Cleonis Pigra (Scopoli, 1763) (Coleoptera: Curculionidae: Lixinae): Morphological Re-Description of the Immature Stages, Keys, Tribal Comparisons and Biology

Total Page:16

File Type:pdf, Size:1020Kb

Cleonis Pigra (Scopoli, 1763) (Coleoptera: Curculionidae: Lixinae): Morphological Re-Description of the Immature Stages, Keys, Tribal Comparisons and Biology insects Article Cleonis pigra (Scopoli, 1763) (Coleoptera: Curculionidae: Lixinae): Morphological Re-Description of the Immature Stages, Keys, Tribal Comparisons and Biology Jiˇrí Skuhrovec 1,* , Semyon Volovnik 2, Rafał Gosik 3, Robert Stejskal 4 and Filip Trnka 5 1 Group Function of Invertebrate and Plant Biodiversity in Agro-Ecosystems, Crop Research Institute, Drnovská 507, CZ-161 06 Praha 6 Ruzynˇe,Czech Republic 2 Independent Researcher, 72311 Melitopol, Ukraine; [email protected] 3 Department of Zoology and Plant Protection, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; [email protected] 4 Administration of Podyji National Park, Na Vyhlídce 5, CZ-669 02 Znojmo, Czech Republic; [email protected] 5 Department of Ecology & Environmental Sciences, Faculty of Science, Palacký University Olomouc, Šlechtitel ˚u27, CZ-783 71 Olomouc, Czech Republic; fi[email protected] * Correspondence: [email protected]; Tel.: +420-702087694 Received: 19 August 2019; Accepted: 24 September 2019; Published: 30 September 2019 Abstract: Mature larvae and pupae of Cleonis pigra (Scopoli, 1763) (Curculionidae: Lixinae: Cleonini) are morphologically described in detail for the first time and compared with known larvae and pupae of other Cleonini species. The results of measurements and characteristics most typical for larvae and pupae of Cleonini are newly extracted and critically discussed, along with some records given previously. Keys for the determination of selected Cleonini species based on their larval and pupal characteristics are attached. Dyar’s law was used for the estimation of a number of larval instars of C. pigra. Descriptions of habitats, adult behavior, host plants, life cycle, and biotic interactions are reported here. Adults and larvae feed on plants from the Asteraceae family only (genera Carduus, Cirsium, Centaurea, and Onopordum). Oviposition occurs on the base of the plant stem or the root neck. In the process of larval development, a fusiform gall forms. C. pigra and Cyphocleonus achates can coexist in the same locality. In open habitats, the weevils become the prey of carnivorous animals. Keywords: Coleoptera; Curculionidae; Lixinae; Cleonis; morphology; larva; pupa; biology; host plant; life history 1. Introduction The tribe Cleonini belongs to the subfamily Lixinae [1], together with two other tribes: Lixini (approximately 40 genera, see [2]) and Rhinocyllini (two genera; sometimes part of Lixini, see [3]). Currently, Cleonini weevils include approximately 97 valid genus-group taxa [2,4] and 546 valid species [5–7]. The distribution is known to be mainly in the Northern Hemisphere; from south of the equator, they are known only in continental Africa and Madagascar [2]. Representatives of this tribe prefer xeric habitats and sandy soil. Their larvae are mono, oligo or polyphagous on herbs and shrubs, and they develop mainly in the lower parts of the host plant, especially the roots or, rarely, lower stems [2]. Endophagous larvae develop inside the plant tissue of the root neck or the collar of the host plants or create a characteristically swollen gall on the root of the host plants [8,9]. The morphology of immature Cleonini is still poorly known, but the first detailed, illustrated larval descriptions were recently made [9–11]. Insects 2019, 10, 325; doi:10.3390/insects10100325 www.mdpi.com/journal/insects Insects 2019, 10, 325 2 of 25 The members of the tribe Cleonini are known as a potentially significant pest of cultivated plants (beets, spinach, mayweeds, etc.), and they have the potential to be used as biocontrol agents against invasive Palaearctic plants [2]. For example, Cyphocleonus achates (Fåhraeus, 1842) has been used to control invasive spotted knapweed (Centaurea stoebe L., Asteraceae) in North America [12,13]. Another situation is known from Australia, where Pachycerus segnis (Germar, 1824) was tested for use against the invasive plant Heliotropium europaeum L. (Boraginaceae; as P. cordiger,[14]). Among the members of the tribe Cleonini, there are some other potential biological control agents, such as