Inert Gases in the Control of Museum Insect Pests (1998)

Total Page:16

File Type:pdf, Size:1020Kb

Inert Gases in the Control of Museum Insect Pests (1998) researc The Getty Conservation Institute h in Inert Gases in the Control of Museum conservation Insect Pests Charles Selwitz Shin Maekawa Inert Gases in the Control of Museum Insect Pests research The Getty Conservation Institute Inert Gases in the in Control of Museum Insect Pests conservation Charles Selwitz Shin Maekawa 1998 Tevvy Ball, Managing Editor Elizabeth Maggio, Copy Editor Amita Molloy, Production Coordinator Garland Kirkpatrick, Series Designer © 1998 The J. Paul Getty Trust All rights reserved. Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 Library of Congress Cataloging-in-Publication Data Selwitz, Charles, 1927- Inert gases in the control of museum insect pests / Charles Selwitz, Shin Maekawa. p. cm. — (Research in conservation) Includes bibliographical references (p. ) and index. ISBN 0-89236-502-1 (pbk.) 1. Museum conservation methods—Research. 2. Museum exhibits— Conservation and restoration. 3. Insect pests—Control—Research. 4. Gases, Rare. 5. Nitrogen. 6. Oxygen. 7. Carbon dioxide. 8. Anoxemia. I. Maekawa, Shin, 1952- . II. Getty Conservation Institute. III. Title. IV. Series. AM145.S45 1998 069’.53—DC21 98-7310 CIP The Getty Conservation Institute works internationally to further the apprecia- The Getty tion and preservation of the world's cultural heritage for the enrichment and use of present and future generations. The Institute is an operating program of the Conservation J. Paul Getty Trust. Institute The Research in Conservation reference series presents the findings of research Research in conducted by the Getty Conservation Institute and its individual and insti- tutional research partners, as well as state-of-the-art reviews of conservation Conservation literature. Each volume covers a topic of current interest to conservators and conservation scientists. Other volumes in the Research in Conservation series include Oxygen-Free Museum Cases (Maekawa 1998); Stone Conservation: An Overview of Current Research (Price 1996); Accelerated Aging: Photo- chemical and Thermal Aspects (Feller 1994); Airborne Particles in Museums (Nazaroff, Ligocki, et al. 1993); Epoxy Resins in Stone Consolidation (Selwitz 1992); Evaluation of Cellulose Ethers for Conservation (Feller and Wilt 1990); Cellulose Nitrate in Conservation (Selwitz 1988); and Statistical Analysis in Art Conservation Research (Reedy and Reedy 1988). ix Foreword Contents Miguel Angel Corzo xi Preface xv Acknowledgments 1 Chapter 1 Mechanisms of Insect Mortality Desiccation Anoxia at High Humidities 7 Chapter 2 Anoxia as a Conservation Procedure From Food Preservation to Conservation Early Museum Anoxia Studies Determining Kill Times Thermal Techniques Killing Burrowed Insects 17 Chapter 3 Methods and Materials Barrier Films Gas Supplies Oxygen Scavengers Closures Heat Sealers Zippers Clamps Adhesive Strips Portals 29 Chapter 4 Operational Problems and Practices Humidification Argon versus Nitrogen Monitors Electronic Oxygen Monitors Passive Oxygen Monitors Carbon Dioxide Monitors Relative Humidity Monitors Temperature Sensors Leak Detectors Monitoring Life Signs Safe Use of Nontoxic Fumigants 41 Chapter 5 Anoxia Treatment in Barrier-Film Bags General Procedures Conservators' Experience Comments 49 Chapter 6 Anoxia Treatment in a Dynamic Mode Treatment in Small Pouches Treatment in Constructed Containments Objects at the J. Paul Getty Museum Back Seat Dodge '38 The Spanish Piano vii 57 Chapter 7 Reusable Anoxia Systems Flexible Chambers The Getty Barrier-Film Tent The Small Rentokil Bubble The Large Rentokil Bubble Rigid Chambers Homemade Containers Vacufume Chambers 67 Chapter 8 Fumigation with Carbon Dioxide Effectiveness of Carbon Dioxide versus Nitrogen Carbon Dioxide Fumigation Requirements Treatment Experience in the United States Old Sturbridge Village The Winterthur Museum Society for the Preservation of New England Antiquities The Oakland Museum The Smithsonian Institution Treatment Experience in Canada The National Museum of Science and Technology The Canadian Museum of Civilization Treatment Experience in Germany 79 Appendix A: Professional Contacts 81 Appendix B: Materials and Suppliers 91 Appendix C: Common and Scientific Names of Insect Species 93 References 101 Index 107 About the Authors viii The interest of the Getty Conservation Institute in the management of pest