Atmosphere Purification of Xenon, Radon, and Radon Daughter Elements

Total Page:16

File Type:pdf, Size:1020Kb

Atmosphere Purification of Xenon, Radon, and Radon Daughter Elements United States Patent im [in 3,13,439 Stein [45] Aug. 27, 1974 [54] ATMOSPHERE PURIFICATION OF XENON, 3,377,136 4/1968 Morrow 423/262 RADON & RADON DAUGHTER ELEMENTS 3,778,499 12/1973 Stein 423/210 3,784,674 1/1974 Stein 423/210 X [75] Inventor: Lawrence Stein, Downers Grove, 111. [73] Assignee: The United States of America as Primary Examiner—Earl C. Thomas represented by the United States Attorney, Agent, or Firm—John A. Horan; Arthur A. Atomic Energy Commission, Churm; James W. Weinberger Washington, D.C. [22] Filed: Mar. 27, 1973 [57] ABSTRACT [21] Appl. No.: 345,419 A method of purifying an atmosphere of xenon, radon and radon daughter elements by passing the atmo- [52] U.S. CI 423/210, 423/249, 423/262, sphere containing these elements through a reaction 423/472, 176/37, 252/301.1 R bed of dioxygenyl hexafluoroantimonate, which oxi- [51] Int. CI BOld 53/34 dizes the xenon, radon and radon daughter elements [58] Field of Search 423/210, 262, 472, 249; to their respective fluorides which remain in the reac- tion bed and are thus removed from the atmosphere, 176/37; 252/301.1 R, 301.1 W and recirculating the purified atmosphere. The [56] References Cited method is also useful for separating the before-named elements from krypton. UNITED STATES PATENTS 3,185,548 5/1965 Fields et al 423/262 9 Claims, No Drawings 3,829,551 1 2 ATMOSPHERE PURIFICATION OF XENON, Radioactive noble gases are also found in the atmo- RADON & RADON DAUGHTER ELEMENTS spheres of nuclear reactor power facilities and nuclear reactor fuel reprocessing facilities. These gases gener- alI rnwTDAPTHAi nDirtK, ncTUc iw„cMTinM y consist of a number of isotopeP s of krypton and CONTRACTUAL ORIGIN OF THE INVENTION $ xe^on and range in half.,ife from sec0nds to years. The invention described herein was made in the Many of the krypton and xenon isotopes which have course of, or under, a contract with the UNITED short half-lives have radioactive daughter elements STATES ATOMIC ENERGY COMMISSION. having relatively long half-lives. In a boiling water reac- tor, the fission gases which have entered the water in BACKGROUND OF THE INVENTION 10 the reactor, either by diffusion through the fuel clad- This invention relates to a method for purifying an ding or through breaks in the cladding, are released at atmosphere of xenon, radon and radon daughter ele- the exit of the turbine condenser. These gases are nor- ments which may be contained therein and for the sep- mally discharged to the atmosphere after a short delay aration of these elements from krypton. time. In the pressurized water reactor, the gases are re- Radon is a heavy, radioactive, gaseous element 15 moved in the coolant loop and are stored for periods up formed by the alpha disintegration of radium. The most to months to eliminate the short-lived gases by radioac- common isotope, 222Rn, is an alpha emitter with a half- tive decay. In each case, the quantity of fission gas life of 3.8 days. Radon is inherently associated with ra- eventually released to the atmosphere depends upon dium in uranium ores and, with its short-lived radioac- the condition of the reactor fuel, and emissions could tive daughters, 2l8Po, 214Pb, 214Bi, and 214Po, constitutes 20 be increased greatly in the event of an accident such as a potential health hazard in uranium mining and ore- a fuel meltdown. Emissions from liquid-metal-cooled handling operations. The daughter elements are solids reactors, breeder reactors, and high-temperature-gas- and tend to be retained in the lungs, where they may cooled reactors will arise from the same general source ultimately cause cancer. but will vary as to nature and quantity from those ema- Forced ventilation is generally used to lower concen- 25 nating from light-water reactors, trations of the radioactive elements in the atmosphere Industrial sources of non-fission-product krypton and of a uranium mine, but it is often difficult to lower the xenon are liquid-air plants. Air contains only 1.14 ppm concentrations adequately in all parts of a mine by this krypton and 0.087 ppm xenon. The cost of obtaining method, since the gaseous radon diffuses continuously noble gases from liquidair plants is therefore high and from exposed veins of uranium ore and from piles of 30 the supply, particularly of xenon, is limited. Various the broken ore. methods have been developed for the treatment of Several methods have been developed for the re- these gaseous reactor wastes and the recovery of the moval of radon and its daughter elements from the at- fission product noble gases. Fixed adsorption beds have mosphere by contacting the atmosphere with various been used in a number of applications for the removal