death watch beetles produce a tapping or ticking sound to attract LIFE CYCLE mates by bumping its head or jaws against the tunnel walls. Heard in the Adults lay small clusters of 3 – 4 eggs in crevices, quiet night, the death watch beetle is small openings, or pores in unfinished wood. Larvae are creamy-white, hook-shaped, named for the nightlong vigil kept have six legs, and are actively mobile as they beside the dying or dead, and by search for the best food source. The larval stage extension has earned the superstition varies from one to 12 years or more if the that hearing or seeing the beetle conditions are favorable. Once mature, the larvae burrow just underneath the wood surface and forecasts death. enlarge a hole for a pupal chamber. The adult beetle gnaws through the wood as it emerges, and SIGNS OF INFESTATION have yellowish scale-like hairs in small patches that rub off to reveal a more reddish color. The larvae of the death watch beetle are xylophagous, and as they consume wood they CONTROL & TREATMENT produce small bun-like pellets of frass, which distinguishes them from other wood borers - no Prevention includes avoiding the introduction of other boring beetle produce pelletized frass. -
Sword of Destiny
Sword of Destiny Andrzej Sapkowski Translated by David French orbitbooks.net orbitshortfiction.com Begin Reading Meet the Author A Preview of Blood of Elves A Preview of A Dance of Cloaks About Orbit Short Fiction Orbit Newsletter Table of Contents Copyright Page In accordance with the U.S. Copyright Act of 1976, the scanning, uploading, and electronic sharing of any part of this book without the permission of the publisher constitute unlawful piracy and theft of the author’s intellectual property. If you would like to use material from the book (other than for review purposes), prior written permission must be obtained by contacting the publisher at [email protected]. Thank you for your support of the author’s rights. THE BOUNDS OF REASON I ‘He won’t get out of there, I’m telling you,’ the pockmarked man said, shaking his head with conviction. ‘It’s been an hour and a quarter since he went down. That’s the end of ’im.’ The townspeople, crammed among the ruins, stared in silence at the black hole gaping in the debris, at the rubble-strewn opening. A fat man in a yellow jerkin shifted from one foot to the other, cleared his throat and took off his crumpled biretta. ‘Let’s wait a little longer,’ he said, wiping the sweat from his thinning eyebrows. ‘For what?’ the spotty-faced man snarled. ‘Have you forgotten, Alderman, that a basilisk is lurking in that there dungeon? No one who goes in there comes out. Haven’t enough people perished? Why wait?’ ‘But we struck a deal,’ the fat man muttered hesitantly. -
Symbiosis Between Yeasts and Insects
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Epsilon Open Archive Symbiosis between yeasts and insects Francisco Gonzalez Introductory paper at the Faculty of Landscape Architecture, Horticulture and Crop Production Science 2014:3 Swedish University of Agricultural Sciences Alnarp, December 2014 1 Symbiosis between yeasts and insects Francisco Gonzalez Introductory paper at the Faculty of Landscape Architecture, Horticulture and Crop Production Science 2014:3 Swedish University of Agricultural Sciences Alnarp, December 2014 Online Publication: http://pub.epsilon.slu.se/ 2 Summary Mutualistic relationships between insects and microorganisms have been widely described for bacterial symbionts associated with sap feeding insects and fungi associated with bark beetles. Recently, the importance and widespread distribution of mutualistic yeasts in plant-insect interactions has been demonstrated. Several examples with Drosophila melanogaster among other insects have shown the ability of the insect to survive in a diet based on yeast consumption only. Moreover, yeasts have shown the ability of suppressing pathogens that might hamper the development of the insects. From the point of view of the yeasts, the main benefit of the mutualism is the facilitation of processes such as outbreeding and spreading offered by contact with insects. Understanding the functions and key elements in yeast-insect interactions could lead to the development of better pest management strategies, for example by exploiting the attraction of insects to yeasts to lure them into entomopathogenic viruses. In this review, I present an overview of the current knowledge in yeast- insect interactions, highlighting what has been studied to date and what research gaps remain to be addressed. -
Integrated Pest Management IPM
