Population Genetics, Distributions and Phenology of Bombus Latreille, 1802 and Xylocopa Latreille, 1802 (Hymenoptera: Apidae)

Total Page:16

File Type:pdf, Size:1020Kb

Population Genetics, Distributions and Phenology of Bombus Latreille, 1802 and Xylocopa Latreille, 1802 (Hymenoptera: Apidae) University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2014 Population Genetics, Distributions and Phenology of Bombus Latreille, 1802 and Xylocopa Latreille, 1802 (Hymenoptera: Apidae) Amber Dawn Tripodi University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Agriculture Commons, Biology Commons, and the Entomology Commons Recommended Citation Tripodi, Amber Dawn, "Population Genetics, Distributions and Phenology of Bombus Latreille, 1802 and Xylocopa Latreille, 1802 (Hymenoptera: Apidae)" (2014). Theses and Dissertations. 2132. http://scholarworks.uark.edu/etd/2132 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Population Genetics, Distributions and Phenology of Bombus Latreille, 1802 and Xylocopa Latreille, 1802 (Hymenoptera:Apidae) Population Genetics, Distributions and Phenology of Bombus Latreille, 1802 and Xylocopa Latreille, 1802 (Hymenoptera:Apidae) A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology by Amber Dawn Tripodi University of Arkansas Bachelor of Science in Biology, 2005 University of Colorado Master of Science in Environmental Sciences, 2009 December 2014 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. _______________________________ Dr. Allen L. Szalanski Dissertation Director _______________________________ _______________________________ Dr. Jeffery K. Barnes Dr. Donn T. Johnson Committee Member Committee Member _______________________________ _______________________________ Dr. Marlis R. Douglas Dr. Kenneth L. Kvamme Committee Member Committee Member ABSTRACT This work addresses multiple knowledge gaps in bee ecology, population health and phylogeography in order to provide insights into the changing distributions of native bees. A comparison of Arkansas bumble bee records mirrors range-wide surveys, with records of stable species (Bombus bimaculatus Cresson, 1863 and B. impatiens Cresson, 1863) increasing three- fold, and records of the declining B. pensylvanicus (DeGeer, 1773) dropping to 60% of historical levels. However, nationally-recommended conservation-genetics tools did not mirror these results on a regional level. Stable and declining species had equivalent genetic diversity in samples from Arkansas and Tennessee (HS range: 0.46–0.63). Diploid males, which indicate inbreeding, were only detected in the species known to be stable, B. bimaculatus and B. impatiens. This could be an indication of broad similarity of these taxa in the region, or it could indicate that recommended microsatellite-based tools are less likely to detect genetic signatures of declines at a localized level. A three-year survey of floral associations and seasonality in a community of eight bee species across Northwest Arkansas found that local and landscape factors had no effect on the differential abundances of this community, but overall abundance increased with increasing plant richness at each site (F(1,11)=45.62, p<0.001), as did the abundance of each bumble bee species. Bumble bees with long glossae, a group usually thought to be at higher risk of decline, were more specialized in their flower use, and although their food choices overlapped (O12=0.54), they skirted potential competition by maintaining different phenologies. Subspecies status was maintained for Xylocopa virginica texana Cresson, 1872, but not for X. v. krombeini Hurd, 1961. This morphological east-west differentiation is additionally supported by mitochondrial phylogeographic analyses which suggest that X. virginica expanded from multiple glacial refugia. On the other hand, X. micans haplotypes are consistent with a single origin, likely west of the Mississippi River. In spite of its interpopulation homogeneity, X. micans is quite genetically diverse (Hd=0.91±0.03) compared to X. virginica and (Hd=0.78±0.02), consistent with Hewitt’s leading-edge hypothesis for range disparity. Together, these results highlight the importance of an ecological perspective in the quest to understand bee distributions and decline. ACKNOWLEDGEMENTS I would like to thank a number of people that have aided me in my endeavors, although none of them are to blame for the results. Firstly, I wish to thank my advisor, Allen Szalanski for the unwavering support, encouragement, advice and guidance he has provided throughout the years. I would also like to thank my committee members, Marlis Douglas, Jeffery Barnes, Donn Johnson and Kenneth Kvamme for always being willing to help and offer encouragement, whether my crises were scientific or existential. I extend the deepest gratitude to my companions in the department, Susan Osredker, Soo-Hoon (Sam) Kim, Ace Lynn-Miller, Bryan Petty, Mark Janowiecki and Clinton Trammel whose willingness to join me in adventures and conversations kept me both sane and engaged over the years. I also thank my parents, Lloyd Tripodi and Dawn Hall for their overwhelming enthusiasm and encouragement. Finally, none of this would have been possible without the incredible support of my best friend, Josh Gladwin, without whom I would have forgotten to eat and never would have dreamed of pursuing a Ph.D. TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF APPENDICES I. INTRODUCTION ..........................................................................................................................1 A. BEES AND POLLINATION ...............................................................................................1 B. A REVIEW OF THE POTENTIAL CAUSES OF BUMBLE BEE DECLINE ...............................2 C. CONTRASTS OF DIVERSITY AND DISTRIBUTION IN CARPENTER BEES ........................ 