Foreword control reached a turning point in 1987 when Nieves Valentín, then with the Instituto de Conservación y Restauración de Bienes Culturales (now called the Instituto del Patrimonio Histórico Español) in Madrid, Spain, came to the GCI for a tenure as a Fellow to continue her conservation research on ways to stop bio- logical attack on organic materials. Concerned about the impact that traditional pesticides have on both conservators' safety and the environment, the Institute recognized the need to contribute to the development of newer, safer tech- niques for halting the damage done by insects, fungi, and algae to museum col- lections. With this goal in mind, the GCI invited Dr. Valentín to join its staff and pursue her research in this important area of conservation. Her presence at the Institute and the enthusiasm she generated in her field of endeavor opened further avenues of exploration. Since then, the GCI has continued research in this field both in-house and with associated institutions. This has resulted in a number of completed projects such as storage cases for the Royal Mummies of Egypt's National Museum; display cases to protect the Constitution of India developed in collaboration with the National Physical Laboratories of that country; cases for mummies in the Museo Balaguer in Barcelona, Spain; the disinfestation of Kienholz's Back Seat Dodge '38, done in collaboration with the J. Paul Getty Museum and the Los Angeles County Museum of Art; the display case for the Hudson Bay Charter, in Toronto; and technical advice for the conservation of the Declaration of Arbroath in Scotland. Additionally, the Institute has offered pest control management courses in various locations around the world. Inert Cases in the Control of Museum Insect Pests is a compendium of informa- tion on the biological mechanisms by which nontoxic gases kill insects; the methods and materials needed to create and maintain an anoxic atmosphere; treatments; the construction and use of chambers and bubbles; and the proce- dures for treating objects. This publication is a continuation of the Institute's Research in Conservation series, which aims to make available the findings of research conducted by the Institute and its partners as well as provide state-of-the-art reviews of conserva- tion literature. From its inception the Institute has sought to open to the conser- vation professions the results of its research and experience in areas that bridge the gap between contemporary science and technology and current conserva- tion practice. In addition to Nieves Valentín, GCI senior scientist Shin Maekawa and GCI Fellows Kerstin Elert and Vinod Daniel have dedicated much of their time to this area, and a number of other institutions also have collaborated in our research efforts. With his usual scientific rigor, organizational skills, and attention to detail, Charles Selwitz undertook the exacting task of reviewing the literature and the research done at the Institute and by other individuals and organizations to pro- duce this publication. To him, to my colleagues, and to our partners, I extend my sincere acknowledgment. I hope our readers will find in these pages the information and expertise that will provide them with further means to continue in our joint efforts to help conserve the world's cultural heritage. —Miguel Angel Corzo Director The Getty Conservation Institute ix x Over the centuries, one of the most persistent causes of loss of cultural property Preface and museum collections has been damage done by insects. Prime targets are manuscripts on paper and parchment, natural history collections, and herbaria, but massive wooden objects also are often attacked and, occasionally, seriously harmed. Throughout the nineteenth and most of the twentieth centuries, the response to this biological assault has been to use an array of highly toxic chemi- cals, an approach that has resulted in many well-documented negative conse- quences. More recently, the conservation community has begun to appreciate that prevention is a better approach and that there are physical and biochemical procedures that can safely substitute for pesticides when prevention is occasion- ally inadequate. As embodied in a program of regular inspections, good house- keeping, and maintenance, prevention is designed to avoid providing pests with access to collections and is more commonly called integrated pest man- agement. Better and safer killing methods to treat