Integrated Pest Management IPM Ellen Carrlee [email protected] Conservator, Alaska State Museum Division of Libraries, Archives and Museums 1. Prevention IPM elements • Housekeeping • Sealing ingress • Removing attractants • Isolation, quarantine, or pre-emptive freezing 2. Monitoring • Blunder traps • Recognizing signs • Identifying pests • Staff training and record keeping 3. Response • Freezing • Traps http://museums.alaska.gov/documents/bulletin_docs/ bulletin_29.pdf Prevention • Housekeeping • Food and drink in controlled areas • Sealing ingress • Removing attractants • Isolation, quarantine, or pre-emptive freezing • Cats and dogs are incompatible with preservation environment Monitoring • catch insects before they can be found visually • catch a wide range of species • monitor areas which are difficult to inspect • trap insects for identification and count • indicate an increase in insect numbers • Indicate environmental concerns • highlight any failure of control treatment http://www.insectslimited.com/ IL-1600-100 box of 100 (300) $67 Clue to environmental conditions Response • Freezing • Chemicals • Traps • Anoxic • Heat • Lowering RH BREAK FOR QUESTIONS??? http://museums.alaska.gov/documents/bulletin_ docs/bulletin_29.pdf …more slides of heritage eaters ahead… BOOKLOUSE (Psocids) • feed upon microscopic molds, starch • found in books and book bindings, storage boxes, paper goods • usually means that mold is present or that the RH is too high SILVERFISH (Lepisma saccharina) • pests of paper and paper products as well as textiles. They are particularly fond of paper with a glaze (starch) on it. They will also eat the glue backing in wallpaper. They prefer textiles that are cotton to woolens or silk. CIGARETTE BEETLE (Lasioderma serricorne) • serious pest of dried plant material. • can also cause serious damage to books. -
Biological Infestations Page
Chapter 5: Biological Infestations Page A. Overview ........................................................................................................................... 5:1 What information will I find in this chapter? ....................................................................... 5:1 What is a museum pest? ................................................................................................... 5:1 What conditions support museum pest infestations? ....................................................... 5:2 B. Responding to Infestations ............................................................................................ 5:2 What should I do if I find live pests or signs of pests in or around museum collections? .. 5:2 What should I do after isolating the infested object? ......................................................... 5:3 What should I do after all infested objects have been removed from the collections area? ................................................................................................ 5:5 What treatments can I use to stop an infestation? ............................................................ 5:5 C. Integrated Pest Management (IPM) ................................................................................ 5:8 What is IPM? ..................................................................................................................... 5:9 Why should I use IPM? ..................................................................................................... -
RHYNCHOPHORINAE of SOUTHEASTERN POLYNESIA1 2 (Coleoptera : Curculionidae)
Pacific Insects 10 (1): 47-77 10 May 1968 RHYNCHOPHORINAE OF SOUTHEASTERN POLYNESIA1 2 (Coleoptera : Curculionidae) By Elwood C. Zimmerman BISHOP MUSEUM, HONOLULU Abstract: Ten species of Rhynchophorinae are recorded from southeastern Polynesia, including two new species of Dryophthorus from Rapa. Excepting the latter, all the spe cies have been introduced into the area and most are of economic importance. Keys to adults and larvae, notes on biologies, new distributional data and illustrations are pre sented. This is a combined Pacific Entomological Survey (1928-1933) and Mangarevan Expedi tion (1934) report. I had hoped to publish the account soon after my return from the 1934 expedition to southeastern Polynesia, but its preparation has been long delayed be cause of my pre-occupation with other duties. With the exception of two new endemic species of Dryophthorus, described herein, all of the Rhynchophorinae found in southeastern Polynesia (Polynesia south of Hawaii and east of Samoa; see fig. 1) have been introduced through the agencies of man. The most easterly locality where endemic typical rhynchophorids are known to occur in the mid- Pacific is Samoa where there are endemic species of Diathetes. (I consider the Dryoph- thorini and certain other groups to be atypical Rhynchophorinae). West of Samoa the subfamily becomes increasingly rich and diversified. There are multitudes of genera and species from Papua to India, and it is in the Indo-Pacific where the subfamily is most abundant. Figure 2 demonstrates the comparative faunistic developments of the typical rhynchophorids. I am indebted to the British Museum (Natural History) for allowing me extensive use of the unsurpassed facilities of the Entomology Department and libraries and to the Mu seum of Comparative Zoology, Harvard University, for use of the library. -