chemicals capable of reacting with the elements to re- ^5 Qf radioactive noble gases from dilute gas streams at move them from the atmosphere. room temperature. These adsorption beds may be ei- One of these methods uses a fluorinating solution to ther charcoal or molecular sieve. The advantages of the oxidize the radon and daughter elements to fluoride room temperature adsorption process are that it is sim- compounds which then dissolve in the solution. How- pie to operate and will accept very dilute feed material, ever, liquid fluorinating solutions pose several prob- 40 Disadvantages are the large volume of adsorbent re- lems. The liquids are highly corrosive and, in some in- quired and the potential fire hazard with charcoal. A stances, have high vapor pressures. Corrosionresistant low-temperature charcoal process can also be used for equipment is therefore required for contacting large noble gas recovery. It has the disadvantages of high op- volumes of air with the liquid phase. Additional equip- erating cost, requires pretreatment of the inlet gas to ment is also necessary to further purify the atmosphere 45 beds, and also requires extensive liquid nitrogen pro- (i.e., to remove any hazardous vapors picked up from duction capabilities and a steady flow and constant the fluorinating solution) before the atmosphere is re- composition of incoming feed gas. Low-temperature circulated. In another method, the atmosphere contain- adsorption beds are similar to room-temperature beds ing the radon and radon daughter elements is passed but are much smaller in size, since the noble gas capac- through a solid reaction bed of a fluorinating com- ity of adsorbents increases markedly as the bed temper- pound, as disclosed in applicant's copending applica- ature approaches liquid nitrogen temperature. Halo- tion Ser. No. 179,229 (70), filed Sept. 9, 1971. In this carbon solvents such as Freon have also been used for method, the elements are oxidized by the fluorinating selective adsorption of krypton and xenon. This compound to their respective fluorides and remain in 55 method utilizes the high solubility of krypton and the reaction bed; they are thus removed from the atmo- xenon in the solvent. In a continuous adsorption pro- sphere, which may then be recirculated. The fluorinat- cess, krypton and xenon are preferentially removed ing compounds disclosed therein are complex fluorides from an incoming gas stream by selective dissolution in formed by reaction of halogen fluorides and metal fluo- a Freon solvent at relatively low temperature and high rides such as ClF2SbF6, BrF2SbF6, BrF4SbFu, IF4 SbF6, 6Q pressure. and Br2BiF6. One problem with the use of the solid re- The recovery of xenon and krypton by treating gase- action compounds is that they release halogen fluoride ous radioactive wastes with fluorine is described in an vapors as reduction products in their reactions with ra- article entitled "Recovery of Xenon and Krypton in the don. These must be removed from the radon-free atmo- Treatment of Gaseous Radioactive Wastes" by J. Sliv- sphere before it can be recirculated. This removal re- 65 nik, Proceedings of Symposium on Treatment of Air- quires additional equipment and adds to the over-all borne Radioactive Wastes, Int. At. Energ. Agency, Vi- cost of radon and radon daughter element removal enna, 1968, pp. 315-321. In this study, an attempt was from the atmosphere. made to react xenon and krypton with fluorine at high 3,829,551 3 4 pressures and elevated temperatures. It was found that, thesis of Dioxygenyl Salts," Shamir and Binenboym, while the xenon would react with the fluorine, krypton Inorganica Chimica Acta, 2, 37, March 1968. The prod- would not, which permitted the separation of xenon uct obtained by photochemical reaction of oxygen, flu- from the krypton. However, fluorine is not a conve- orine and antimony pentafluoride is a white, crystalline nient reagent for this purpose, as it must be heated with 5 powder. the process gas and the excess fluorine must be re- The method of this invention is operable at tempera- moved afterwards. tures from about 0°C. to about 125°C., above which SUMMARY OF THE INVENTION temperature 02SbF„ begins to decompose. At these temperatures, the xenon, radon and radon daughter el- I have found a method for purifying an atmosphere 10 ements will react immediately with the hexafluoroanti- of xenon, radon and radon daughter elements by pass- monate compound. No reaction of krypton at 485 to ing the atmosphere containing these elements through 70Q mm pressure was observed from 23° to 150°C. a reaction bed of 02SbF6, whereby the xenon radon ,n the method of thjs invention> the atmosphere to be and radon daughter elements are oxidized to their re- fied .g d th h a reaction bed Qf Q SbFs in spective fluorides, which remain on the bed and are ° , , , .£. , . , n , , .