an established infestation include the use of biologically active agents such as pyrethrums and juvenile growth hormones, and physical means such as desiccation with nontoxic gases, freezing, and heating. Increasingly, well-established pest control programs at both small and large institutions are being built on the considered use of all of these options. This book is about one option, the use of nontoxic gases (argon, nitrogen, and carbon dioxide) to rid museum objects of insect pests. Conservators are selecting this approach because they feel more comfortable and confident that using inert gases is much less likely to harm objects than other procedures. Curators have been known to insist that disinfestation be carried out by anoxia (which
Recommended publications
  • Topic Paper Chilterns Beechwoods
    . O O o . 0 O . 0 . O Shoping growth in Docorum Appendices for Topic Paper for the Chilterns Beechwoods SAC A summary/overview of available evidence BOROUGH Dacorum Local Plan (2020-2038) Emerging Strategy for Growth COUNCIL November 2020 Appendices Natural England reports 5 Chilterns Beechwoods Special Area of Conservation 6 Appendix 1: Citation for Chilterns Beechwoods Special Area of Conservation (SAC) 7 Appendix 2: Chilterns Beechwoods SAC Features Matrix 9 Appendix 3: European Site Conservation Objectives for Chilterns Beechwoods Special Area of Conservation Site Code: UK0012724 11 Appendix 4: Site Improvement Plan for Chilterns Beechwoods SAC, 2015 13 Ashridge Commons and Woods SSSI 27 Appendix 5: Ashridge Commons and Woods SSSI citation 28 Appendix 6: Condition summary from Natural England’s website for Ashridge Commons and Woods SSSI 31 Appendix 7: Condition Assessment from Natural England’s website for Ashridge Commons and Woods SSSI 33 Appendix 8: Operations likely to damage the special interest features at Ashridge Commons and Woods, SSSI, Hertfordshire/Buckinghamshire 38 Appendix 9: Views About Management: A statement of English Nature’s views about the management of Ashridge Commons and Woods Site of Special Scientific Interest (SSSI), 2003 40 Tring Woodlands SSSI 44 Appendix 10: Tring Woodlands SSSI citation 45 Appendix 11: Condition summary from Natural England’s website for Tring Woodlands SSSI 48 Appendix 12: Condition Assessment from Natural England’s website for Tring Woodlands SSSI 51 Appendix 13: Operations likely to damage the special interest features at Tring Woodlands SSSI 53 Appendix 14: Views About Management: A statement of English Nature’s views about the management of Tring Woodlands Site of Special Scientific Interest (SSSI), 2003.
    [Show full text]
  • Deathwatch Beetle DIAGNOSTIC MORPHOLOGY Xestobium Rufovillosum (De Adults
    Deathwatch Beetle DIAGNOSTIC MORPHOLOGY Xestobium rufovillosum (De Adults: • Dark grayish-brown to shiny- reddish brown • Cylindrical body, pulls in legs and plays dead when disturbed • 4 - 6 mm long GENERAL INFORMATION The death watch beetle (family Anobiidae) a wood-boring beetle is Immature Stage: often mistaken for the common • Strongly hook-shaped larva furniture beetle, but there are no • Creamy white color with golden hairs • Actively mobile until premium food source is found longitudinal rows of pits on the wing cases like those on the furniture beetle. Death watch beetles produce a tapping or ticking sound to attract LIFE CYCLE mates by bumping its head or jaws against the tunnel walls. Heard in the Adults lay small clusters of 3 – 4 eggs in crevices, quiet night, the death watch beetle is small openings, or pores in unfinished wood. Larvae are creamy-white, hook-shaped, named for the nightlong vigil kept have six legs, and are actively mobile as they beside the dying or dead, and by search for the best food source. The larval stage extension has earned the superstition varies from one to 12 years or more if the that hearing or seeing the beetle conditions are favorable. Once mature, the larvae burrow just underneath the wood surface and forecasts death. enlarge a hole for a pupal chamber. The adult beetle gnaws through the wood as it emerges, and SIGNS OF INFESTATION have yellowish scale-like hairs in small patches that rub off to reveal a more reddish color. The larvae of the death watch beetle are xylophagous, and as they consume wood they CONTROL & TREATMENT produce small bun-like pellets of frass, which distinguishes them from other wood borers - no Prevention includes avoiding the introduction of other boring beetle produce pelletized frass.