Wood Destroying Pest Control
PESTICIDE APPLICATION TRAINING Category 7A Wood Destroying Pest Control K-State Research and Extension Manhattan, Kansas 2 Table of Contents Introduction 4 Biology of Termites 5 Colony Structure Colony Formation Termite Identification Termite Detection Other Wood Destroying Organisms 10 Drywood termites Powderpost beetles Longhorned beetles Carpenter ants Carpenter bees Wood decay fungi Key to insect damage of wood Chemicals Applied for Termite Control 16 Pyrethroids Borates Organophosphates/Carbamates Insect Growth Regulators (IGR's) Biological Agents Structural and Treatment Considerations 19 Diagrams of basic structural members and forms Soil Treatment for Subterranean Termites 22 Preconstruction Treatment Post Construction Treatment Exterior Treatment Methods Interior Treatment Methods Treatment Guidelines Avoiding Contamination 29 Spill Control Special Tools and Techniques Special Treatments 33 Directions for Using this Crawl Spaces Sub-Slab Heating Ducts Manual Basements This is a self-teaching manual. At Veneers the end of each major section is a list Hollow block, tile, and rubble foundations of study questions to check your Wells, Cisterns, and other water sources understanding of the subject matter. Rigid foam insulation By each question in parenthesis is the Wood Treatment page number on which the answer to that question can be found. This will Baiting Technology 37 help you in checking your answers. Fumigation 40 These study questions are repre- sentative of the type which are on the Selection of Fumigants certification examination. By reading Types of Fumigation this manual and answering the study Precautions and Protective Equipment questions, you should be able to gain Respiratory Protection Devices sufficient knowledge to pass the Safe Use of Fumigants Kansas Commercial Pesticide Appli- cators Certification and Recertifica- tion examination. -
Biology Management Options Deathwatch Beetles (Anobiids)
Page: 1 (revision date:7/30/2015) Deathwatch beetles (Anobiids) Use Integrated Pest Management (IPM) for successful pest management. Biology Deathwatch beetles or anobiids are reddish to chocolate brown beetles ranging from 1/8 to 1/4 inch long. These beetles are rarely seen by people, but fresh piles of granular or gritty frass (insect excrement) on the outside of joists, mudsills, etc. are a sign of their presence. The larval form spends 4-5 years feeding on wood before emerging, mating and laying eggs. Their preferred host woods are softwoods including Douglas fir, but some species may be found occasionally on hardwoods. Anobiids can be found in crawl spaces, basements, attics, and other structures with a moisture content of around 14-17%. They can hollow out pier posts, joists, studs and sill plates of homes. They are problematic when crawl spaces are not vented properly and when vapor barriers are either missing or fall into a state of disrepair. They can cause huge economic losses to buildings if not eradicated. Management Options Non-Chemical Management ~ Infestations die out naturally. Determine if you have an active deathwatch beetle population by cleaning the area thoroughly and checking periodically for fresh accumulations of frass. ~ Be sure foundation vents are clear and well-placed around the foundation to ensure good cross ventilation. ~ Be certain an intact vapor barrier is in place. The soil beneath the home transpires water up into the substructure at a startling rate. ~ If the infestation is localized, replace the infested lumber. Be sure to consult with a professional before doing lumber replacement. -
The Checklist of Montana Dragonflies & Damselflies
About this Checklist deposit the eggs of further generations. This period River Bluet S c Emma’s Dancer NW,SW,SC o Dragonflies and Damselflies belong to the insect of adult activity is called the Flight Season. Following Enallagma anna M J J A S O N Argia emma M J J A S O N order Odonata, which is split into two suborders: each species is a phenogram [ M J J A S O N ], and Anisoptera – Dragonflies and Zygoptera highlighted in red are the months (May – Nov.) when Familiar Bluet NE,SE c – Damselflies. This checklist includes 53 species of one might expect to see that species during the year. Enallagma civile M J J A S O N Dragonflies (Anisoptera) Dragonflies and 29 species of Damselflies which are Tule Bluet S c known to occur within the state of Montana. Each Species Observed through Oct. 2009 Darners Aeshnidae Enallagma carunculatum M J J A S O N species is listed under its family name and genus. Mosaic Darners Aeshna Common and scientific names are current with those Alkali Bluet S u Damselflies (Zygoptera) Black-tipped Darner NW u set by the Checklist Committee of the Dragonfly Enallagma clausum M J J A S O N Society of the Americas. Aeshna tuberculifera M J J A S O N Broad-winged Damsels Calopterygidae Northern Bluet S c Sedge Darner NW,SW u Jewelwings Calopteryx Enallagma annexum M J J A S O N Distribution Aeshna juncea M J J A S O N To the right of each common name, one or more River Jewelwing NW,SW u Boreal Bluet S c of the following regions will be listed to show the Subarctic Darner NW,SW r Calopteryx aequabilis M J J A S O N Enallagma boreale M J J A S O N approximate distribution of the species within the Aeshna subarctica M J J A S O N Marsh Bluet S c state. -