the weevil Adosomus roridus (Pallas, 1781), used against Tanacetum vulgare L., but this would be less effective and potentially dangerous due to its oligophagy [9]. Introducing and using such species as biological control agents might be risky for native fauna/flora, similar to the introduction of the weevil Rhinocyllus conicus (Froelich, 1792) [15]. The weevil Cleonis pigra (Scopoli, 1763) is a trans-Palaearctic species distributed from the Iberian Peninsula to the Far East [16]. It is also known from Central India [17]. The most northern areas of its range in Europe are southern Finland [18] and southern Norway (Ringerike, 60◦1201900 N; the Natural History Museum, University of Oslo). The most northern records of its appearance in Asia are approximately 60–63◦ N in Sakha (Yakutiya), Russia [19]. The beetle is common all over Ukraine [20] and in central and southern Europe, but is rather rare in the northern parts of the European distribution. However, this species was also registered in the Red List of Norway as vulnerable [21] and in the Red List of Finland [22]. In 1919, C. pigra was recorded in North America for the first time [23]. Recently, it has been recorded in a relatively small area in the northeastern USA and southeastern Canada, in the Atlantic region and nearby [23]. Accordingly, there is believed to be an adventive species in North America [23–26]. The immature stages of C. pigra were described by Cawthra [25] and Scherf [27], but setal nomenclature and morphological terms are not well understood, and some details in chaetotaxy and drawings are still missing. Adult C. pigra were released in a testing pasture in Ontario, Canada, to decrease the population of Cirsium arvense (L.) Scop. [28], but further work has not been ongoing. The wide host range of C. pigra also includes the globe artichoke (Cynara cardunculus scolymus (L.) Hegi) [29,30], which is cultivated in many areas, including North America. Therefore, the beetle has not been considered a suitable biocontrol agent [31]. On the other hand, C. pigra is known as a pest of milk thistle (Silybum marianum (L.) Gaertn.), the seeds of which are important raw materials for pharmaceutics [32]. Incidentally, adults also feed on the sprouts of sunflowers (Helianthus annuus L. [33]) and non-Asteraceae plants; namely, Siberian pea shrub (Caragana arborescens Lam., Fabaceae; [34]), and beets (Beta vulgaris L., Amaranthaceae; see review [35]). Usually, all these damages occur only in spring and are insubstantial. Obviously, all data on the economic damage caused by C. pigra in beet plantations are based on misidentifications [35]. The main aims of this study are the following: (1) to re-describe larvae and pupae of Cleonis pigra in detail for the first time; (2) to compare this species with other known immature stages of this tribe; (3) to determine the number of larval instars via morphometric measurements; and (4) to provide details on their life history based on observations in central Europe. 2. Materials and Methods 2.1. Insect Collection and Laboratory Breeding The material used to describe the larvae and the pupae was collected, and field observations were conducted in Ukraine in the following localities: (1) Sheep pasture on the alluvial floodplain, near the Kamyana Mohyla Reserve (46◦5700100 N, 35◦2801200 E). Altitude: up to 11 m.a.s.l. Bedrock: sandy chernozem. Dominant plant species: Cirsium ukranicum Besser ex DC., and Carduus hamulosus Ehrh. (syn. C. pseudocollinus (Schmalh.) Klokov.), with occasional trees of Elaeagnus commutata Bernh. ex Rydb. growing among the grass Insects 2019, 10, 325 3 of 25 (i.e., Echinops ritro subsp. ruthenicus L. (M. Bieb.) Nyman (syn. E. ruthenicus), and Centaurea adpressa Ledeb. ex Steud., Melilotus albus Medik.) in the clearings. (2) Pishchanska Balka near Melitopol (46◦49050” N, 35◦20018” E). Altitude: up to 22 m.a.s.l. Bedrock: sandy chernozem with herbaceous covering. Dominant plant species: Calamagrostis epigeios (L.) Roth, Linaria genistifolia (L.) Mill., Artemisia absinthium L., Echium vulgare L., Sisymbrium loeselii L., Achillea millefolium L., Hieracium umbellatum L., Melilotus albus Medik., Centaurea diffusa Lam., Cirsium arvense (L.) Scop. (syn. C. setosum (Willd.) Besser), and Chenopodium urbicum L. In the abovementioned localities, the life cycle, including feeding of adults and oviposition, was observed directly during the vegetation growing seasons of Carduus hamulosus, Cirsium