Analysis of Alternatives

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Alternatives ANALYSIS OF ALTERNATIVES Legal name of applicant(s): Acton Technologies Ltd Submitted by: Acton Technologies Ltd (jointly developed with Maflon Spa) Substance: bis(2-methoxyethyl) ether (diglyme): EC 203-924-4: CAS 111-96-6 Use title: Use of bis(2-methoxyethyl) ether (diglyme) as a carrier solvent in the formulation and use of sodium naphthalide etchant for fluoropolymer surface modification whilst preserving article structural integrity (in-house processes). Use of bis(2-methoxyethyl) ether (diglyme) as a carrier solvent in the application of sodium naphthalide etchant for fluoropolymer surface modification whilst preserving article structural integrity (downstream user processes). Use number: 1 and 2 ANALYSIS OF ALTERNATIVES CONTENTS LIST OF ABBREVIATIONS ....................................................................................................................................... 5 DECLARATION .......................................................................................................................................................... 6 1. SUMMARY ............................................................................................................................................................ 7 2. ANALYSIS OF SUBSTANCE FUNCTION.......................................................................................................... 10 2.1. The requirement to modify the surface of fluoropolymers ............................................................................. 10 2.1.1 Fluoropolymers ................................................................................................................................... 10 2.1.2 Chemistry of surface modification ...................................................................................................... 12 2.1.3 Solvated Electrons in surface modification and the use of sodium metal ........................................... 13 2.1.4 Radical anions in surface modification and the use of sodium naphthalide ........................................ 13 2.1.5 The measurement of the extent of surface modification...................................................................... 14 2.1.5.1 Change in colour ..................................................................................................................... 15 2.1.5.2 Change in surface physical characteristics (surface roughness) .............................................. 15 2.1.5.3 Change in surface chemical composition ................................................................................ 15 2.1.5.4 Change in surface wettability behaviour ................................................................................. 16 2.1.5.5 Change in bonding strength after application of an adhesive .................................................. 19 2.1.5.5.1 Etching and successful surface adhesion .............................................................. 19 2.1.5.6 Industry Standards applied for fluoropolymer etching applications ........................................ 20 2.1.5.6.1 ASTM Standards .................................................................................................. 20 2.1.5.6.2 Specific Industry Standards .................................................................................. 20 2.2. Technical function of diglyme in the wet chemical treatment fluoropolymer surfaces .................................. 22 2.2.1 Chemical functionality ........................................................................................................................ 22 2.2.1.1 Solubility of sodium naphthalide complex .............................................................................. 22 2.2.1.2 Thermal Stability ..................................................................................................................... 23 2.2.1.3 Flash Point ............................................................................................................................... 23 2.2.2 Process functionality ........................................................................................................................... 23 2.2.2.1 Process Temperature ............................................................................................................... 23 2.2.2.2 Process Reaction Time ............................................................................................................ 24 2.2.2.3 Solvent Viscosity ..................................................................................................................... 24 2.2.2.4 Bond strength .......................................................................................................................... 24 2.2.2.5 Polymer range .......................................................................................................................... 25 2.2.2.6 Tribology of surface requiring etching .................................................................................... 25 2.2.2.7 Diglyme recovery and recycling .............................................................................................. 25 2.2.2.8 In-house versus contract etching services ................................................................................ 25 3. ANNUAL TONNAGE............................................................................................................................................ 