Recommended publications
  • UNITED STATES PATENT Office SVEND S
    Patented May 24, 1932 1,859,998 UNITED STATES PATENT oFFICE SVEND S. SVENDSEN, OF CHICAGO, ILLINOIS, ASSIGNOR TO CLAY REDUCTION comi PANY, OF CHICAGO, ILLINOIS, A CORPORATION OF ILLINOIs . HYDRATED SILICA No Drawing. Application filed December 23, 1927. Serial No. 242,291. This invention relates to the production of silicofluoride is also volatilized and collected hydrated silica from a silicious material such in aqueous animonia. The volatilization oc as silica and silicates generally. - - - - curs about 300 C. The following reactions According to the invention the silicious take place in the aqueous ammonia at tem 5 material is treated with ammonium fluoride peratures below 34 C.: 5 5 or bifluoride and silicon ammonia fluorine compounds are produced. These compounds 2SiF(NH) +2H.O= are volatilized and converted into hydrated (NH4)2SiFs--SiO, (hydrated) + silica by the action of water and ammonia. 2NH.F. (IV) O Metallic silicates or substances containing (NH)SiF+4NH,+2HO = them can be subjected to this treatment di SiO, (hydrated) + 6NH.F. (V) rectly. In treating silica in the form of quartz it is found to be necessary to subject It is thus apparent that O heating the it to a preliminary treatment in order to fa silicious material with the ammonium-flu cilitate the action of the ammonium fluoride oride, ammonia-silicon-fluorine compounds a or bifluoride thereon. A suitable preliminary are formed, and by employing suitable tem treatment is to heat the quartz to a bright red peratures are volatilized from the reaction heat and suddenly cool it by immersion in mixture. These compounds may be silicon water.
    [Show full text]
  • Elemental Fluorine Product Information (Pdf)
    Elemental Fluorine Contents 1 Introduction ............................................................................................................... 4 2.1 Technical Application of Fluorine ............................................................................. 5 2.2 Electronic Application of Fluorine ........................................................................... 7 2.3 Fluorine On-Site Plant ............................................................................................ 8 3 Specifications ............................................................................................................ 9 4 Safety ...................................................................................................................... 10 4.1 Maintenance of the F2 system .............................................................................. 12 4.2 First Aid ................................................................................................................ 13 5.1 Chemical Properties ............................................................................................. 14 5.2 Physical Data ....................................................................................................... 15 6 Toxicity .................................................................................................................... 18 7 Shipping and Transport ........................................................................................... 20 8 Environment ...........................................................................................................
    [Show full text]
  • United States Patent 0 " Ice Patented May 28, 1968
    3,385,666 United States Patent 0 " ice Patented May 28, 1968 1 2 of novel compositions that can be used as a source of 3,385,666 both ozone and oxygen. DIOXYGENYL FLUORIDES OF GROUP V An additional object of this invention is the preparation ELEMENTS of the nitronium ion and intermediates for preparing Archie R. Young II, Montclair, Tetsuyuki Hirata, Whar novel nitronium salts. ton, and Scott I. Morrow, Morris Plains, N.J., assign Further objects of this invention will become apparent ors to Thiokol Chemical Corporation, Bristol, Pa., a corporation of Delaware to the reader upon a further reading of this patent appli No Drawing. Filed Jan. 6, 1964, Ser. No. 336,061 cation. 11 Claims. (Cl. 23-203) The above objects among many others are achieved by 10 the direct interaction of certain ?uoride reactants with This invention relates to a novel class of ?uorinated, dioxygen di?uoride at reaction temperatures well below oxygen containing, oxidizing agents and to a process for 0° C. As indicated earlier the ?uoride reactant is selected their preparation. from the group consisting of Group V ?uorides. More particularly, this invention concerns the prepara The preferred practice is to contact the ?uoride reactant tion of certain stable ?uorides of the cationic dioxygenyl 15 with an excess of 02112 at low temperatures ranging from radical. These novel-oxidizing agents have the formula: —l60 to \—78° C. until a substantial amount of prod uct is formed. The product is isolated after evacuating off the excess 021:2, ?uorine and gaseous by-products. wherein (O2) is the dioxygenyl radical having a charge In one ‘favored process embodiment of this invention of +1, M is an element selected from the group consist 20 a ?uoride reactant chosen ‘from the preferred phosphorus, ing of phosphorus, arsenic antimony and bismuth.
