Wood Destroying Pest Management Study Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deathwatch Beetle DIAGNOSTIC MORPHOLOGY Xestobium Rufovillosum (De Adults
Deathwatch Beetle DIAGNOSTIC MORPHOLOGY Xestobium rufovillosum (De Adults: • Dark grayish-brown to shiny- reddish brown • Cylindrical body, pulls in legs and plays dead when disturbed • 4 - 6 mm long GENERAL INFORMATION The death watch beetle (family Anobiidae) a wood-boring beetle is Immature Stage: often mistaken for the common • Strongly hook-shaped larva furniture beetle, but there are no • Creamy white color with golden hairs • Actively mobile until premium food source is found longitudinal rows of pits on the wing cases like those on the furniture beetle. Death watch beetles produce a tapping or ticking sound to attract LIFE CYCLE mates by bumping its head or jaws against the tunnel walls. Heard in the Adults lay small clusters of 3 – 4 eggs in crevices, quiet night, the death watch beetle is small openings, or pores in unfinished wood. Larvae are creamy-white, hook-shaped, named for the nightlong vigil kept have six legs, and are actively mobile as they beside the dying or dead, and by search for the best food source. The larval stage extension has earned the superstition varies from one to 12 years or more if the that hearing or seeing the beetle conditions are favorable. Once mature, the larvae burrow just underneath the wood surface and forecasts death. enlarge a hole for a pupal chamber. The adult beetle gnaws through the wood as it emerges, and SIGNS OF INFESTATION have yellowish scale-like hairs in small patches that rub off to reveal a more reddish color. The larvae of the death watch beetle are xylophagous, and as they consume wood they CONTROL & TREATMENT produce small bun-like pellets of frass, which distinguishes them from other wood borers - no Prevention includes avoiding the introduction of other boring beetle produce pelletized frass. -
Termites in a Structure
Detecting and Identifying Termites in a Structure The threat of insects in or around your home can be alarming, especially when those insects can cause structural damage. It is important to know if insects you find around the house are in fact termites or some other crawling insect. Subterranean termites are found everywhere in the contiguous United States, making the possibility of termite infestation a widespread structural damage problem. Early detection and treatment of termites can drastically reduce the threat of damage to your home. Detection Subterranean termites require moisture and usually remain hidden—they may never be seen by the homeowner. Termites often consume the interior portion of a piece of Four main characteristics differentiate termites from ants: wood but leave the outer shell intact to protect themselves against desiccation (drying out). Therefore, it is easy to overlook the occurrence of termites and mistake a termite- damaged board for sound wood. One clear indication of termite infestation is the appearance of shelter tubes made of soil and sand and stemming from an underground location near the building. These tubes protect the termites from desiccation as they travel between the soil and your house. Shelter tubes are found commonly in basements of infected homes or running from the soil to the house. Termites are social insects and live in large colonies with organized caste systems. Worker termites—the most common caste encountered—are likely to be visible during a home inspection. Soldier termites, although far less numerous, are also likely to be found. Identification Both worker and soldier termites are white in color, with a small amount of brown on their backs, and are ¼-inch long. -
Sword of Destiny
Sword of Destiny Andrzej Sapkowski Translated by David French orbitbooks.net orbitshortfiction.com Begin Reading Meet the Author A Preview of Blood of Elves A Preview of A Dance of Cloaks About Orbit Short Fiction Orbit Newsletter Table of Contents Copyright Page In accordance with the U.S. Copyright Act of 1976, the scanning, uploading, and electronic sharing of any part of this book without the permission of the publisher constitute unlawful piracy and theft of the author’s intellectual property. If you would like to use material from the book (other than for review purposes), prior written permission must be obtained by contacting the publisher at [email protected]. Thank you for your support of the author’s rights. THE BOUNDS OF REASON I ‘He won’t get out of there, I’m telling you,’ the pockmarked man said, shaking his head with conviction. ‘It’s been an hour and a quarter since he went down. That’s the end of ’im.’ The townspeople, crammed among the ruins, stared in silence at the black hole gaping in the debris, at the rubble-strewn opening. A fat man in a yellow jerkin shifted from one foot to the other, cleared his throat and took off his crumpled biretta. ‘Let’s wait a little longer,’ he said, wiping the sweat from his thinning eyebrows. ‘For what?’ the spotty-faced man snarled. ‘Have you forgotten, Alderman, that a basilisk is lurking in that there dungeon? No one who goes in there comes out. Haven’t enough people perished? Why wait?’ ‘But we struck a deal,’ the fat man muttered hesitantly. -
