Perylene Diimide: a Versatile Building Block for Complex Molecular Architectures and a Stable Charge Storage Material
Total Page:16
File Type:pdf, Size:1020Kb
Perylene Diimide: A Versatile Building Block for Complex Molecular Architectures and a Stable Charge Storage Material Margarita Milton Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2018 © 2018 Margarita Milton All rights reserved ABSTRACT Perylene Diimide: A Versatile Building Block for Complex Molecular Architectures and a Stable Charge Storage Material Margarita Milton Properties such as chemical robustness, potential for synthetic tunability, and superior electron-accepting character describe the chromophore perylene-3,4,9,10-tetracarboxylic diimide (PDI) and have enabled its penetration into organic photovoltaics. The ability to extend what is already a large aromatic core allows for synthesis of graphene ribbon PDI oligomers. Functionalization with polar and ionic groups leads to liquid crystalline phases or immense supramolecular architectures. Significantly, PDI dianions can survive in water for two months with no decomposition, an important property for charge storage materials. We realized the potential of PDI as an efficient negative-side material for Redox Flow Batteries (RFBs). The synthetic tunability of PDI allowed for screening of several derivatives with side chains that enhanced solubility in polar solvents. The optimized molecule, PDI[TFSI]2, dissolved in acetonitrile up to 0.5 M. For the positive-side, we synthesized the ferrocene oil [Fc4] in high yield. The large hydrodynamic radii of PDI[TFSI]2 and [Fc4] preclude their ability to cross a size exclusion membrane, which is a cheap alternative to the typical RFB membranes. We show that this cellulose-based membrane can support high voltages in excess of 3 V and extreme temperatures (−20 to 110 °C). We assembled a cell with 0.4 M electron concentration with negligible capacity loss for over 450 cycles (>74 days). Such concentration and stability are among the highest values reported in redox flow batteries with organic electrolytes. Oxidative photocyclizations of PDI onto acenes administer regiochemistry that favors helical products, albeit with a small number of overlapping π-bonded atoms. We achieved an oxidative photocyclization of PDI onto phenanthrene to form the [7]helicenes PPDHa and PPDHb with 20 overlapping π-bonded atoms, as well as a partially planar molecule 5HPP. Higher temperature increases the ratio of PPDHa:5HPP. Calculations reveal that these molecules contain ~20 kcal/mol more strain than planar analogs, and single crystals show bending of the PDI units from their favored planarity. The PPDH molecules display a new electronic transition in their UV-Vis spectra that sets them apart from monomer PDI and other PDI helicenes. Spectroelectrochemical measurements confirm that PPDHb accepts four electrons. Compared to a naphthyl-fused PDI helicene with only 10 overlapping π-bonded atoms, the PPDH molecules have a heightened ability to delocalize the first added electron. Table of Contents List of Figures ................................................................................................................... iii List of Tables .................................................................................................................... ix List of Schemes ................................................................................................................. ix 1 General Introduction to Perylene Diimide ............................................ 1 1.1 Functionalization of Perylene Diimide ...........................................................1 1.2 References .........................................................................................................3 2 A Non-aqueous Redox Flow Battery with High Coulombic Efficiency and Stable Cycling ........................................................................................ 5 2.1 Introduction to Redox Flow Batteries ............................................................5 2.2 The Membrane ...............................................................................................12 2.3 Results and Discussion ...................................................................................15 2.3.1 Benzene Scaffold Derivatives ....................................................................15 2.3.2 Ferrocene Derivatives as Oils ....................................................................18 2.3.3 Initial Battery Experiments ........................................................................19 2.3.4 Polar-Soluble Anolytes ..............................................................................23 2.3.5 Battery Experiments with Polar Soluble PDIs ...........................................25 2.3.6 Expanding the Scope of the System...........................................................31 2.4 Conclusion ......................................................................................................35 2.5 Supplementary Information .........................................................................35 2.5.1 General Experimental Information ............................................................35 2.5.2 Synthetic Procedures and Characterization Data .......................................39 2.5.3 1H-NMR and 13C-NMR Spectra ................................................................49 i 2.6 Acknowledgements ........................................................................................55 2.7 References .......................................................................................................55 3 The Synthesis of a π-Extended Perylene Diimide Helicene ............... 59 3.1 Introduction to Helicenes ..............................................................................59 3.2 Results and Discussion ...................................................................................64 3.2.1 Synthesis and Purification of PDI Helicenes .............................................64 3.2.2 Strain Energy Calculations and Structure Analysis ...................................68 3.3 Photophysical Properties and Electron Delocalization in PDI Helicenes ...........................................................................................................................70 3.3.1 Photophysical Characterization and Electronic Structure Calculations .....70 3.3.2 Electron Delocalization in PDI Dimers .....................................................74 3.4 Conclusion ......................................................................................................83 3.5 Supplementary Information .........................................................................84 3.5.1 General Experimental Information ............................................................84 3.5.2 Synthesis and Characterization ..................................................................87 3.5.3 1H-NMR and 13C-NMR Spectra ................................................................98 3.5.4 Molecular Orbitals of PPDHb, PPDHa, and 5HPP ...............................107 3.5.5 DFT-Optimized Molecular Structures and TD-DFT Excited State Calculations of the Synthesized Helicenes PPDHb, PPDHa, and 5HPP ......................110 3.5.6 DFT-Optimized Molecular Structures of the Strain Comparison Molecules PPDPb, PPDPa, and 5HPPb ..........................................................................................133 3.5.7 Single-crystal X-ray Diffraction Data of PPDHb ...................................141 3.6 Acknowledgements .....................................................................................142 ii 3.7 References .....................................................................................................143 List of Figures Figure 1.1 Basic PDI building block structure ...................................................................1 Figure 1.2 PDI tetramer and NPDH ..................................................................................3 Figure 2.1 Schematic of a redox flow battery ....................................................................6 Figure 2.2 The effect of percent capacity retention on battery lifetime .............................7 Figure 2.3 Selected aqueous redox reactions of the Aziz group ........................................9 Figure 2.4 Selected nonaqueous RFB molecules .............................................................11 Figure 2.5 Pyridiniums and cyclopropeniums of the Sanford group ...............................12 Figure 2.6 Schematic of size exclusion membrane ..........................................................14 Figure 2.7 Synthesis of TPB and photo of dialysis experiment ......................................15 Figure 2.8 Cyclic voltammogram of TPB and [Fc4] in THF ..........................................20 Figure 2.9 Results of Experiment 9 and 12 ......................................................................23 Figure 2.10 Cyclic voltammogram of [PDI][Ts]2 and [PDI][TFSI]2/[Fc4] ...................25 Figure 2.11 Results of Experiment 13 .............................................................................26 Figure 2.12 Results of Experiment 14 and 15 ..................................................................27 Figure 2.13 Results of Experiment 26 .............................................................................30 Figure 2.14 Results of Experiment 27 .............................................................................31 Figure 2.15 Results of pouch