ukranicum, and Centaurea diffusa from 2015 to 2017. The author S.V. collected all larvae and pupae of C. pigra within roots of Cirsium ukranicum. Some stems and roots (n = 37) were dissected to investigate preimaginal development, and a further 150 plants were dissected to determine the quantity of preimaginal specimens of C. pigra. All photographs in the field were taken with a Canon PowerShot SX500 IS digital camera (Canon Inc., Ota,¯ Tokyo, Japan). Laboratory observations were conducted in Melitopol, Ukraine (46◦500 N, 35◦220 E). The measurements of stems and roots were performed with a slide caliper and ocular micrometer. The size of root galls was determined at the greatest diameter. Adults were weighed on the Jadever electronic scale JKD-250 (Jadever Scale Co., Ltd, Taipei, Taiwan). Geographical distribution and phenology were studied from several entomological collections, specifically, the Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine (Kyiv),
Recommended publications
  • Assessing Population Sizes, Biological Potential and Mass
    1. ASSESSING POPULATION SIZES, BIOCONTROL POTENTIAL AND MASS PRODUCTION OF THE ROOT BORING MOTH AGAPETA ZOEGANA FOR AREWIDE IMPLEMENTATION AND MONITORING OF SPOTTED KNAPWEED BIOCONTROL 2. PRINCIPAL INVESTIGATORS: Mark Schwarzländer, PSES Department, University of Idaho, 875 Perimeter DR MS 2339, Moscow, ID 83844-2339, (208) 885-9319, FAX (208)885- 7760, [email protected]; Joseph Milan, USDI Bureau of Land Management, 3948 Development Ave., Boise, ID 83705, (208) 384-3487, FAX (208) 384-3326, [email protected]; Paul Brusven, Nez Perce Tribe Bio-Control Center, P.O. Box 365, 22776 Beaver Road, Lapwai, ID 83540, (208) 843-9374, FAX (208) 843-9373, [email protected] 3. COOPERATORS: Dr. Hariet Hinz (CABI Switzerland), Dr. Urs Schaffner (CABI Switzerland, Dr. Sanford Eigenbrode (University of Idaho), Dr. Heinz Müller-Schärer (University of Fribourg, Switzerland), Brian Marschmann (USDA APHIS PPQ State Director, Idaho), Dr. Rich Hansen (USDA APHIS CPHST, Ft. Collins, Colorado), John (Lewis) Cook (USDI BIA Rocky Mountain Region, Billings, Montana), Dr. John Gaskin (USDA ARS NPARL, Sidney, Montana), Idaho County Weed Superintendents and Idaho-based USFS land managers. BCIP CONTACT: Carol Randall, USFS Northern and Intermountain Regions, 2502 E Sherman Ave, Coeur d'Alene, ID 83814, (208) 769-3051, (208) 769-3062, [email protected] 4. REQUESTED FUNDS: USFS $100,000 (Year 1: $34,000; Year 2: $33,000; and Year 3: $33,000), Project Leveraging: University of Idaho $124,329. 5. EXECUTIVE SUMMARY: 1) The current status of ecological research suggests that albeit having some impact on spotted knapweed, both, A. zoegana and C. achates have stronger negative effects on native grasses, thus indirectly benefiting one of most devastating invasive plants in the U.S.
    [Show full text]
  • Water Beetles
    Ireland Red List No. 1 Water beetles Ireland Red List No. 1: Water beetles G.N. Foster1, B.H. Nelson2 & Á. O Connor3 1 3 Eglinton Terrace, Ayr KA7 1JJ 2 Department of Natural Sciences, National Museums Northern Ireland 3 National Parks & Wildlife Service, Department of Environment, Heritage & Local Government Citation: Foster, G. N., Nelson, B. H. & O Connor, Á. (2009) Ireland Red List No. 1 – Water beetles. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover images from top: Dryops similaris (© Roy Anderson); Gyrinus urinator, Hygrotus decoratus, Berosus signaticollis & Platambus maculatus (all © Jonty Denton) Ireland Red List Series Editors: N. Kingston & F. Marnell © National Parks and Wildlife Service 2009 ISSN 2009‐2016 Red list of Irish Water beetles 2009 ____________________________ CONTENTS ACKNOWLEDGEMENTS .................................................................................................................................... 1 EXECUTIVE SUMMARY...................................................................................................................................... 2 INTRODUCTION................................................................................................................................................ 3 NOMENCLATURE AND THE IRISH CHECKLIST................................................................................................ 3 COVERAGE .......................................................................................................................................................