Inventory of Odonata (Dragonflies and Damselflies) at Gateway National Recreation Area
National Park Service U.S. Department of the Interior Natural Resource Program Center Inventory of Odonata (Dragonflies and Damselflies) at Gateway National Recreation Area Natural Resource Technical Report NPS/NCBN/NRTR—2010/296 ON THE COVER Swamp Darner (Epiaeschna heros ) at Gateway National Recreation Area . Photograph by: Jackie Sones. Inventory of Odonata (Dragonflies and Damselflies) at Gateway National Recreation Area Natural Resource Technical Report NPS/NCBN/NRTR—2010/296 Nina Briggs, Eric G. Schneider, Jackie Sones, Kristen Puryear Rhode Island Natural History P.O. Box 1858 Kingston, Rhode Island 02881 March 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data. -
Appendix 5: Fauna Known to Occur on Fort Drum
Appendix 5: Fauna Known to Occur on Fort Drum LIST OF FAUNA KNOWN TO OCCUR ON FORT DRUM as of January 2017. Federally listed species are noted with FT (Federal Threatened) and FE (Federal Endangered); state listed species are noted with SSC (Species of Special Concern), ST (State Threatened, and SE (State Endangered); introduced species are noted with I (Introduced). INSECT SPECIES Except where otherwise noted all insect and invertebrate taxonomy based on (1) Arnett, R.H. 2000. American Insects: A Handbook of the Insects of North America North of Mexico, 2nd edition, CRC Press, 1024 pp; (2) Marshall, S.A. 2013. Insects: Their Natural History and Diversity, Firefly Books, Buffalo, NY, 732 pp.; (3) Bugguide.net, 2003-2017, http://www.bugguide.net/node/view/15740, Iowa State University. ORDER EPHEMEROPTERA--Mayflies Taxonomy based on (1) Peckarsky, B.L., P.R. Fraissinet, M.A. Penton, and D.J. Conklin Jr. 1990. Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press. 456 pp; (2) Merritt, R.W., K.W. Cummins, and M.B. Berg 2008. An Introduction to the Aquatic Insects of North America, 4th Edition. Kendall Hunt Publishing. 1158 pp. FAMILY LEPTOPHLEBIIDAE—Pronggillled Mayflies FAMILY BAETIDAE—Small Minnow Mayflies Habrophleboides sp. Acentrella sp. Habrophlebia sp. Acerpenna sp. Leptophlebia sp. Baetis sp. Paraleptophlebia sp. Callibaetis sp. Centroptilum sp. FAMILY CAENIDAE—Small Squaregilled Mayflies Diphetor sp. Brachycercus sp. Heterocloeon sp. Caenis sp. Paracloeodes sp. Plauditus sp. FAMILY EPHEMERELLIDAE—Spiny Crawler Procloeon sp. Mayflies Pseudocentroptiloides sp. Caurinella sp. Pseudocloeon sp. Drunela sp. Ephemerella sp. FAMILY METRETOPODIDAE—Cleftfooted Minnow Eurylophella sp. Mayflies Serratella sp. -
Cleonis Pigra (Scopoli, 1763) (Coleoptera: Curculionidae: Lixinae): Morphological Re-Description of the Immature Stages, Keys, Tribal Comparisons and Biology
insects Article Cleonis pigra (Scopoli, 1763) (Coleoptera: Curculionidae: Lixinae): Morphological Re-Description of the Immature Stages, Keys, Tribal Comparisons and Biology Jiˇrí Skuhrovec 1,* , Semyon Volovnik 2, Rafał Gosik 3, Robert Stejskal 4 and Filip Trnka 5 1 Group Function of Invertebrate and Plant Biodiversity in Agro-Ecosystems, Crop Research Institute, Drnovská 507, CZ-161 06 Praha 6 Ruzynˇe,Czech Republic 2 Independent Researcher, 72311 Melitopol, Ukraine; [email protected] 3 Department of Zoology and Plant Protection, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; [email protected] 4 Administration of Podyji National Park, Na Vyhlídce 5, CZ-669 02 Znojmo, Czech Republic; [email protected] 5 Department of Ecology & Environmental Sciences, Faculty of Science, Palacký University Olomouc, Šlechtitel ˚u27, CZ-783 71 Olomouc, Czech Republic; fi[email protected] * Correspondence: [email protected]; Tel.: +420-702087694 Received: 19 August 2019; Accepted: 24 September 2019; Published: 30 September 2019 Abstract: Mature larvae and pupae of Cleonis pigra (Scopoli, 1763) (Curculionidae: Lixinae: Cleonini) are morphologically described in detail for the first time and compared with known larvae and pupae of other Cleonini species. The results of measurements and characteristics most typical for larvae and pupae of Cleonini are newly extracted and critically discussed, along with some records given previously. Keys for the determination of selected Cleonini species based on their larval and pupal characteristics are attached. Dyar’s law was used for the estimation of a number of larval instars of C. pigra. Descriptions of habitats, adult behavior, host plants, life cycle, and biotic interactions are reported here. Adults and larvae feed on plants from the Asteraceae family only (genera Carduus, Cirsium, Centaurea, and Onopordum).