03 Literature Review
- Literature Review: - Sr. No .1 - Name of the Author : P.G. Koehler and C. L. Tucker - Name of the Article : Subterranean Termite - Pages: 7 Nos. - Date of Published : April 1993 Revised in 2003 University of Florida, IFAS, Extention No. ENY 210 - Journal Name : Entomology and Nematology, Florida Cooperative Service - Review: Subterranean Termite, Dampwood and Drywood Termite are the main three types of termites . Subterranean Termites are the most destructive and it attacks structures by building tubes from nest to wood structures. They feed on wood which contain cellulose which is digested by them by protozoa and convert cellulose into usable food. The nest in the soil contains moisture to protect them from low humidity and predation and they build mud tunnels or tubes to reach wood. At swarming stage the broken wings are located at light are hence they are attracted to light. No wood contact with soil, ventilation, regular inspection can avoid the entry of termite and for effective control for Subterranean termite, Pre and post treatment methods for new and for existing structures at different stages with repellent and non repellent insecticides as required with the additional control method of using Termite Bait. - Sr. No . 2 - Name of the Author : Matthew R. Tarver, Christopher B. Florane, Dunhua Zhang, Casey Grimm and Alan R. Lax - Name of the Article : Methoprene and temperature effects on caste differentiation and protein composition in the Formosan Subterranean termite, Coptotermesfomosanus - Pages: 10 Nos. - Date of Published : December 2011 - Journal Name : Journal of Insect Science, Vol. 12/ article 18 - Review: Worker to soldier differentiation is modulated by temperature i.e. -
Symbiosis Between Yeasts and Insects
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Epsilon Open Archive Symbiosis between yeasts and insects Francisco Gonzalez Introductory paper at the Faculty of Landscape Architecture, Horticulture and Crop Production Science 2014:3 Swedish University of Agricultural Sciences Alnarp, December 2014 1 Symbiosis between yeasts and insects Francisco Gonzalez Introductory paper at the Faculty of Landscape Architecture, Horticulture and Crop Production Science 2014:3 Swedish University of Agricultural Sciences Alnarp, December 2014 Online Publication: http://pub.epsilon.slu.se/ 2 Summary Mutualistic relationships between insects and microorganisms have been widely described for bacterial symbionts associated with sap feeding insects and fungi associated with bark beetles. Recently, the importance and widespread distribution of mutualistic yeasts in plant-insect interactions has been demonstrated. Several examples with Drosophila melanogaster among other insects have shown the ability of the insect to survive in a diet based on yeast consumption only. Moreover, yeasts have shown the ability of suppressing pathogens that might hamper the development of the insects. From the point of view of the yeasts, the main benefit of the mutualism is the facilitation of processes such as outbreeding and spreading offered by contact with insects. Understanding the functions and key elements in yeast-insect interactions could lead to the development of better pest management strategies, for example by exploiting the attraction of insects to yeasts to lure them into entomopathogenic viruses. In this review, I present an overview of the current knowledge in yeast- insect interactions, highlighting what has been studied to date and what research gaps remain to be addressed. -
Integrated Pest Management IPM
Integrated Pest Management IPM Ellen Carrlee [email protected] Conservator, Alaska State Museum Division of Libraries, Archives and Museums 1. Prevention IPM elements • Housekeeping • Sealing ingress • Removing attractants • Isolation, quarantine, or pre-emptive freezing 2. Monitoring • Blunder traps • Recognizing signs • Identifying pests • Staff training and record keeping 3. Response • Freezing • Traps http://museums.alaska.gov/documents/bulletin_docs/ bulletin_29.pdf Prevention • Housekeeping • Food and drink in controlled areas • Sealing ingress • Removing attractants • Isolation, quarantine, or pre-emptive freezing • Cats and dogs are incompatible with preservation environment Monitoring • catch insects before they can be found visually • catch a wide range of species • monitor areas which are difficult to inspect • trap insects for identification and count • indicate an increase in insect numbers • Indicate environmental concerns • highlight any failure of control treatment http://www.insectslimited.com/ IL-1600-100 box of 100 (300) $67 Clue to environmental conditions Response • Freezing • Chemicals • Traps • Anoxic • Heat • Lowering RH BREAK FOR QUESTIONS??? http://museums.alaska.gov/documents/bulletin_ docs/bulletin_29.pdf …more slides of heritage eaters ahead… BOOKLOUSE (Psocids) • feed upon microscopic molds, starch • found in books and book bindings, storage boxes, paper goods • usually means that mold is present or that the RH is too high SILVERFISH (Lepisma saccharina) • pests of paper and paper products as well as textiles. They are particularly fond of paper with a glaze (starch) on it. They will also eat the glue backing in wallpaper. They prefer textiles that are cotton to woolens or silk. CIGARETTE BEETLE (Lasioderma serricorne) • serious pest of dried plant material. • can also cause serious damage to books. -