27 3.1. Customer Profile for Acton Technologies Ltd FSS Etchant. .......................................................................... 27 4. IDENTIFICATION OF POSSIBLE ALTERNATIVES ......................................................................................... 28 4.1. List of possible alternatives ............................................................................................................................ 28 4.2. Description of efforts made to identify possible alternatives .......................................................................... 30 4.2.1 Research and development .................................................................................................................. 30 4.2.2 Data searches ....................................................................................................................................... 30 4.2.3 Consultations ....................................................................................................................................... 30 5. SUITABILITY AND AVAILABILITY OF POSSIBLE ALTERNATIVES ......................................................... 31 5.1. Wet Chemical Treatment Systems .................................................................................................................. 31 5.1.1 Sodium – Ammonia System ................................................................................................................ 31 Use number: 1 & 2 Acton Technologies Ltd 2 ANALYSIS OF ALTERNATIVES 5.1.1.1 Technical feasibility ................................................................................................................ 31 5.1.1.2 Economic feasibility ................................................................................................................ 33 5.1.1.3 Reduction of overall risk due to transition to the alternative ................................................... 33 5.1.1.4 Availability .............................................................................................................................. 34 5.1.1.5 Conclusion on suitability and availability for sodium–ammonia etching alternative .............. 34 5.1.2 Sodium – Naphthalene – Alternative Solvents .................................................................................... 34 5.1.2.1 Substance ID and properties .................................................................................................... 35 5.1.2.2 Technical feasibility ................................................................................................................ 38 5.1.2.2.1 Physico-chemical Properties................................................................................. 38 5.1.2.2.2 Toxicological Properties ....................................................................................... 39 5.1.2.2.3 Process performance ............................................................................................. 39 5.1.2.3 Economic feasibility ................................................................................................................ 44 5.1.2.4 Reduction of overall risk due to transition to an alternative solvent ....................................... 44 5.1.2.5 Availability .............................................................................................................................. 45 5.1.2.6 Conclusion on suitability and availability for Alternative Solvent .......................................... 46 5.1.3 Other reductive pre-treatments involving radical anions ..................................................................... 47 5.1.3.1 Substance ID and properties .................................................................................................... 47 5.1.3.2 Technical feasibility ................................................................................................................ 47 5.1.3.3 Economic feasibility ...............................................................................................................
Recommended publications
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • RSC Advances
    RSC Advances REVIEW View Article Online View Journal | View Issue Glymes as versatile solvents for chemical reactions and processes: from the laboratory to industry Cite this: RSC Adv.,2014,4,11251 Shaokun Tanga and Hua Zhao*b Glymes, also known as glycol diethers, are saturated non-cyclic polyethers containing no other functional groups. Most glymes are usually less volatile and less toxic than common laboratory organic solvents; in this context, they are more environmentally benign solvents. However, it is also important to point out that some glymes could cause long-term reproductive and developmental damage despite their low acute toxicities. Glymes have both hydrophilic and hydrophobic characteristics that common organic solvents lack. In addition, they are usually thermally and chemically stable, and can even form complexes with ions. Therefore, glymes are found in a broad range of laboratory applications including organic synthesis, electrochemistry, biocatalysis, materials, Chemical Vapor Deposition (CVD), etc. In addition, glymes are used in numerous industrial applications, such as cleaning products, inks, adhesives and coatings, Received 6th October 2013 batteries and electronics, absorption refrigeration and heat pumps, as well as pharmaceutical Accepted 9th December 2013 formulations, etc. However, there is a lack of a comprehensive and critical review on this attractive DOI: 10.1039/c3ra47191h subject. This review aims to accomplish this task by providing an in-depth understanding of glymes' www.rsc.org/advances physicochemical properties, toxicity and major applications. 1. Introduction based). The general structure of PEG-based glymes and their common names are illustrated in Scheme 1. Glymes, i.e. glycol diethers, are saturated polyethers containing Most glymes are completely miscible with both water and no other functional groups.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,507,439 Stewart 45) Date of Patent: Mar