    [Show full text]
  • Southampton French Quarter 1382 Specialist Report Download E9: Mineralised and Waterlogged Fly Pupae, and Other Insects and Arthropods
    Southampton French Quarter SOU1382 Specialist Report Download E9 Southampton French Quarter 1382 Specialist Report Download E9: Mineralised and waterlogged fly pupae, and other insects and arthropods By David Smith Methods In addition to samples processed specifically for the analysis of insect remains, insect and arthropod remains, particularly mineralised pupae and puparia, were also contained in the material sampled and processed for plant macrofossil analysis. These were sorted out from archaeobotanical flots and heavy residues fractions by Dr. Wendy Smith (Oxford Archaeology) and relevant insect remains were examined under a low-power binocular microscope by Dr. David Smith. The system for ‘intensive scanning’ of faunas as outlined by Kenward et al. (1985) was followed. The Coleoptera (beetles) present were identified by direct comparison to the Gorham and Girling Collections of British Coleoptera. The dipterous (fly) puparia were identified using the drawings in K.G.V. Smith (1973, 1989) and, where possible, by direct comparison to specimens identified by Peter Skidmore. Results The insect and arthropod taxa recovered are listed in Table 1. The taxonomy used for the Coleoptera (beetles) follows that of Lucht (1987). The numbers of individual insects present is estimated using the following scale: + = 1-2 individuals ++ = 2-5 individuals +++ = 5-10 individuals ++++ = 10-20 individuals +++++ = 20- 100individuals +++++++ = more than 100 individuals Discussion The insect and arthropod faunas from these samples were often preserved by mineralisation with any organic material being replaced. This did make the identification of some of the fly pupae, where some external features were missing, problematic. The exceptions to this were samples 108 (from a Post Medieval pit), 143 (from a High Medieval pit) and 146 (from an Anglo-Norman well) where the material was partially preserved by waterlogging.
    [Show full text]
  • Computing Fundamentals and Office Productivity Tools It111
    COMPUTING FUNDAMENTALS AND OFFICE PRODUCTIVITY TOOLS IT111 REFERENCENCES: LOCAL AREA NETWORK BY DAVID STAMPER, 2001, HANDS ON NETWORKING FUNDAMENTALS 2ND EDITION MICHAEL PALMER 2013 NETWORKING FUNDAMENTALS Network Structure WHAT IS NETWORK Network • An openwork fabric; netting • A system of interlacing lines, tracks, or channels • Any interconnected system; for example, a television-broadcasting network • A system in which a number of independent computers are linked together to share data and peripherals, such as hard disks and printers Networking • involves connecting computers for the purpose of sharing information and resources STAND ALONE ENVIRONMENT (WORKSTATION) users needed either to print out documents or copy document files to a disk for others to edit or use them. If others made changes to the document, there was no easy way to merge the changes. This was, and still is, known as "working in a stand-alone environment." STAND ALONE ENVIRONMENT (WORKSTATION) Copying files onto floppy disks and giving them to others to copy onto their computers was sometimes referred to as the "sneakernet." GOALS OF COMPUTER NETWORKS • increase efficiency and reduce costs Goals achieved through: • Sharing information (or data) • Sharing hardware and software • Centralizing administration and support More specifically, computers that are part of a network can share: • Documents (memos, spreadsheets, invoices, and so on). • E-mail messages. • Word-processing software. • Project-tracking software. • Illustrations, photographs, videos, and audio files. • Live audio and video broadcasts. • Printers. • Fax machines. • Modems. • CD-ROM drives and other removable drives, such as Zip and Jaz drives. • Hard drives. GOALS OF COMPUTER NETWORK Sharing Information (or Data) • reduces the need for paper communication • increase efficiency • make nearly any type of data available simultaneously to every user who needs it.
    [Show full text]
  • Sword of Destiny
    Sword of Destiny Andrzej Sapkowski Translated by David French orbitbooks.net orbitshortfiction.com Begin Reading Meet the Author A Preview of Blood of Elves A Preview of A Dance of Cloaks About Orbit Short Fiction Orbit Newsletter Table of Contents Copyright Page In accordance with the U.S. Copyright Act of 1976, the scanning, uploading, and electronic sharing of any part of this book without the permission of the publisher constitute unlawful piracy and theft of the author’s intellectual property. If you would like to use material from the book (other than for review purposes), prior written permission must be obtained by contacting the publisher at [email protected]. Thank you for your support of the author’s rights. THE BOUNDS OF REASON I ‘He won’t get out of there, I’m telling you,’ the pockmarked man said, shaking his head with conviction. ‘It’s been an hour and a quarter since he went down. That’s the end of ’im.’ The townspeople, crammed among the ruins, stared in silence at the black hole gaping in the debris, at the rubble-strewn opening. A fat man in a yellow jerkin shifted from one foot to the other, cleared his throat and took off his crumpled biretta. ‘Let’s wait a little longer,’ he said, wiping the sweat from his thinning eyebrows. ‘For what?’ the spotty-faced man snarled. ‘Have you forgotten, Alderman, that a basilisk is lurking in that there dungeon? No one who goes in there comes out. Haven’t enough people perished? Why wait?’ ‘But we struck a deal,’ the fat man muttered hesitantly.
    [Show full text]
  • HTTP Cookie - Wikipedia, the Free Encyclopedia 14/05/2014
    HTTP cookie - Wikipedia, the free encyclopedia 14/05/2014 Create account Log in Article Talk Read Edit View history Search HTTP cookie From Wikipedia, the free encyclopedia Navigation A cookie, also known as an HTTP cookie, web cookie, or browser HTTP Main page cookie, is a small piece of data sent from a website and stored in a Persistence · Compression · HTTPS · Contents user's web browser while the user is browsing that website. Every time Request methods Featured content the user loads the website, the browser sends the cookie back to the OPTIONS · GET · HEAD · POST · PUT · Current events server to notify the website of the user's previous activity.[1] Cookies DELETE · TRACE · CONNECT · PATCH · Random article Donate to Wikipedia were designed to be a reliable mechanism for websites to remember Header fields Wikimedia Shop stateful information (such as items in a shopping cart) or to record the Cookie · ETag · Location · HTTP referer · DNT user's browsing activity (including clicking particular buttons, logging in, · X-Forwarded-For · Interaction or recording which pages were visited by the user as far back as months Status codes or years ago). 301 Moved Permanently · 302 Found · Help 303 See Other · 403 Forbidden · About Wikipedia Although cookies cannot carry viruses, and cannot install malware on 404 Not Found · [2] Community portal the host computer, tracking cookies and especially third-party v · t · e · Recent changes tracking cookies are commonly used as ways to compile long-term Contact page records of individuals' browsing histories—a potential privacy concern that prompted European[3] and U.S.
    [Show full text]
  • Symbiosis Between Yeasts and Insects
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Epsilon Open Archive Symbiosis between yeasts and insects Francisco Gonzalez Introductory paper at the Faculty of Landscape Architecture, Horticulture and Crop Production Science 2014:3 Swedish University of Agricultural Sciences Alnarp, December 2014 1 Symbiosis between yeasts and insects Francisco Gonzalez Introductory paper at the Faculty of Landscape Architecture, Horticulture and Crop Production Science 2014:3 Swedish University of Agricultural Sciences Alnarp, December 2014 Online Publication: http://pub.epsilon.slu.se/ 2 Summary Mutualistic relationships between insects and microorganisms have been widely described for bacterial symbionts associated with sap feeding insects and fungi associated with bark beetles. Recently, the importance and widespread distribution of mutualistic yeasts in plant-insect interactions has been demonstrated. Several examples with Drosophila melanogaster among other insects have shown the ability of the insect to survive in a diet based on yeast consumption only. Moreover, yeasts have shown the ability of suppressing pathogens that might hamper the development of the insects. From the point of view of the yeasts, the main benefit of the mutualism is the facilitation of processes such as outbreeding and spreading offered by contact with insects. Understanding the functions and key elements in yeast-insect interactions could lead to the development of better pest management strategies, for example by exploiting the attraction of insects to yeasts to lure them into entomopathogenic viruses. In this review, I present an overview of the current knowledge in yeast- insect interactions, highlighting what has been studied to date and what research gaps remain to be addressed.
    [Show full text]
  • Integrated Pest Management IPM
    Integrated Pest Management IPM Ellen Carrlee [email protected] Conservator, Alaska State Museum Division of Libraries, Archives and Museums 1. Prevention IPM elements • Housekeeping • Sealing ingress • Removing attractants • Isolation, quarantine, or pre-emptive freezing 2. Monitoring • Blunder traps • Recognizing signs • Identifying pests • Staff training and record keeping 3. Response • Freezing • Traps http://museums.alaska.gov/documents/bulletin_docs/ bulletin_29.pdf Prevention • Housekeeping • Food and drink in controlled areas • Sealing ingress • Removing attractants • Isolation, quarantine, or pre-emptive freezing • Cats and dogs are incompatible with preservation environment Monitoring • catch insects before they can be found visually • catch a wide range of species • monitor areas which are difficult to inspect • trap insects for identification and count • indicate an increase in insect numbers • Indicate environmental concerns • highlight any failure of control treatment http://www.insectslimited.com/ IL-1600-100 box of 100 (300) $67 Clue to environmental conditions Response • Freezing • Chemicals • Traps • Anoxic • Heat • Lowering RH BREAK FOR QUESTIONS??? http://museums.alaska.gov/documents/bulletin_ docs/bulletin_29.pdf …more slides of heritage eaters ahead… BOOKLOUSE (Psocids) • feed upon microscopic molds, starch • found in books and book bindings, storage boxes, paper goods • usually means that mold is present or that the RH is too high SILVERFISH (Lepisma saccharina) • pests of paper and paper products as well as textiles. They are particularly fond of paper with a glaze (starch) on it. They will also eat the glue backing in wallpaper. They prefer textiles that are cotton to woolens or silk. CIGARETTE BEETLE (Lasioderma serricorne) • serious pest of dried plant material. • can also cause serious damage to books.
    [Show full text]
  • Discontinued Browsers List
    Discontinued Browsers List Look back into history at the fallen windows of yesteryear. Welcome to the dead pool. We include both officially discontinued, as well as those that have not updated. If you are interested in browsers that still work, try our big browser list. All links open in new windows. 1. Abaco (discontinued) http://lab-fgb.com/abaco 2. Acoo (last updated 2009) http://www.acoobrowser.com 3. Amaya (discontinued 2013) https://www.w3.org/Amaya 4. AOL Explorer (discontinued 2006) https://www.aol.com 5. AMosaic (discontinued in 2006) No website 6. Arachne (last updated 2013) http://www.glennmcc.org 7. Arena (discontinued in 1998) https://www.w3.org/Arena 8. Ariadna (discontinued in 1998) http://www.ariadna.ru 9. Arora (discontinued in 2011) https://github.com/Arora/arora 10. AWeb (last updated 2001) http://www.amitrix.com/aweb.html 11. Baidu (discontinued 2019) https://liulanqi.baidu.com 12. Beamrise (last updated 2014) http://www.sien.com 13. Beonex Communicator (discontinued in 2004) https://www.beonex.com 14. BlackHawk (last updated 2015) http://www.netgate.sk/blackhawk 15. Bolt (discontinued 2011) No website 16. Browse3d (last updated 2005) http://www.browse3d.com 17. Browzar (last updated 2013) http://www.browzar.com 18. Camino (discontinued in 2013) http://caminobrowser.org 19. Classilla (last updated 2014) https://www.floodgap.com/software/classilla 20. CometBird (discontinued 2015) http://www.cometbird.com 21. Conkeror (last updated 2016) http://conkeror.org 22. Crazy Browser (last updated 2013) No website 23. Deepnet Explorer (discontinued in 2006) http://www.deepnetexplorer.com 24. Enigma (last updated 2012) No website 25.