Research in Biological Control of the Formosan Subterranean Termite Cai Wang Louisiana State University and Agricultural and Mechanical College, [email protected]
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2014 Research in Biological Control of the Formosan Subterranean Termite Cai Wang Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Entomology Commons Recommended Citation Wang, Cai, "Research in Biological Control of the Formosan Subterranean Termite" (2014). LSU Doctoral Dissertations. 598. https://digitalcommons.lsu.edu/gradschool_dissertations/598 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. RESEARCH IN BIOLOGICAL CONTROL OF THE FORMOSAN SUBTERRANEAN TERMITE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Entomology by Cai Wang M.S., Chinese Academy of Science, 2010 B.S., Huazhong University of Science and Technology, 2007 August 2014 ACKNOWLEDGMENTS I would like to express my sincerest appreciation to my major professor, Dr. Gregg Henderson, a very important person in my life. I am very impressive for his meticulous attitude for scientific research. I benefited greatly from his valuable and illuminating suggestions for my research. It is also very touching for Dr. Henderson’s patience for my preliminary and sometimes “crazy” ideas. Also, he always could “see” what I ignored. For example, when I unintentionally talked about an observation that soldier and worker termites run in different directions after disturbance, he immediately pointed out the potential value to continue studying this and gave me valuable suggestions in the experiment. -
Coleoptera) 69 Doi: 10.3897/Zookeys.481.8294 RESEARCH ARTICLE Launched to Accelerate Biodiversity Research
A peer-reviewed open-access journal ZooKeys 481: 69–108 (2015) The Bostrichidae of the Maltese Islands( Coleoptera) 69 doi: 10.3897/zookeys.481.8294 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research The Bostrichidae of the Maltese Islands (Coleoptera) Gianluca Nardi1, David Mifsud2 1 Centro Nazionale per lo Studio e la Conservazione della Biodiversità Forestale “Bosco Fontana”, Sede di Bosco Fontana – Corpo Forestale dello Stato, Strada Mantova 29, I-46045 Marmirolo (MN), Italy 2 Institute of Earth Systems, Division of Rural Sciences and Food Systems, University of Malta, Msida MSD 2080, Malta Corresponding author: Gianluca Nardi ([email protected]) Academic editor: C. Majka | Received 17 June 2014 | Accepted 6 January 2015 | Published 4 February 2015 http://zoobank.org/4AB90367-FE56-41C0-8825-16E953E46CEC Citation: Nardi G, Mifsud D (2015) The Bostrichidae of the Maltese Islands (Coleoptera). ZooKeys 481: 69–108. doi: 10.3897/zookeys.481.8294 Abstract The Bostrichidae of the Maltese Islands are reviewed. Ten species are recorded with certainty from this Archipelago, of which 6 namely, Trogoxylon impressum (Comolli, 1837), Amphicerus bimaculatus (A.G. Olivier, 1790), Heterobostrychus aequalis (Waterhouse, 1884), Sinoxylon unidentatum (Fabricius, 1801), Xyloperthella picea (A.G. Olivier, 1790) and Apate monachus Fabricius, 1775 are recorded for the first time. Two of the mentioned species (H. aequalis and S. unidentatum) are alien and recorded only on the basis of single captures and the possible establishment of these species is discussed. Earlier records of Scobicia pustulata (Fabricius, 1801) from Malta are incorrect and should be attributed to S. chevrieri (A. Villa & J.B. Villa, 1835). -
Totally Termites (Grades 3 – 5)
Totally Termites (Grades 3 – 5) Lesson Overview Students will explore the world of termites. This lesson includes a close-up look at termite specimens, special termite adaptations and insect anatomy. Students will also learn about property risks associated with termites, and how pest control professionals manage termite problems. Correlation with National Science Teachers Association (NSTA) § History and Nature of Science: Content Standard G: Science as a human endeavor § Life Science: Content Standard C: The characteristics of organisms § Science as Inquiry: Content Standard A: Abilities necessary to do scientific inquiry § Science in Personal and Social Perspectives: Content Standard F: Types of Resources, Changes in Environments, Science and Technology in Local Challenges Key Concepts: Vocabulary Words: § Termites in the home are animals that are out of Adaptation place; they are considered pests. § Termites are amazing insects; they have unique Insect mouthparts, a special adaptation, that helps them Mouthpart survive. § Termites have specific body features that make them Pest insects. Pest Management § Termite behavior is influenced by hunger. Risk Specimen Skills Learned: Subterranean Termite Discussion Cause/Effect Communication Social Classification Appreciation Recognition Observation www.pestworldforkids.org page 1 of 10 Totally Termites (Grades 3 – 5) Getting Ready: Estimated Time: § Preparation: 20 Minutes § Lesson: 45 – 60 Minutes Materials: § Find specimens of the Subterranean Termite: Winged Reproductive Swarmers and Workers (see Additional Resources section for termite sources) § Hand Lenses (one per student is ideal) § Termite Fact Sheet § Termite Anatomy Sheet Preparation: § Arrange for and gather termite specimens (see Resources). One specimen per student is ideal. § Gather hand lenses (one per student is ideal). § Invite a termite control specialist into the classroom as a guest speaker. -