    United States Patent (19) 11 Patent Number: 4,507,439 Stewart 45) Date of Patent: Mar. 26, 1985 54 ELASTOMERIC COMPOSITIONS CONTAINING TREATED PTFE OTHER PUBLICATIONS A. A. Benderly, Treatment of Teflon to Promote Bond 75) Inventor: Charles W. Stewart, Newark, Del. ability, J. Appl. Polymer Science VI, 20, 221-225, 73) Assignee: E. I. Du Pont de Nemours and Company, Wilmington, Del. (1962). Primary Examiner-Carman J. Seccuro 21 Appl. No.: 555,488 Attorney, Agent, or Firm-Paul R. Steyermark 22 Filed: Nov. 28, 1983 57 ABSTRACT 51 Int. Cl. ...................... C08L 27/22; C08L 27/16; An elastomeric composition comprising an elastomer C08L 27/18 matrix having dispersed therein about 3-30 parts per 52 U.S. Cl. .................................... 525/199; 525/200; 100 parts by weight of the elastomer of powdered poly 525/195; 525/196; 525/326.2, 525/366; tetrafluoroethylene having a number average molecular 525/367 weight of at least about 250,000 and a surface area of at 58 Field of Search ........................ 525/199, 195, 196 least 1 m2/g which has been treated with about 56) . References Cited 50-120% of sodium-naphthalene addition compound or U.S. PATENT DOCUMENTS another addition compound of an alkali metal required for the alkali metal to react with all the fluorine atoms 2,710,290 6/1955 Safford et al. ........................ 260/41 2,871,144 1/1959 Doban ........... ... 117/138.8 on the surface of the polytetrafluoroethylene powder. 3,019,206 1/1962 Robb ................................... 525/199 By dispersing such treated polytetrafluoroethylene 3,940,455 2/1976 Kaufman ............................
    [Show full text]
  • ANALYSIS of ALTERNATIVES and SOCIO-ECONOMIC ASSESSMENT
    ANALYSIS OF ALTERNATIVES and SOCIO-ECONOMIC ASSESSMENT Legal name of applicant(s): Maflon Spa Submitted by: Maflon Spa (jointly developed with Acton Technologies Ltd) Substance: bis(2-methoxyethyl) ether (diglyme): EC 203-924-4: CAS 111-96-6 Use title: Use of bis(2-methoxyethyl) ether (diglyme) as a carrier solvent in the formulation and use of sodium naphthalide etchant for fluoropolymer surface modification whilst preserving article structural integrity (in-house processes). Use number: 1 ANALYSIS OF ALTERNATIVES CONTENTS LIST OF ABBREVIATIONS ....................................................................................................................................... 5 DECLARATION .......................................................................................................................................................... 6 1. SUMMARY ............................................................................................................................................................ 7 2. ANALYSIS OF SUBSTANCE FUNCTION.......................................................................................................... 9 2.1. The requirement to modify the surface of fluoropolymers ............................................................................. 9 2.1.1 Fluoropolymers ................................................................................................................................... 9 2.1.2 Chemistry of surface modification .....................................................................................................
    [Show full text]
  • Perylene Diimide: a Versatile Building Block for Complex Molecular Architectures and a Stable Charge Storage Material
    Perylene Diimide: A Versatile Building Block for Complex Molecular Architectures and a Stable Charge Storage Material Margarita Milton Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2018 © 2018 Margarita Milton All rights reserved ABSTRACT Perylene Diimide: A Versatile Building Block for Complex Molecular Architectures and a Stable Charge Storage Material Margarita Milton Properties such as chemical robustness, potential for synthetic tunability, and superior electron-accepting character describe the chromophore perylene-3,4,9,10-tetracarboxylic diimide (PDI) and have enabled its penetration into organic photovoltaics. The ability to extend what is already a large aromatic core allows for synthesis of graphene ribbon PDI oligomers. Functionalization with polar and ionic groups leads to liquid crystalline phases or immense supramolecular architectures. Significantly, PDI dianions can survive in water for two months with no decomposition, an important property for charge storage materials. We realized the potential of PDI as an efficient negative-side material for Redox Flow Batteries (RFBs). The synthetic tunability of PDI allowed for screening of several derivatives with side chains that enhanced solubility in polar solvents. The optimized molecule, PDI[TFSI]2, dissolved in acetonitrile up to 0.5 M. For the positive-side, we synthesized the ferrocene oil [Fc4] in high yield. The large hydrodynamic radii of PDI[TFSI]2 and [Fc4] preclude their ability to cross a size exclusion membrane, which is a cheap alternative to the typical RFB membranes. We show that this cellulose-based membrane can support high voltages in excess of 3 V and extreme temperatures (−20 to 110 °C).