    [Show full text]
  • Periodic Trends in the Main Group Elements
    Chemistry of The Main Group Elements 1. Hydrogen Hydrogen is the most abundant element in the universe, but it accounts for less than 1% (by mass) in the Earth’s crust. It is the third most abundant element in the living system. There are three naturally occurring isotopes of hydrogen: hydrogen (1H) - the most abundant isotope, deuterium (2H), and tritium 3 ( H) which is radioactive. Most of hydrogen occurs as H2O, hydrocarbon, and biological compounds. Hydrogen is a colorless gas with m.p. = -259oC (14 K) and b.p. = -253oC (20 K). Hydrogen is placed in Group 1A (1), together with alkali metals, because of its single electron in the valence shell and its common oxidation state of +1. However, it is physically and chemically different from any of the alkali metals. Hydrogen reacts with reactive metals (such as those of Group 1A and 2A) to for metal hydrides, where hydrogen is the anion with a “-1” charge. Because of this hydrogen may also be placed in Group 7A (17) together with the halogens. Like other nonmetals, hydrogen has a relatively high ionization energy (I.E. = 1311 kJ/mol), and its electronegativity is 2.1 (twice as high as those of alkali metals). Reactions of Hydrogen with Reactive Metals to form Salt like Hydrides Hydrogen reacts with reactive metals to form ionic (salt like) hydrides: 2Li(s) + H2(g) 2LiH(s); Ca(s) + H2(g) CaH2(s); The hydrides are very reactive and act as a strong base. It reacts violently with water to produce hydrogen gas: NaH(s) + H2O(l) NaOH(aq) + H2(g); It is also a strong reducing agent and is used to reduce TiCl4 to titanium metal: TiCl4(l) + 4LiH(s) Ti(s) + 4LiCl(s) + 2H2(g) Reactions of Hydrogen with Nonmetals Hydrogen reacts with nonmetals to form covalent compounds such as HF, HCl, HBr, HI, H2O, H2S, NH3, CH4, and other organic and biological compounds.
    [Show full text]
  • UNITED STATES PATENT OFFICE 2,499,833 METEOD of MARING FLUORNATED ORGANIC COMPOUNDS Melvin A
    Patented Mar. 7, 1950 2,499,833 UNITED STATES PATENT OFFICE 2,499,833 METEOD OF MARING FLUORNATED ORGANIC COMPOUNDS Melvin A. Perkins, Wilmington, Del, assignor to the United States of America as represented by the United States Atomic Energy Commission No Drawing. Application July 2, 1944, Serial No. 546,916 3 Claims. (C. 260-648) 2 This invention relates to new halogen com silver difluoride to replace hydrogen and saturate pounds and to methods for their production. any residual double bonds. It is an object of the invention to provide prod The products have densities in the neighbor lucts of high thermal stability and inertness to hood of 1.8 and refractive indices of about 1.3 chemical reagents, particularly oxidizing agents, s (sodium-D-line) at 23° C. They are usually ob acids, bases and metals. A further object is the tained in the crude state as mixtures of compounds provision of products suitable for use as heat of the molecular formulae CaF16, CaClF15, CaCl2F14 transfer media, lubricants and Sealants. Further and other chloro-fluorocarbons, from which the objects will appear from the following detailed individual constituents may be obtained by frac description of the invention. tional distillation. The products possess a high In my United States patent application Serial degree of stability to oxidizing agents, acids, bases Number 546,915 entitled "Halogenated organic and metals, and the stability increases with the compounds and method of making,' filed on the degree of fluorination. Thus the compound CaF16 Same date herewith, which became U. S. Patent is the most stable compound of the group and the No.