23 D. REFERENCES ...............................................................................................................29 II. THE BUMBLE BEES OF ARKANSAS, FIFTY YEARS LATER ........................................................42 A. ABSTRACT ..................................................................................................................42 B. INTRODUCTION .......................................................................................................... 42 C. MATERIALS AND METHODS ........................................................................................44 D. RESULTS .....................................................................................................................46 E. DISCUSSION ............................................................................................................... 47 F. SPECIES ACCOUNTS ....................................................................................................51 G. ACKNOWLEDGMENTS ................................................................................................ 61 H. REFERENCES ...............................................................................................................61 III. A MATTER OF SCALE: USING POPULATION GENETICS TO ASSESS THE CONSERVATION STATUS OF BUMBLE BEE POPULATIONS ............................................................................... 69 A. ABSTRACT ................................................................................................................. 69 B. INTRODUCTION .......................................................................................................... 69 C. MATERIALS AND METHODS ........................................................................................71 D. RESULTS .................................................................................................................... 75 E. DISCUSSION ............................................................................................................... 77 F. ACKNOWLEDGMENTS ................................................................................................. 79 G. REFERENCES .............................................................................................................. 80 H. APPENDICES .............................................................................................................. 87 IV. PRELIMINARY SURVEY FOR DIPLOID MALES IN A FEW POPULATIONS OF BOMBUS LATREILLE, 1802 (HYMENOPTERA: APIDAE) USING MICROSATELLITES .............................. 92 A. ABSTRACT ................................................................................................................. 92 B. INTRODUCTION .......................................................................................................... 92 C. MATERIALS AND METHODS ....................................................................................... 94 D. RESULTS AND DISCUSSION ........................................................................................ 96 E. ACKNOWLEDGEMENTS ............................................................................................... 97 F. REFERENCES .............................................................................................................. 98 V. DISTRIBUTION, DIVERSITY AND ABUNDANCE OF BEES (HYMENOPTERA: APIDAE) ON A REGIONAL SCALE: AUTECOLOGY AND COMMUNITY ECOLOGY OF BEES IN NORTHWEST ARKANSAS ........................................................................................................................
Recommended publications
  • Anthidium Manicatum, an Invasive Bee, Excludes a Native Bumble Bee, Bombus Impatiens, from floral Resources
    Biol Invasions https://doi.org/10.1007/s10530-018-1889-7 (0123456789().,-volV)(0123456789().,-volV) ORIGINAL PAPER Anthidium manicatum, an invasive bee, excludes a native bumble bee, Bombus impatiens, from floral resources Kelsey K. Graham . Katherine Eaton . Isabel Obrien . Philip T. Starks Received: 15 April 2018 / Accepted: 21 November 2018 Ó Springer Nature Switzerland AG 2018 Abstract Anthidium manicatum is an invasive pol- response to A. manicatum presence. We found that B. linator reaching widespread distribution in North impatiens avoided foraging near A. manicatum in both America. Male A. manicatum aggressively defend years; but despite this resource exclusion, we found no floral territories, attacking heterospecific pollinators. evidence of fitness consequences for B. impatiens. Female A. manicatum are generalists, visiting many of These results suggest A. manicatum pose as significant the same plants as native pollinators. Because of A. resource competitors, but that B. impatiens are likely manicatum’s rapid range expansion, the territorial able to compensate for this resource loss by finding behavior of males, and the potential for female A. available resources elsewhere. manicatum to be significant resource competitors, invasive A. manicatum have been prioritized as a Keywords Exotic species Á Resource competition Á species of interest for impact assessment. But despite Interspecific competition Á Foraging behavior Á concerns, there have been no empirical studies inves- Pollination tigating the impact of A. manicatum on North Amer- ican pollinators. Therefore, across a two-year study, we monitored foraging behavior and fitness of the common eastern bumble bee (Bombus impatiens) in Introduction With increasing movement of goods and people Electronic supplementary material The online version of around the world, introduction of exotic species is this article (https://doi.org/10.1007/s10530-018-1889-7) con- increasing at an unprecedented rate (Ricciardi et al.
    [Show full text]
  • The Maryland Entomologist
    THE MARYLAND ENTOMOLOGIST Insect and related-arthropod studies in the Mid-Atlantic region Volume 7, Number 2 September 2018 September 2018 The Maryland Entomologist Volume 7, Number 2 MARYLAND ENTOMOLOGICAL SOCIETY www.mdentsoc.org Executive Committee: President Frederick Paras Vice President Philip J. Kean Secretary Janet A. Lydon Treasurer Edgar A. Cohen, Jr. Historian (vacant) Journal Editor Eugene J. Scarpulla E-newsletter Editors Aditi Dubey The Maryland Entomological Society (MES) was founded in November 1971, to promote the science of entomology in all its sub-disciplines; to provide a common meeting venue for professional and amateur entomologists residing in Maryland, the District of Columbia, and nearby areas; to issue a periodical and other publications dealing with entomology; and to facilitate the exchange of ideas and information through its meetings and publications. The MES was incorporated in April 1982 and is a 501(c)(3) non-profit, scientific organization. The MES logo features an illustration of Euphydryas phaëton (Drury) (Lepidoptera: Nymphalidae), the Baltimore Checkerspot, with its generic name above and its specific epithet below (both in capital letters), all on a pale green field; all these are within a yellow ring double-bordered by red, bearing the message “● Maryland Entomological Society ● 1971 ●”. All of this is positioned above the Shield of the State of Maryland. In 1973, the Baltimore Checkerspot was named the official insect of the State of Maryland through the efforts of many MES members. Membership in the MES is open to all persons interested in the study of entomology. All members receive the annual journal, The Maryland Entomologist, and the monthly e-newsletter, Phaëton.
    [Show full text]
  • Honey Bees: a Guide for Veterinarians
    the veterinarian’s role in honey bee health HONEY BEES: A GUIDE FOR VETERINARIANS 01.01.17 TABLE OF CONTENTS Introduction Honey bees and veterinarians Honey bee basics and terminology Beekeeping equipment and terminology Honey bee hive inspection Signs of honey bee health Honey bee diseases Bacterial diseases American foulbrood (AFB) European foulbrood (EFB) Diseases that look like AFB and EFB Idiopathic Brood Disease (IBD) Parasitic Mite Syndrome (PMS) Viruses Paralytic viruses Sacbrood Microsporidial diseases Nosema Fungal diseases Chalkbrood Parasitic diseases Parasitic Mite Syndrome (PMS) Tracheal mites Small hive beetles Tropilaelaps species Other disease conditions Malnutrition Pesticide toxicity Diploid drone syndrome Overly hygienic hive Drone-laying queen Laying Worker Colony Collapse Disorder Submission of samples for laboratory testing Honeybee Flowchart (used with permission from One Health Veterinary Consulting, Inc.) Additional Resources Acknowledgements © American Veterinary Medical Association 2017. This information has not been approved by the AVMA Board of Directors or the House of Delegates, and it is not to be construed as AVMA policy nor as a definitive statement on the subject, but rather to serve as a resource providing practical information for veterinarians. INTRODUCTION Honey bees weren’t on veterinarians’ radars until the U.S. Food and Drug Administration issued a final Veterinary Feed Directive (VFD) rule, effective January 1, 2017, that classifies honey bees as livestock and places them under the provisions of the VFD. As a result of that rule and changes in the FDA’s policy on medically important antimicrobials, honey bees now fall into the veterinarians’ purview, and veterinarians need to know about their care.
    [Show full text]
  • Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
    ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P.
    [Show full text]
  • Guide to MN Bumble Bees: Females
    Guide to MN Bumble Bees: Females This guide is only for females (12 antennal segments, 6 abdominal segments, most bumble Three small bees, most have pollen baskets, no beards on their mandibles). First determine which yellow eyes highlighted section your bee is in, then go through numbered characters to find a match. See if your bee matches the color patterns shown and the description in the text. Color patterns ® can vary. More detailed keys are available at discoverlife.org. Top of head Bee Front of face Squad Join the search for bumble bees with www.bumbleebeewatch.org Cheek Yellow hairs between wings, 1st abdominal band yellow (may have black spot in center of thorax) 1. Black on sides of 2nd ab, yellow or rusty in center 2.All other ab segments black 3. 2nd ab brownish centrally surrounded by yellow 2nd abdominal 2nd abdominal Light lemon Center spot band with yellow band with yellow hairs on on thorax with in middle, black yellow in middle top of head and sometimes faint V on sides. Yellow bordered by and on thorax. shaped extension often in a “W” rusty brown in a back from the shape. Top of swooping shape. middle. Queens head yellow. Top of head do not have black. Bombus impatiens Bombus affinis brownish central rusty patched bumble bee Bombus bimaculatus Bombus griseocollis common eastern bumble bee C patch. two-spotted bumble bee C brown-belted bumble bee C 5. Yellow on front edge of 2nd ab 6. No obvious spot on thorax. 4. 2nd ab entirely yellow and ab 3-6 black Yellow on top Black on top of Variable color of head.
    [Show full text]
  • Beewalk Report 2020
    BeeWalk Annual Report 2020 Richard Comont and Helen Dickinson BeeWalk Annual Report 2020 About BeeWalk BeeWalk is a standardised bumblebee-monitoring scheme active across Great Britain since 2008, and this report covers the period 2008–19. The scheme protocol involves volunteer BeeWalkers walking the same fixed route (a transect) at least once a month between March and October (inclusive). This covers the full flight period of the bumblebees, including emergence from overwintering and workers tailing off. Volunteers record the abundance of each bumblebee species seen in a 4 m x 4 m x 2 m ‘recording box’ in order to standardise between habitats and observers. It is run by Dr Richard Comont and Helen Dickinson of the Bumblebee Conservation Trust (BBCT). To contact the scheme organisers, please email [email protected]. Acknowledgements We are indebted to the volunteers and organisations past and present who have contributed data to the scheme or have helped recruit or train others in connection with it. Thanks must also go to all the individuals and organisations who allow or even actively promote access to their land for bumblebee recording. We would like to thank the financial contribution by the Redwing Trust, Esmée Fairbairn Foundation, Garfield Weston Foundation and the many other organisations, charitable trusts and individuals who have supported the BeeWalk scheme in particular, and the Bumblebee Conservation Trust in general. In particular, the Biological Records Centre have provided website support, data storage and desk space free of charge. Finally, we would like to thank the photographers who have allowed their excellent images to be used as part of this BeeWalk Annual Report.
    [Show full text]
  • Bumble Bees of CT-Females
    Guide to CT Bumble Bees: Females This guide is only for females (12 antennal segments, 6 abdominal segments, most bumble bees, most have pollen baskets, no beards on their mandibles). First determine which yellow Three small eyes highlighted section your bee is in, then go through numbered characters to find a match. See if your bee matches the color patterns shown and the description in the text. Color patterns can vary. More detailed keys are available at discoverlife.org. Top of head Join the search for bumble bees with www.bumbleebeewatch.org Front of face Cheek Yellow hairs between wings, 1st abdominal band yellow (may have black spot in center of thorax) 1. Black on sides of 2nd ab, yellow or rusty in center 2.All other ab segments black 3. 2nd ab brownish centrally surrounded by yellow 2nd abdominal 2nd abdominal Light lemon Center spot band with yellow band with yellow hairs on on thorax with in middle, black yellow in middle top of head and sometimes faint V on sides. Yellow bordered by and on thorax. shaped extension often in a “W” rusty brown in a back from the shape. Top of swooping shape. middle. Queens head yellow. Top of head do not have black. Bombus impatiens Bombus affinis brownish central rusty patched bumble bee Bombus bimaculatus Bombus griseocollis common eastern bumble bee patch. two-spotted bumble bee brown-belted bumble bee 4. 2nd ab entirely yellow and ab 3-6 black 5. No obvious spot on thorax. Yellow on top Black on top of Variable color of head.