    [Show full text]
  • Title 46 Shipping Parts 140 to 155
    Title 46 Shipping Parts 140 to 155 Revised as of October 1, 2011 Containing a codification of documents of general applicability and future effect As of October 1, 2011 Published by the Office of the Federal Register National Archives and Records Administration as a Special Edition of the Federal Register VerDate Mar<15>2010 14:46 Nov 01, 2011 Jkt 223197 PO 00000 Frm 00001 Fmt 8091 Sfmt 8091 Q:\46\46V5.TXT ofr150 PsN: PC150 U.S. GOVERNMENT OFFICIAL EDITION NOTICE Legal Status and Use of Seals and Logos The seal of the National Archives and Records Administration (NARA) authenticates the Code of Federal Regulations (CFR) as the official codification of Federal regulations established under the Federal Register Act. Under the provisions of 44 U.S.C. 1507, the contents of the CFR, a special edition of the Federal Register, shall be judicially noticed. The CFR is prima facie evidence of the origi- nal documents published in the Federal Register (44 U.S.C. 1510). It is prohibited to use NARA’s official seal and the stylized Code of Federal Regulations logo on any republication of this material without the express, written permission of the Archivist of the United States or the Archivist’s designee. Any person using NARA’s official seals and logos in a manner inconsistent with the provisions of 36 CFR part 1200 is subject to the penalties specified in 18 U.S.C. 506, 701, and 1017. Use of ISBN Prefix This is the Official U.S. Government edition of this publication and is herein identified to certify its authenticity.
    [Show full text]
  • Fluorocarbon Post-Etch Residue Removal Using Radical Anion Chemistry
    FLUOROCARBON POST-ETCH RESIDUE REMOVAL USING RADICAL ANION CHEMISTRY A Thesis Presented to the Academic Faculty by Christopher L. Timmons In Partial Fulfillment of the Requirements of the degree Doctor of Philosophy in Chemical Engineering Georgia Institute of Technology November 2004 FLUOROCARBON POST-ETCH RESIDUE REMOVAL USING RADICAL ANION CHEMISTRY Approved: Dr. Dennis Hess, Chairman Dr. Carson Meredith School of Biomolecular & Chemical Engineering School of Biomolecular & Chemical Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Paul Kohl Dr. Joseph Schork School of Biomolecular & Chemical Engineering School of Biomolecular & Chemical Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Charles Liotta School of Biomolecular & Chemical Engineering and School of Chemistry and Biochemistry Date Approved: Georgia Institute of Technology November 22, 2004 ACKNOWLEDGEMENTS I would like to gratefully acknowledge my thesis advisor, Professor Dennis Hess, for his guidance, enthusiasm and support during my studies. He has instilled in me an appreciation for science and creativity in research that I hope is reflected in this work. I would also like to thank my committee members, Dr. Charles Liotta, Dr. Paul Kohl, Dr. Carson Meredith and Dr. Joseph Schork, for their insightful suggestions, feedback and critique of my work. The generous use of equipment and training provided by the research groups of Dr. Paul Kohl, Dr. Cliff Henderson, Dr. Lawrence Bottomley, Dr, Jiri Janata, Dr. Charles Eckert, and Dr. Jack Winnick were essential for my success throughout my research. I wish to thank the current and past members of my research group for providing a stimulating and fun environment including Dr.
    [Show full text]
  • Sodium Etchant C-Etch M
    Creative Engineers, Inc. Safety Data Sheet Section 1: Identification Product Name: Fluoropolymer Etchant (C-ETCH-M) Manufacturing Company: Creative Engineers, Inc. 15425 Elm Dr. New Freedom, Pa 17349, USA Information Contact: [email protected] (443) 807-1202 Emergency Telephone Number: Chemtrec (800) 424-9300 Section 2: Hazards Identification GHS Classification in accordance with 29 CFR 1910.1200 (OSHA HCS) Substances and mixtures, which in contact with water, emit flammable gases (category 1), H260 Flammable Liquids (Category 3), H226 Skin Irritant (Category 2), H315 Skin Corrosion (Category 1B), H314 Reproductive Toxicity (Category 1B), H360 Carcinogenicity (Category 2), H351 GHS Label elements, including precautionary statements Pictogram: Signal Word: Danger Hazard Statement(s) H260 Substances and mixtures, which in contact with water, emit flammable gases H226 Flammable liquid and vapor H315 Causes skin irritation H314 Causes severe skin burns and eye damage H360 May damage fertility or the unborn child H351 Suspected of causing cancer Precautionary Statement(s) P201 Obtain special instructions before use P202 Do not handle until all safety precautions have been read and understood P210 Keep away from heat/spark/open flames/hot surfaces – no smoking. P223 Keep away from any possible contact with water, because of violent reaction and possible flash fire. P233 Keep container tightly closed. P240 Ground/bond container and receiving equipment. P241 Use explosion-proof electrical/ventilating/lighting equipment. P242 Use only non-sparking tools. P243 Take precautionary measures against static discharge. P264 Wash skin thoroughly after handling P270 Do not eat, drink or smoke when using this product P280 Wear protective gloves/protective clothing/eye protection/face protection.
    [Show full text]
  • Chemical Safety and Waste Management Manual
    Chemical Safety and Waste Management Manual University of Alabama at Birmingham Department of Occupational Health & Safety Chemical Safety Division 2002 EDITION 1. INTRODUCTION In a comparatively short time, the University of Alabama at Birmingham has gained significant recognition as a center of excellence for teaching, medical services and research programs. This is a highly commendable achievement and one that could not have been realized without the continued support and dedication of faculty, staff members, and employees. Similar unfailing cooperation and support are necessary for the institution to be equally successful in its development of a comprehensive occupational health and safety program for the protection of University personnel, students, and the surrounding community. An important part of this program is concerned with the safe and prudent handling of chemicals and their proper legal disposal as regulated by the Environmental Protection Agency (EPA) and the Alabama Department of Environmental Management (ADEM). Almost every laboratory and many allied and support personnel at UAB use chemicals in their daily activities. It is the purpose of this manual to describe the operation of the Chemical Safety Program and to provide guidance in establishing safe work practices for the use of chemicals. This program applies to all work operations at this University where employees may be exposed to hazardous substances under normal working conditions or during an emergency. The Chemical Safety and Waste Management Manual combines both the Chemical Hygiene Plan for laboratories and the Hazard Communication Program for maintenance, environmental services, and other support personnel. The Occupational Safety and Health Administration (OSHA) Hazard Communication Standard may be found at : http://www.osha- slc.gov/OshStd_data/1910_1200.html.
    [Show full text]
  • Electrochemical Oxidation of Polymer Anions and Arene Anions
    Polymer Journal, Vol. 3, No. 5, pp 617-623 (1972) Electrochemical Oxidation of Polymer Anions and Arene Anions Seiichi NAKAHAMA and Noboru y AMAZAKI Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo, Japan. (Received January 10, 1972) ABSTRACT: In order to investigate the reactivity of carbanions in anionic poly­ merizations, oscillopolarographic measurements of oxidation potentials of polymer anions and arene anions were carried out in tetrahydrofuran solutions with sodium tetraethyl­ aluminate as a supporting electrolyte. The oxidation potentials of the carbanions measured with a microplatinum electrode were expressed against the standard potential of naphthalene radical anion: phenanthrene-, 0 V; biphenyl-, 0 V; anthracene2-, 0.27 V; stilbene2-, 0.48 V; (polystyrene)2-, 1.26 V; [poly(a-methylstyrene)J2-, 1.13 V; (diphenyl­ ethylene2)2-, 1.13 V, poly(4-vinylpyridine)2-, 1.75 V, fluorene-, 1.71 V. There is a linear relationship between oxidation potentials and energy level of the highest occupied molecular orbitals of these carbanions, which were obtained from the Hi.ickel molecular­ orbital method. It was suggested that the oxidation wave was caused by direct electron transfer from carbanion to anode. The carbanion, which was reported to have a high reactivity for the initiation or propagation of anionic polymerization, exhibited a less noble oxidation potential. The electrolytic oxidation of disodium a-methylstyrene tetramer yielded an oligomer of high molecular weight, 1000, in anodic compartment. For the anodic reaction,
    [Show full text]
  • Chemicalshemicals
    ® CCHEMICALSHEMICALS PRODUCT CATALOG Specialty Chemical Manufacturing Since 1928 Reagents Inorganics Organics Terms of Service GFS Warranty OR APPLICATION OF GFS PRODUCTS IN A GFS products are warranted to conform, on MANNER CONTRARY TO THESE LIMITATIONS the date of shipment, to the GFS specifications SHALL BE AT THE USER’S SOLE RISK, AND in effect at the time of product manufacture. SHALL RELIEVE GFS OF ALL WARRANTIES, The GFS warranty obligation is limited to either LIABILITY AND RESPONSIBILITY WITH replacement of non-conforming product or the RESPECT THERETO. These limitations may refund of the purchase price. GFS products not be modified, affected or superseded by are not certified for or intended for direct Customer, nor by any language, term or use in food, drug, or cosmetic applications.- provision contained in Customer’s purchase Any other warranties, express or implied, order, confirmation or other correspondence that assume merchantability or fitness for a or communication. ONLY THE PRESIDENT OF particular purpose are disclaimed. Under no GFS CHEMICALS MAY ALTER GFS STANDARD circumstances shall GFS Chemicals, Inc. be TERMS AND CONDITIONS. RELIANCE ON liable for indirect, secondary, or consequential CONTRADICTORY STATEMENTS, WHETHER damages of any nature, including without VERBAL OR WRITTEN, BY NON-AUTHORIZED limitation loss of profits or business GFS EMPLOYEES THAT WOULD ALTER THESE interruption. STANDARD GFS TERMS AND CONDITIONS IS STRICTLY PROHIBITED. Limitation on GFS Product Use, Warranties and Liability Use of Products and Information Unless otherwise specifically certified in GFS Chemicals, Inc. offers technical writing by the President of GFS Chemicals, information and products for use by qualified Inc. (GFS), GFS products are not intended, technicians capable of understanding and approved or authorized for human or animal communicating their respective hazards.
    [Show full text]
  • Chapter 8 Ionic Chain Polymerization
    Chapter 8 Ionic Chain Polymerization The carbon–carbon double bond can be polymerized either by free radical or ionic methods. The difference arises because the p-bond of a vinyl monomer can respond appropriately to the initiator species by either homolytic or heterolytic bond breakage as shown in Eq. 8.1. CC CC CC ð8:1Þ Although radical, cationic, and anionic initiators are used in chain polymeri- zations, they cannot be used indiscriminately, since all three types of initiation do not work for all monomers. Monomers show varying degrees of selectivity with regard to the type of reactive center that will cause their polymerization. Most monomers will undergo polymerization with a radical initiator, although at varying rates. However, monomers show high selectivity toward ionic initiators [1]. Some monomers may not polymerize with cationic initiators, while others may not polymerize with anionic initiators. The coordination polymerization requires coordination catalyst to synthesize polymers. It has been used extensively to polymerize high performance polyolefin but seldom used in the polymerization of polar monomer [2]. The detailed mechanisms of coordination polymerization will be discussed in Chap. 9. The various behaviors of monomers toward polymeri- zation can be seen in Table 8.1. The types of initiation that bring about the polymerization of various monomers to high-molecular-weight polymer are indi- cated. Thus, although the polymerization of all monomers in Table 8.1 is ther- modynamically feasible, kinetic feasibility is achieved in many cases only with a specific type of initiation. The carbon–carbon double bond in vinyl monomers and the carbon–oxygen double bond in aldehydes and ketones are the two main types of linkages that undergo chain polymerization.
    [Show full text]