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • "Fluorine Compounds, Organic," In: Ullmann's Encyclopedia Of
    Article No : a11_349 Fluorine Compounds, Organic GU¨ NTER SIEGEMUND, Hoechst Aktiengesellschaft, Frankfurt, Federal Republic of Germany WERNER SCHWERTFEGER, Hoechst Aktiengesellschaft, Frankfurt, Federal Republic of Germany ANDREW FEIRING, E. I. DuPont de Nemours & Co., Wilmington, Delaware, United States BRUCE SMART, E. I. DuPont de Nemours & Co., Wilmington, Delaware, United States FRED BEHR, Minnesota Mining and Manufacturing Company, St. Paul, Minnesota, United States HERWARD VOGEL, Minnesota Mining and Manufacturing Company, St. Paul, Minnesota, United States BLAINE MCKUSICK, E. I. DuPont de Nemours & Co., Wilmington, Delaware, United States 1. Introduction....................... 444 8. Fluorinated Carboxylic Acids and 2. Production Processes ................ 445 Fluorinated Alkanesulfonic Acids ...... 470 2.1. Substitution of Hydrogen............. 445 8.1. Fluorinated Carboxylic Acids ......... 470 2.2. Halogen – Fluorine Exchange ......... 446 8.1.1. Fluorinated Acetic Acids .............. 470 2.3. Synthesis from Fluorinated Synthons ... 447 8.1.2. Long-Chain Perfluorocarboxylic Acids .... 470 2.4. Addition of Hydrogen Fluoride to 8.1.3. Fluorinated Dicarboxylic Acids ......... 472 Unsaturated Bonds ................. 447 8.1.4. Tetrafluoroethylene – Perfluorovinyl Ether 2.5. Miscellaneous Methods .............. 447 Copolymers with Carboxylic Acid Groups . 472 2.6. Purification and Analysis ............. 447 8.2. Fluorinated Alkanesulfonic Acids ...... 472 3. Fluorinated Alkanes................. 448 8.2.1. Perfluoroalkanesulfonic Acids
    [Show full text]
  • The List of Extremely Hazardous Substances)
    APPENDIX A (THE LIST OF EXTREMELY HAZARDOUS SUBSTANCES) THRESHOLD REPORTABLE INVENTORY RELEASE QUANTITY QUANTITY CAS NUMBER CHEMICAL NAME (POUNDS) (POUNDS) 75-86-5 ACETONE CYANOHYDRIN 500 10 1752-30-3 ACETONE THIOSEMICARBAZIDE 500/500 1,000 107-02-8 ACROLEIN 500 1 79-06-1 ACRYLAMIDE 500/500 5,000 107-13-1 ACRYLONITRILE 500 100 814-68-6 ACRYLYL CHLORIDE 100 100 111-69-3 ADIPONITRILE 500 1,000 116-06-3 ALDICARB 100/500 1 309-00-2 ALDRIN 500/500 1 107-18-6 ALLYL ALCOHOL 500 100 107-11-9 ALLYLAMINE 500 500 20859-73-8 ALUMINUM PHOSPHIDE 500 100 54-62-6 AMINOPTERIN 500/500 500 78-53-5 AMITON 500 500 3734-97-2 AMITON OXALATE 100/500 100 7664-41-7 AMMONIA 500 100 300-62-9 AMPHETAMINE 500 1,000 62-53-3 ANILINE 500 5,000 88-05-1 ANILINE,2,4,6-TRIMETHYL- 500 500 7783-70-2 ANTIMONY PENTAFLUORIDE 500 500 1397-94-0 ANTIMYCIN A 500/500 1,000 86-88-4 ANTU 500/500 100 1303-28-2 ARSENIC PENTOXIDE 100/500 1 THRESHOLD REPORTABLE INVENTORY RELEASE QUANTITY QUANTITY CAS NUMBER CHEMICAL NAME (POUNDS) (POUNDS) 1327-53-3 ARSENOUS OXIDE 100/500 1 7784-34-1 ARSENOUS TRICHLORIDE 500 1 7784-42-1 ARSINE 100 100 2642-71-9 AZINPHOS-ETHYL 100/500 100 86-50-0 AZINPHOS-METHYL 10/500 1 98-87-3 BENZAL CHLORIDE 500 5,000 98-16-8 BENZENAMINE, 3-(TRIFLUOROMETHYL)- 500 500 100-14-1 BENZENE, 1-(CHLOROMETHYL)-4-NITRO- 500/500 500 98-05-5 BENZENEARSONIC ACID 10/500 10 3615-21-2 BENZIMIDAZOLE, 4,5-DICHLORO-2-(TRI- 500/500 500 FLUOROMETHYL)- 98-07-7 BENZOTRICHLORIDE 100 10 100-44-7 BENZYL CHLORIDE 500 100 140-29-4 BENZYL CYANIDE 500 500 15271-41-7 BICYCLO[2.2.1]HEPTANE-2-CARBONITRILE,5-
    [Show full text]
  • United States Patent Office Patented Sept