Biological Infestations Page
Chapter 5: Biological Infestations Page A. Overview ........................................................................................................................... 5:1 What information will I find in this chapter? ....................................................................... 5:1 What is a museum pest? ................................................................................................... 5:1 What conditions support museum pest infestations? ....................................................... 5:2 B. Responding to Infestations ............................................................................................ 5:2 What should I do if I find live pests or signs of pests in or around museum collections? .. 5:2 What should I do after isolating the infested object? ......................................................... 5:3 What should I do after all infested objects have been removed from the collections area? ................................................................................................ 5:5 What treatments can I use to stop an infestation? ............................................................ 5:5 C. Integrated Pest Management (IPM) ................................................................................ 5:8 What is IPM? ..................................................................................................................... 5:9 Why should I use IPM? ..................................................................................................... -
Social Insects: Bees, Wasps, Ants and Termites
Enrico Bonatti E.d.T. Outreach Practicum 11/11/2011 Social Insects: Bees, Wasps, Ants and Termites Teacher Resource Guide Before one understands what ‘social’ insects are it is first important to understand what an insect is in the first place. Insects are small arthropods with six legs and usually one or two pairs of wings; they are placed in the class Insecta or Hexapoda. The have an exoskeleton divided in three parts; head, thorax and abdomen. What are Social Insects? The eusocial, or most social of the insects, are the bees, wasps, ants, and termites. The bees, wasps, and ants are in the Order Hymenoptera, while the termites are in the Order Isoptera. All of the ants and termites are eusocial, while both the bees and wasps have many species that live solitary lives. Certain traits characterize the eusocial insects: -Reproductive division of labor: this means that the queen reproduces almost exclusively while other members of the colony specialize on different tasks. -Cooperative brood care: this means that contrastingly to many different animals, social insects all tend the brood together indiscriminately of whose offspring it is. -In the ants and termites there are castes that carry out different functions necessary for the survival of the colony depending on the size or age of the insect they carry different functions Social insects are organized into different ‘castes’, these are characterized by specialized roles (queen, soldiers, workers and such). Usually there is a queen that produces a lot of offspring and apart from her, many other sterile daughters (workers) that depending on their age or structure carry out specific tasks in or around the colony. -
World Inventory of Beetles of the Family Bostrichidae (Coleoptera)
Available online at www.worldnewsnaturalsciences.com WNOFNS 28 (2020) 155-170 EISSN 2543-5426 World Inventory of Beetles of the Family Bostrichidae (Coleoptera). Part 1. Check List from 1758 to 2012 Tomasz Borowski The II Laboratory of Research Works, The Independent Institution of Biopaleogeography and Biophysics, 22 Mickiewicza Str., Złocieniec, Poland E-mail address: [email protected] ABSTRACT This paper presents list of beetles of the family Bostrichidae and their occurrence. The paper includes: 7 subfamilies, 4 tribes, 28 genera, 5 subgenera and 155 species of beetles belonging to the family Bostrichidae. Keywords: Dinoderinae, Dysidinae, Endecatominae, Euderinae, Lyctinae, Polycaoninae, Psoinae Subfamilies Dinoderinae ..……………….156 Dysidinae ...……………....160 Endecatominae ....……………...160 Euderiinae ...………………160 Lyctinae ……….………..161 Polycaoninae .…………….….165 Psoinae ……………..….167 ( Received 02 December 2019; Accepted 23 December 2019; Date of Publication 28 December 2019 ) World News of Natural Sciences 28 (2020) 155-170 – Check List – Kingdom: Animalia Phylum: Arthropoda Class: Hexapoda Order: Coleoptera Family Bostrichidae Latreille, 1802 Subfamily Dinoderinae C.G. Thomson, 1863 Genus Dinoderus Stephens, 1830 Subgenus Dinoderus s. str. Dinoderus (Dinoderus) bifoveolatus (Wollaston, 1858) Distribution: Cosmopolitan Dinoderus (Dinoderus) borneanus Lesne, 1933 Distrubution: Borneo Dinoderus (Dinoderus) brevis Horn, 1878 Distribution: Oriental and Australian Regions Dinoderus (Dinoderus) creberrimus Lesne, 1941 Distribution: