Inorganic Syntheses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent 0 " Ice Patented May 28, 1968
3,385,666 United States Patent 0 " ice Patented May 28, 1968 1 2 of novel compositions that can be used as a source of 3,385,666 both ozone and oxygen. DIOXYGENYL FLUORIDES OF GROUP V An additional object of this invention is the preparation ELEMENTS of the nitronium ion and intermediates for preparing Archie R. Young II, Montclair, Tetsuyuki Hirata, Whar novel nitronium salts. ton, and Scott I. Morrow, Morris Plains, N.J., assign Further objects of this invention will become apparent ors to Thiokol Chemical Corporation, Bristol, Pa., a corporation of Delaware to the reader upon a further reading of this patent appli No Drawing. Filed Jan. 6, 1964, Ser. No. 336,061 cation. 11 Claims. (Cl. 23-203) The above objects among many others are achieved by 10 the direct interaction of certain ?uoride reactants with This invention relates to a novel class of ?uorinated, dioxygen di?uoride at reaction temperatures well below oxygen containing, oxidizing agents and to a process for 0° C. As indicated earlier the ?uoride reactant is selected their preparation. from the group consisting of Group V ?uorides. More particularly, this invention concerns the prepara The preferred practice is to contact the ?uoride reactant tion of certain stable ?uorides of the cationic dioxygenyl 15 with an excess of 02112 at low temperatures ranging from radical. These novel-oxidizing agents have the formula: —l60 to \—78° C. until a substantial amount of prod uct is formed. The product is isolated after evacuating off the excess 021:2, ?uorine and gaseous by-products. wherein (O2) is the dioxygenyl radical having a charge In one ‘favored process embodiment of this invention of +1, M is an element selected from the group consist 20 a ?uoride reactant chosen ‘from the preferred phosphorus, ing of phosphorus, arsenic antimony and bismuth. -
1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5- -
RSC Advances
RSC Advances REVIEW View Article Online View Journal | View Issue Glymes as versatile solvents for chemical reactions and processes: from the laboratory to industry Cite this: RSC Adv.,2014,4,11251 Shaokun Tanga and Hua Zhao*b Glymes, also known as glycol diethers, are saturated non-cyclic polyethers containing no other functional groups. Most glymes are usually less volatile and less toxic than common laboratory organic solvents; in this context, they are more environmentally benign solvents. However, it is also important to point out that some glymes could cause long-term reproductive and developmental damage despite their low acute toxicities. Glymes have both hydrophilic and hydrophobic characteristics that common organic solvents lack. In addition, they are usually thermally and chemically stable, and can even form complexes with ions. Therefore, glymes are found in a broad range of laboratory applications including organic synthesis, electrochemistry, biocatalysis, materials, Chemical Vapor Deposition (CVD), etc. In addition, glymes are used in numerous industrial applications, such as cleaning products, inks, adhesives and coatings, Received 6th October 2013 batteries and electronics, absorption refrigeration and heat pumps, as well as pharmaceutical Accepted 9th December 2013 formulations, etc. However, there is a lack of a comprehensive and critical review on this attractive DOI: 10.1039/c3ra47191h subject. This review aims to accomplish this task by providing an in-depth understanding of glymes' www.rsc.org/advances physicochemical properties, toxicity and major applications. 1. Introduction based). The general structure of PEG-based glymes and their common names are illustrated in Scheme 1. Glymes, i.e. glycol diethers, are saturated polyethers containing Most glymes are completely miscible with both water and no other functional groups. -
Analysis of Alternatives
ANALYSIS OF ALTERNATIVES Legal name of applicant(s): Acton Technologies Ltd Submitted by: Acton Technologies Ltd (jointly developed with Maflon Spa) Substance: bis(2-methoxyethyl) ether (diglyme): EC 203-924-4: CAS 111-96-6 Use title: Use of bis(2-methoxyethyl) ether (diglyme) as a carrier solvent in the formulation and use of sodium naphthalide etchant for fluoropolymer surface modification whilst preserving article structural integrity (in-house processes). Use of bis(2-methoxyethyl) ether (diglyme) as a carrier solvent in the application of sodium naphthalide etchant for fluoropolymer surface modification whilst preserving article structural integrity (downstream user processes). Use number: 1 and 2 ANALYSIS OF ALTERNATIVES CONTENTS LIST OF ABBREVIATIONS ....................................................................................................................................... 5 DECLARATION .......................................................................................................................................................... 6 1. SUMMARY ............................................................................................................................................................ 7 2. ANALYSIS OF SUBSTANCE FUNCTION.......................................................................................................... 10 2.1. The requirement to modify the surface of fluoropolymers ............................................................................. 10 2.1.1 Fluoropolymers .................................................................................................................................. -
Chemical Redox Agents for Organometallic Chemistry
Chem. Rev. 1996, 96, 877−910 877 Chemical Redox Agents for Organometallic Chemistry Neil G. Connelly*,† and William E. Geiger*,‡ School of Chemistry, University of Bristol, U.K., and Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125 Received October 3, 1995 (Revised Manuscript Received January 9, 1996) Contents I. Introduction 877 A. Scope of the Review 877 B. Benefits of Redox Agents: Comparison with 878 Electrochemical Methods 1. Advantages of Chemical Redox Agents 878 2. Disadvantages of Chemical Redox Agents 879 C. Potentials in Nonaqueous Solvents 879 D. Reversible vs Irreversible ET Reagents 879 E. Categorization of Reagent Strength 881 II. Oxidants 881 A. Inorganic 881 1. Metal and Metal Complex Oxidants 881 2. Main Group Oxidants 887 B. Organic 891 The authors (Bill Geiger, left; Neil Connelly, right) have been at the forefront of organometallic electrochemistry for more than 20 years and have had 1. Radical Cations 891 a long-standing and fruitful collaboration. 2. Carbocations 893 3. Cyanocarbons and Related Electron-Rich 894 Neil Connelly took his B.Sc. (1966) and Ph.D. (1969, under the direction Compounds of Jon McCleverty) degrees at the University of Sheffield, U.K. Post- 4. Quinones 895 doctoral work at the Universities of Wisconsin (with Lawrence F. Dahl) 5. Other Organic Oxidants 896 and Cambridge (with Brian Johnson and Jack Lewis) was followed by an appointment at the University of Bristol (Lectureship, 1971; D.Sc. degree, III. Reductants 896 1973; Readership 1975). His research interests are centered on synthetic A. Inorganic 896 and structural studies of redox-active organometallic and coordination 1. -
Bonding and Structure of Disilenes and Related Unsaturated Group-14 Element Compounds
No. 5] Proc. Jpn. Acad., Ser. B 88 (2012) 167 Review Bonding and structure of disilenes and related unsaturated group-14 element compounds † By Mitsuo KIRA*1, (Communicated by Hitosi NOZAKI, M.J.A.) Abstract: Structure and properties of silicon-silicon doubly bonded compounds (disilenes) are shown to be remarkably different from those of alkenes. X-Ray structural analysis of a series of acyclic tetrakis(trialkylsilyl)disilenes has shown that the geometry of these disilenes is quite flexible, and planar, twist or trans-bent depending on the bulkiness and shape of the trialkylsilyl substituents. Thermal and photochemical interconversion between a cyclotetrasilene and the corresponding bicyclo[1.1.0]tetrasilane occurs via either 1,2-silyl migration or a concerted electrocyclic reaction depending on the ring substituents without intermediacy of the corresponding tetrasila-1,3-diene. Theoretical and spectroscopic studies of a stable spiropentasiladiene have revealed a unique feature of the spiroconjugation in this system. Starting with a stable dialkylsilylene, a number of elaborated disilenes including trisilaallene and its germanium congeners are synthesized. Unlike carbon allenes, the trisilaallene has remarkably bent and fluxional geometry, suggesting the importance of the :-<* orbital mixing. 14-Electron three-coordinate disilene- palladium complexes are found to have much stronger :-complex character than related 16-electron tetracoordinate complexes. Keywords: silicon, germanium, double bond, synthesis, structure, theoretical calculations -
Coordination Chemistry of Xenon
Coordination Chemistry of Xenon Paul Griffin Literature Seminar 11/14/19 Situated on the far side of the periodic table, the chemical inertness of the noble gases has led to their widespread applications ranging from gas-discharge lamps and ion engines for space travel to medical applications including as MRI contrast agents and radiotherapy.1 Though all practical applications of the noble gases center around Xe (0), understanding the reactivity and bonding of xenon in higher oxidation states is fundamental to investigating chemistry at the far end of the periodic table. The reactivity of the noble gases, in particular xenon, was first uncovered when Bartlett, who had previously prepared dioxygenyl hexafluoroplatinate (V) (O2PtF6), noted similar ionization energies for molecular oxygen and atomic xenon (a difference of 0.1 eV).2 Mixing of xenon with PtF6 vapor led to the formation of an orange-yellow solid led to the synthesis of the first noble gas compound, xenon hexafluoroplatinate (V) (XePtF6). The chemistry of xenon has evolved significantly since its’ discovery to include an assortment of xenon fluorides, oxides, oxylfluorides, organoxenon3, and metalloxenon compounds such as the tetraxenoaurate (II) cation (Figure 1).4 These species have weak covalent bonding between Xe and the oxygen/fluorine moieties.5 The chemistry of xenon is dominated by the 2+, 4+, and 6+ oxidation states, though Xe (VIII) compounds are known in the form of perxenates and xenon tetroxide. These primarily ionic species, particularly the oxides, oxylfluorides, and fluorides, serve as precursors to noncovalent adducts of xenon. Figure 1. Organoxenon and metalloxenon species Recent work has led to the preparation of xenon adducts with noncovalently interacting ligands such as acetonitrile6a, 6b, ketones6c, sulfoxides6c, and crown ethers6d (Figure 2) capable of weakly coordinating to xenon salts to afford stable species at room temperature. -
Perylene Diimide: a Versatile Building Block for Complex Molecular Architectures and a Stable Charge Storage Material
Perylene Diimide: A Versatile Building Block for Complex Molecular Architectures and a Stable Charge Storage Material Margarita Milton Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2018 © 2018 Margarita Milton All rights reserved ABSTRACT Perylene Diimide: A Versatile Building Block for Complex Molecular Architectures and a Stable Charge Storage Material Margarita Milton Properties such as chemical robustness, potential for synthetic tunability, and superior electron-accepting character describe the chromophore perylene-3,4,9,10-tetracarboxylic diimide (PDI) and have enabled its penetration into organic photovoltaics. The ability to extend what is already a large aromatic core allows for synthesis of graphene ribbon PDI oligomers. Functionalization with polar and ionic groups leads to liquid crystalline phases or immense supramolecular architectures. Significantly, PDI dianions can survive in water for two months with no decomposition, an important property for charge storage materials. We realized the potential of PDI as an efficient negative-side material for Redox Flow Batteries (RFBs). The synthetic tunability of PDI allowed for screening of several derivatives with side chains that enhanced solubility in polar solvents. The optimized molecule, PDI[TFSI]2, dissolved in acetonitrile up to 0.5 M. For the positive-side, we synthesized the ferrocene oil [Fc4] in high yield. The large hydrodynamic radii of PDI[TFSI]2 and [Fc4] preclude their ability to cross a size exclusion membrane, which is a cheap alternative to the typical RFB membranes. We show that this cellulose-based membrane can support high voltages in excess of 3 V and extreme temperatures (−20 to 110 °C). -
Novel Contributions to the Solid-State Chemistry of Diazenides” 05/2009–11/2009 Master Thesis (Inorganic Chemistry) Ludwig-Maximilian University Munich (Prof
Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Novel Contributions to the Solid-State Chemistry of Diazenides Sebastian Bernhard Schneider aus München, Deutschland 2013 Erklärung Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Wolfgang Schnick betreut. Eidesstattliche Versicherung Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. München, 11.11.2013 …………………………………… (Sebastian Bernhard Schneider) Dissertation eingereicht am 11.11.2013 1. Gutachter: Prof. Dr. Wolfgang Schnick 2. Gutachter: Prof. Dr. Dirk Johrendt Mündliche Prüfung am 16.12.2013 To my family ACKNOWLEDGEMENTS First, I would like to express my gratitude to my supervisor Prof. Dr. Wolfgang Schnick for the opportunity to do my PhD under his guidance. Throughout the entire work, I appreciated his extraordinary expertise, the given freedom in research and writing and the support at any time. For being the co-referee of my thesis, I thank Prof. Dr. Dirk Johrendt. I am thankful to Prof. Dr. Konstantin Karaghiosoff, PD Dr. Markus Lackinger, Prof. Dr. Hans-Christian Böttcher, and Prof. Dr. Jörn Schmedt a. d. Günne for being available as examiners in my viva-voce. In addition, I have to thank various co-workers spread all over Germany and Europe. Hereby, special thanks go to • Volker L. Deringer, Dr. Ralf P. Stoffel as well as Prof. Dr. Richard Dronskowski (RWTH Aachen, Germany) for their long-lasting support with numerous theoretical calculations concerning novel diazenide compounds and for their ongoing enthusiasm until we found the final ground state. • Dr. Lkhamsuren Bayarjargal, Dr. -
Lawrence Berkeley Laboratory UNIVERSITY of CALIFORNIA Materials & Molecular Research Division
u.c- '+ LBL-20810 Rev. c.\ Preprint Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA Materials & Molecular Research Division . '_ ') 1986 :sRARy AND ~·-- ........ _ Submitted to the Journal of the American Chemical Society THE PREPARATION AND CHARACTERIZATION OF RADICAL CATION SALTS DERIVED FROM PERFLUOROBENZENE, PERFLUOROTOLUENE AND PERFLUORONAPHTHALENE T.J. Richardson, F.L. Tanzella and N. Bartlett April 1986 For Reference Not to be taken from this room Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 " ~ .<. DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain conect information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any wananty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. LBL-20810 The Preparation and Characterization of Radical-Cation Salts Derived from Perfluorobenzene, Perfluorotoluene and Perfluoronaphthalene T. J. Richardson, F. L. -
Chapter 5 Molecular Orbitals
Chapter 5 Molecular Orbitals Molecular orbital theory uses group theory to describe the bonding in molecules ; it comple- ments and extends the introductory bonding models in Chapter 3 . In molecular orbital theory the symmetry properties and relative energies of atomic orbitals determine how these orbitals interact to form molecular orbitals. The molecular orbitals are then occupied by the available electrons according to the same rules used for atomic orbitals as described in Sections 2.2.3 and 2.2.4 . The total energy of the electrons in the molecular orbitals is compared with the initial total energy of electrons in the atomic orbitals. If the total energy of the electrons in the molecular orbitals is less than in the atomic orbitals, the molecule is stable relative to the separate atoms; if not, the molecule is unstable and predicted not to form. We will first describe the bonding, or lack of it, in the first 10 homonuclear diatomic molecules ( H2 through Ne2 ) and then expand the discussion to heteronuclear diatomic molecules and molecules having more than two atoms. A less rigorous pictorial approach is adequate to describe bonding in many small mole- cules and can provide clues to more complete descriptions of bonding in larger ones. A more elaborate approach, based on symmetry and employing group theory, is essential to under- stand orbital interactions in more complex molecular structures. In this chapter, we describe the pictorial approach and develop the symmetry methodology required for complex cases. 5.1 Formation of Molecular Orbitals from Atomic Orbitals As with atomic orbitals, Schrödinger equations can be written for electrons in molecules. -
Ideal Gas Thermochemistry of Silicon Inorganic Organic and Ion Compounds
This is the peer reviewed version of the following article: Alexander Burcat, Elke Goos, Ideal gas thermochemical properties of silicon containing inorganic, organic compounds, radicals, and ions, Int J Chem Kinet. 2018;50:633–650, which has been published in final form at http://dx.doi.org/10.1002/kin.21188. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. 1 Ideal Gas Thermochemical Properties of Silicon containing Inorganic, Organic Compounds, Radicals and Ions. Alexander Burcat Faculty of Aerospace Engineering, Technion- Israel Institute of Technology, Haifa 32000, Israel, [email protected] and Elke Goos, Institute of Combustion Technology, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR, German Aerospace Center), Pfaffenwaldring 38, 70569 Stuttgart, Germany. [email protected] ABSTRACT The ideal gas thermochemical properties such as standard heat of formation, entropy and heat capacities of 112 inorganic and 35 organic neutral compounds, radicals and ions containing silicon were calculated using molecular properties obtained with the G3B3 (or G3//B3LYP) method. Among them were linear and cyclic silanes, silenes, hydrocarbonsilanes, fluorine and oxygen containing compounds. Many of their molecular and thermodynamic properties were calculated for the first time and 16 of them had no CAS No. Additionally the thermochemical properties were presented in the NASA 7-term polynomial format for the temperature range of 200 K to 6000 K commonly used in chemical kinetic modeling and simulation programs. The polynomials are available in the supplement to this article free of charge. 2 KEYWORDS Thermodynamic data, Thermochemistry, Thermochemical properties, Heat of formation, Entropy, Enthalpy, Heat capacity, NASA format, Quantum chemical calculation, G3B3 composite approach, Silicon hydride, Silanes, Silicon fluoride, Silicon hydrocarbon, Silicon ions, Silicon compounds, Database INTRODUCTION Silicon containing substances are widely used and important for the mankind.