    [Show full text]
  • Methods and Work Profile
    REVIEW OF THE KNOWN AND POTENTIAL BIODIVERSITY IMPACTS OF PHYTOPHTHORA AND THE LIKELY IMPACT ON ECOSYSTEM SERVICES JANUARY 2011 Simon Conyers Kate Somerwill Carmel Ramwell John Hughes Ruth Laybourn Naomi Jones Food and Environment Research Agency Sand Hutton, York, YO41 1LZ 2 CONTENTS Executive Summary .......................................................................................................................... 8 1. Introduction ............................................................................................................ 13 1.1 Background ........................................................................................................................ 13 1.2 Objectives .......................................................................................................................... 15 2. Review of the potential impacts on species of higher trophic groups .................... 16 2.1 Introduction ........................................................................................................................ 16 2.2 Methods ............................................................................................................................. 16 2.3 Results ............................................................................................................................... 17 2.4 Discussion .......................................................................................................................... 44 3. Review of the potential impacts on ecosystem services .......................................
    [Show full text]
  • Globalna Strategija Ohranjanja Rastlinskih
    GLOBALNA STRATEGIJA OHRANJANJA RASTLINSKIH VRST (TOČKA 8) UNIVERSITY BOTANIC GARDENS LJUBLJANA AND GSPC TARGET 8 HORTUS BOTANICUS UNIVERSITATIS LABACENSIS, SLOVENIA INDEX SEMINUM ANNO 2017 COLLECTORUM GLOBALNA STRATEGIJA OHRANJANJA RASTLINSKIH VRST (TOČKA 8) UNIVERSITY BOTANIC GARDENS LJUBLJANA AND GSPC TARGET 8 Recenzenti / Reviewers: Dr. sc. Sanja Kovačić, stručna savjetnica Botanički vrt Biološkog odsjeka Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu muz. svet./ museum councilor/ dr. Nada Praprotnik Naslovnica / Front cover: Semeska banka / Seed bank Foto / Photo: J. Bavcon Foto / Photo: Jože Bavcon, Blanka Ravnjak Urednika / Editors: Jože Bavcon, Blanka Ravnjak Tehnični urednik / Tehnical editor: D. Bavcon Prevod / Translation: GRENS-TIM d.o.o. Elektronska izdaja / E-version Leto izdaje / Year of publication: 2018 Kraj izdaje / Place of publication: Ljubljana Izdal / Published by: Botanični vrt, Oddelek za biologijo, Biotehniška fakulteta UL Ižanska cesta 15, SI-1000 Ljubljana, Slovenija tel.: +386(0) 1 427-12-80, www.botanicni-vrt.si, [email protected] Zanj: znan. svet. dr. Jože Bavcon Botanični vrt je del mreže raziskovalnih infrastrukturnih centrov © Botanični vrt Univerze v Ljubljani / University Botanic Gardens Ljubljana ----------------------------------- Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni knjižnici v Ljubljani COBISS.SI-ID=297076224 ISBN 978-961-6822-51-0 (pdf) ----------------------------------- 1 Kazalo / Index Globalna strategija ohranjanja rastlinskih vrst (točka 8)
    [Show full text]
  • Coleoptera: Curculionidae: Lixinae) Accepted: 23-02-2015
    Journal of Entomology and Zoology Studies 2015; 3 (2): 54-56 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Ultrastructural analysis of endophallus in several JEZS 2015; 3 (2): 54-56 species of the genus Larinus Dejean, 1821 © 2015 JEZS Received: 01-02-2015 (Coleoptera: Curculionidae: Lixinae) Accepted: 23-02-2015 Mahmut Erbey Mahmut Erbey, Selami Candan Department of Biology, Faculty of Art and Science, Ahi Evran Abstract University, Kırşehir, Turkey. The ultrastructures of the endophallus in eight species of the genus Larinus Dejean, 1821 (Larinus scolymi, L. grisescens, L. iaceae, L. latus, L. minutus, L. onopordi, L. sturnus, and L. turbinatus) Selami Candan (Coleoptera: Curculionidae: Lixinae) are investigated. The endophallus was obtained from the aedeagi by Department of Biology, Faculty of Science, Gazi University, dissection. The structures were drawn under a light microscope. The ultrastructures of endophallus (or Ankara, Turkey. internal sac) consisting of spines, teeth and papillae were investigated with a scanning electron microscope. Similarities and differences between all species investigated are discussed. The ultrastructures found, e.g. spines, teeth, papillae and hairs are recognised as important for taxonomy, and can be used for separation of the morphologically similar species. Keywords: Coleoptera, Curculionidae, Lixinae, Larinus, endophallus (internal sac), SEM 1. Introduction In Coleoptera, the male genitalia and associated membranes have been used since long important characters in taxonomy, but the functioning of internal membranes are not yet well understood. Their relative position in the connecting membrane and the genital membrane folding patterns have never been thoroughly investigated [1]. Genital structures provide, in many cases, taxonomically useful characters for distinguishing organisms at species and subspecies level [2].