    2,904,588 United States Patent Office Patented Sept. 15, 1959 - 2 m Three grams of the product prepared as described above was placed in a polyethylene bottle and 6 g. of water 2,904,588 was added. After the initial exothermic reaction had FLUOROPHOSPHORANES AND THEIR subsided and the solution had cooled, a white crystalline PREPARATION solid separated. This solid was recrystallized twice from water. After drying, the product melted at 159 to 161 William C. Smith, Wilmington, Del, assignor to E. I. du C. The melting point of benzenephosphonic acid is 159 Pont de Nemours and Company, Wilmington, Del., a to 161° C., and this is the product expected from the com corporation of Delaware plete hydrolysis of phenyltetrafluorophosphorane. No Drawing. Application March 26, 1956 O Nuclear magnetic resonance examination of the phenyl Serial No. 573,659 tetrafluorophosphorane showed it to have four equiv alent fluorine atoms bound to phosphorus, which indi 15 Claims. (C. 260-543) cated a square pyramidal structure. This invention relates to new compositions of matter 5 EXAMPLE II and to their preparation. Example I was repeated, using a charge consisting Organic fluorine compounds have attained considerable of 53.7 g (0.3 mole) of phenylphosphonous dichloride importance in recent years and simple and economic in the reaction flask and 65.1 g (0.3 mole) of antimony methods for their preparation are greatly desired. pentafluoride in the dropping funnel. The antimony This invention has as an object the preparation of new 20 pentafluoride was added to the phenylphosphonous di fluorophosphoranes. A further object is the provision of chloride at such a rate that the temperature of the reac a new process for their preparation.
    [Show full text]
  • Acutely / Extremely Hazardous Waste List
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extemely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extemely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extemely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extemely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extemely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extemely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extemely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extemely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extemely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Chemical Redox Agents for Organometallic Chemistry
    Chem. Rev. 1996, 96, 877−910 877 Chemical Redox Agents for Organometallic Chemistry Neil G. Connelly*,† and William E. Geiger*,‡ School of Chemistry, University of Bristol, U.K., and Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125 Received October 3, 1995 (Revised Manuscript Received January 9, 1996) Contents I. Introduction 877 A. Scope of the Review 877 B. Benefits of Redox Agents: Comparison with 878 Electrochemical Methods 1. Advantages of Chemical Redox Agents 878 2. Disadvantages of Chemical Redox Agents 879 C. Potentials in Nonaqueous Solvents 879 D. Reversible vs Irreversible ET Reagents 879 E. Categorization of Reagent Strength 881 II. Oxidants 881 A. Inorganic 881 1. Metal and Metal Complex Oxidants 881 2. Main Group Oxidants 887 B. Organic 891 The authors (Bill Geiger, left; Neil Connelly, right) have been at the forefront of organometallic electrochemistry for more than 20 years and have had 1. Radical Cations 891 a long-standing and fruitful collaboration. 2. Carbocations 893 3. Cyanocarbons and Related Electron-Rich 894 Neil Connelly took his B.Sc. (1966) and Ph.D. (1969, under the direction Compounds of Jon McCleverty) degrees at the University of Sheffield, U.K. Post- 4. Quinones 895 doctoral work at the Universities of Wisconsin (with Lawrence F. Dahl) 5. Other Organic Oxidants 896 and Cambridge (with Brian Johnson and Jack Lewis) was followed by an appointment at the University of Bristol (Lectureship, 1971; D.Sc. degree, III. Reductants 896 1973; Readership 1975). His research interests are centered on synthetic A. Inorganic 896 and structural studies of redox-active organometallic and coordination 1.
    [Show full text]
  • List of Lists
    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
    [Show full text]