    [Show full text]
  • Development of Synanthropic Beetle Faunas Over the Last 9000 Years in the British Isles Smith, David; Hill, Geoff; Kenward, Harry; Allison, Enid
    University of Birmingham Development of synanthropic beetle faunas over the last 9000 years in the British Isles Smith, David; Hill, Geoff; Kenward, Harry; Allison, Enid DOI: 10.1016/j.jas.2020.105075 License: Other (please provide link to licence statement Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Smith, D, Hill, G, Kenward, H & Allison, E 2020, 'Development of synanthropic beetle faunas over the last 9000 years in the British Isles', Journal of Archaeological Science, vol. 115, 105075. https://doi.org/10.1016/j.jas.2020.105075 Link to publication on Research at Birmingham portal Publisher Rights Statement: Contains public sector information licensed under the Open Government Licence v3.0. http://www.nationalarchives.gov.uk/doc/open- government-licence/version/3/ General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.
    [Show full text]
  • Biological Infestations Page
    Chapter 5: Biological Infestations Page A. Overview ........................................................................................................................... 5:1 What information will I find in this chapter? ....................................................................... 5:1 What is a museum pest? ................................................................................................... 5:1 What conditions support museum pest infestations? ....................................................... 5:2 B. Responding to Infestations ............................................................................................ 5:2 What should I do if I find live pests or signs of pests in or around museum collections? .. 5:2 What should I do after isolating the infested object? ......................................................... 5:3 What should I do after all infested objects have been removed from the collections area? ................................................................................................ 5:5 What treatments can I use to stop an infestation? ............................................................ 5:5 C. Integrated Pest Management (IPM) ................................................................................ 5:8 What is IPM? ..................................................................................................................... 5:9 Why should I use IPM? .....................................................................................................
    [Show full text]
  • Context Browsing with Mobiles - When Less Is More
    Context Browsing with Mobiles - When Less is More Yevgen Borodin Jalal Mahmud I.V. Ramakrishnan Department of Computer Science Stony Brook University Stony Brook, NY 11794, USA fborodin, jmahmud, [email protected] ABSTRACT 1. INTRODUCTION Except for a handful of \mobile" Web sites, the Web is Recent years have seen a trend in the miniaturization of designed for browsing using personal computers with large personal computers. Handheld devices, such as PDAs and screens capable of fully rendering the content of most Web even cell phones, have long become useful tools for mobile pages. Browsing with handhelds, such as small-screen PDA's computing. With the expansion of wireless Internet, hand- or cell phones, usually involves a lot of horizontal and ver- helds are also gaining popularity in Web browsing applica- tical scrolling, thus making Web browsing time-consuming tions. A number of popular Web sites now also have mobile and strenuous. At the same time, one is often only inter- versions. The majority of Web developers, however, are still ested in a fragment of a Web page, which again may not ¯t primarily targeting personal computers with large screens, on the limited-size screens of mobile devices, requiring more capable of fully rendering most Web pages. Unfortunately, scrolling in both dimensions. In this paper, we address the a major limitation of most mobile devices is that their small problem of browsing fatigue during mobile Web access us- screens are unable to convey the richness of the Web content. ing geometric segmentation of Web pages and the notion Web browsing on mobiles incurs a number of even more of context.
    [Show full text]