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • (Fungi, Entomophthoromycota) Attacking Coleoptera with a Key for Their Identification
    Entomophthorales (Fungi, Entomophthoromycota) attacking Coleoptera with a key for their identification Autor(en): Keller, Siegfried Objekttyp: Article Zeitschrift: Mitteilungen der Schweizerischen Entomologischen Gesellschaft = Bulletin de la Société Entomologique Suisse = Journal of the Swiss Entomological Society Band (Jahr): 86 (2013) Heft 3-4 PDF erstellt am: 05.10.2021 Persistenter Link: http://doi.org/10.5169/seals-403074 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch MITTEILUNGEN DER SCHWEIZERISCHEN ENTOMOLOGISCHEN GESELLSCHAFT BULLETIN DE LA SOCIÉTÉ ENTOMOLOGIQUE SUISSE 86: 261-279.2013 Entomophthorales (Fungi, Entomophthoromycota) attacking Coleoptera with a key for their identification Siegfried Keller Rheinweg 14, CH-8264 Eschenz; [email protected] A key to 30 species of entomophthoralean fungi is provided.
    [Show full text]
  • The Curculionoidea of the Maltese Islands (Central Mediterranean) (Coleoptera)
    BULLETIN OF THE ENTOMOLOGICAL SOCIETY OF MALTA (2010) Vol. 3 : 55-143 The Curculionoidea of the Maltese Islands (Central Mediterranean) (Coleoptera) David MIFSUD1 & Enzo COLONNELLI2 ABSTRACT. The Curculionoidea of the families Anthribidae, Rhynchitidae, Apionidae, Nanophyidae, Brachyceridae, Curculionidae, Erirhinidae, Raymondionymidae, Dryophthoridae and Scolytidae from the Maltese islands are reviewed. A total of 182 species are included, of which the following 51 species represent new records for this archipelago: Araecerus fasciculatus and Noxius curtirostris in Anthribidae; Protapion interjectum and Taeniapion rufulum in Apionidae; Corimalia centromaculata and C. tamarisci in Nanophyidae; Amaurorhinus bewickianus, A. sp. nr. paganettii, Brachypera fallax, B. lunata, B. zoilus, Ceutorhynchus leprieuri, Charagmus gressorius, Coniatus tamarisci, Coniocleonus pseudobliquus, Conorhynchus brevirostris, Cosmobaris alboseriata, C. scolopacea, Derelomus chamaeropis, Echinodera sp. nr. variegata, Hypera sp. nr. tenuirostris, Hypurus bertrandi, Larinus scolymi, Leptolepurus meridionalis, Limobius mixtus, Lixus brevirostris, L. punctiventris, L. vilis, Naupactus cervinus, Otiorhynchus armatus, O. liguricus, Rhamphus oxyacanthae, Rhinusa antirrhini, R. herbarum, R. moroderi, Sharpia rubida, Sibinia femoralis, Smicronyx albosquamosus, S. brevicornis, S. rufipennis, Stenocarus ruficornis, Styphloderes exsculptus, Trichosirocalus centrimacula, Tychius argentatus, T. bicolor, T. pauperculus and T. pusillus in Curculionidae; Sitophilus zeamais and
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • (Coleoptera: Curculionidae, Curculioninae) of Iran: Eleven Species Recorded for the First Time, with New Data on Host Plants and Distribution of Several Species
    Journal of Entomological S ociety of Iran 57 2 015, 35(1): 57-68 Tychiini and Mecinini (Coleoptera: Curculionidae, Curculioninae) of Iran: eleven species recorded for the first time, with new data on host plants and distribution of several species R. Gholami Ghavam Abad1&*, S. E. Sadeghi1, H. Ghajarieh2, H. Nasserzadeh3, H. Yarmand1, V. R. Moniri1, M. Nikdel4, A. R. Haghshenas5, Z. Hashemi Khabir6, A. Salahi Ardekani7, A. Mohammadpour8 and R. Caldara9 1. Research Institute of Forests and Rangelands of Iran, Agricultural Research, Education and Exiension Organization (AREEO), Tehran, P. O. Box 13185- 116, Iran, 2. Department of Plant Protection, Aburayhan Faculty, University of Tehran, Tehran, Iran, 3. Department of Insect Taxonomy, Iranian Research Institute of Plant Protection Research, Tehran, P. O. Box 1454 Iran, 4. Agricultural and Natural Resources Research Center of East Azarbaijan, Tabriz, Iran, 5. Agricultural and Natural Resources Research Center of Isfahan, Isfahan, Iran, 6. Agricultural and Natural Resources Research Center of West Azarbaijan, Urumiyeh, Iran, 7. Agricultural and Natural Resources Research Center of Kohkiluyeh and Boyer Ahmad, Yasuj, Iran, 8. Agricultural and Natural Resources Research Center of Qom, Iran, 9. Center of Alpine Entomology, University of Milan, Italy. *Corresponding author, E-mail:[email protected] Abstract A faunistic study on the tribes Tychiini and Mecinini (Curculionidae, Curculioninae) was carried out during the years 2010-2013 in different ecological regions of Iran. Twenty nine species belonging to the genera Mecinus Germar, 1821, Gymnetron Schoenherr, 1825, Rhinusa Stephens, 1829, Cleopomiarus Pierce, 1919, Tychius Germar, 1817 and Sibinia Germar, 1817 were collected. Localities and ecological notes on each species are provided.
    [Show full text]
  • First Descriptions of Larva and Pupa of Bagous Claudicans Boheman
    insects Article First Descriptions of Larva and Pupa of Bagous claudicans Boheman, 1845 (Curculionidae, Bagoinae) and Systematic Position of the Species Based on Molecular and Morphological Data Rafał Gosik 1, Miłosz A. Mazur 2,* and Natalia Sawka-G ˛adek 3 1 Department of Zoology, Maria Curie–Skłodowska University, Akademicka 19, 20–033 Lublin, Poland; [email protected] 2 Institute of Biology, University of Opole, Oleska 22; 45–052 Opole, Poland 3 Institute of Systematics and Evolution of Animals Polish Academy of Sciences; Sławkowska 17, 31–016 Kraków, Poland; [email protected] * Correspondence: [email protected] Received: 29 April 2019; Accepted: 5 June 2019; Published: 10 June 2019 Abstract: In this paper, the mature larva and pupa of Bagous claudicans are described and illustrated for the first time. Measurements of younger larval instars are also given. The biology of the species is discussed in association with larval morphology and feeding habits. Overall larval and pupal morphological characters of the genus Bagous are presented. Confirmation of the larva identification as Bagous claudicans species was conducted by cytochrome oxidase I (COI) sequencing. DNA barcoding was useful for specimen identification of larval stages. The systematic position of the species within the Bagous collignensis-group, based on morphological and molecular results, is also discussed. Keywords: Weevils; Coleoptera; Curculionidae; Bagoini; Bagous; taxonomy; morphology; larva; pupa; biology; COI; DNA barcoding 1. Introduction The globally distributed (except for Central and South America) weevil genus Bagous Germar, 1817 includes about 300 valid species, of which approximately 130 occur in the Palaearctic region, 82 in the Western Palaearctic, and 31 in Central Europe [1–7].
    [Show full text]
  • Milk Thistle
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control BIOLOGY AND BIOLOGICAL CONTROL OF EXOTIC T RU E T HISTL E S RACHEL WINSTON , RICH HANSEN , MA R K SCH W A R ZLÄNDE R , ER IC COO M BS , CA R OL BELL RANDALL , AND RODNEY LY M FHTET-2007-05 U.S. Department Forest September 2008 of Agriculture Service FHTET he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ On the cover: Italian thistle. Photo: ©Saint Mary’s College of California. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S.
    [Show full text]