    [Show full text]
  • Bumblebee in the UK
    There are 24 species of bumblebee in the UK. This field guide contains illustrations and descriptions of the eight most common species. All illustrations 1.5x actual size. There has been a marked decline in the diversity and abundance of wild bees across Europe in recent decades. In the UK, two species of bumblebee have become extinct within the last 80 years, and seven species are listed in the Government’s Biodiversity Action Plan as priorities for conservation. This decline has been largely attributed to habitat destruction and fragmentation, as a result of Queen Worker Male urbanisation and the intensification of agricultural practices. Common The Centre for Agroecology and Food Security is conducting Tree bumblebee (Bombus hypnorum) research to encourage and support bumblebees in food Bumblebees growing areas on allotments and in gardens. Bees are of the United Kingdom Queens, workers and males all have a brown-ginger essential for food security, and are regarded as the most thorax, and a black abdomen with a white tail. This important insect pollinators worldwide. Of the 100 crop species that provide 90% of the world’s food, over 70 are recent arrival from France is now present across most pollinated by bees. of England and Wales, and is thought to be moving northwards. Size: queen 18mm, worker 14mm, male 16mm The Centre for Agroecology and Food Security (CAFS) is a joint initiative between Coventry University and Garden Organic, which brings together social and natural scientists whose collective research expertise in the fields of agriculture and food spans several decades. The Centre conducts critical, rigorous and relevant research which contributes to the development of agricultural and food production practices which are economically sound, socially just and promote long-term protection of natural Queen Worker Male resources.
    [Show full text]
  • Global Trends in Bumble Bee Health
    EN65CH11_Cameron ARjats.cls December 18, 2019 20:52 Annual Review of Entomology Global Trends in Bumble Bee Health Sydney A. Cameron1,∗ and Ben M. Sadd2 1Department of Entomology, University of Illinois, Urbana, Illinois 61801, USA; email: [email protected] 2School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA; email: [email protected] Annu. Rev. Entomol. 2020. 65:209–32 Keywords First published as a Review in Advance on Bombus, pollinator, status, decline, conservation, neonicotinoids, pathogens October 14, 2019 The Annual Review of Entomology is online at Abstract ento.annualreviews.org Bumble bees (Bombus) are unusually important pollinators, with approx- https://doi.org/10.1146/annurev-ento-011118- imately 260 wild species native to all biogeographic regions except sub- 111847 Saharan Africa, Australia, and New Zealand. As they are vitally important in Copyright © 2020 by Annual Reviews. natural ecosystems and to agricultural food production globally, the increase Annu. Rev. Entomol. 2020.65:209-232. Downloaded from www.annualreviews.org All rights reserved in reports of declining distribution and abundance over the past decade ∗ Corresponding author has led to an explosion of interest in bumble bee population decline. We Access provided by University of Illinois - Urbana Champaign on 02/11/20. For personal use only. summarize data on the threat status of wild bumble bee species across bio- geographic regions, underscoring regions lacking assessment data. Focusing on data-rich studies, we also synthesize recent research on potential causes of population declines. There is evidence that habitat loss, changing climate, pathogen transmission, invasion of nonnative species, and pesticides, oper- ating individually and in combination, negatively impact bumble bee health, and that effects may depend on species and locality.
    [Show full text]
  • American Foulbrood Identification and Management
    American foulbrood identification and management November 2020, Primefact 209, Fourth edition Plant Biosecurity and Product Integrity, Tocal American foulbrood (AFB) disease is the most serious brood disease of honeybees in NSW. It is caused by the bacterium Paenibacillus larvae. AFB has been found in all states and territories in Australia. AFB is a notifiable disease under the NSW Biosecurity Act 2015. There is a persistent low level of infection in NSW and some evidence it is increasing. Early and accurate diagnosis of this disease is essential if control is to be effective. Figure 1 When the larva first dies the diseased material ropes or strings out when touched with a Examining brood match. Honeybee colonies must be carefully examined for disease several times each year. Brood should be thoroughly examined for AFB at least twice a year, in spring and autumn as a minimum. Remove each brood comb from the colony and shake or brush most of the bees into the box, or at the entrance, leaving the comb clear for examination. Hold the comb by the top bar, at such an angle that the light reaches the base of Figure 2 As the ropy mass dries out it forms a hard the cells being examined. scale (this image is looking into the bottom of cells with top bar closest to viewer). Examine each comb in a regular pattern, so all areas of the comb are thoroughly checked. American foulbrood identification and management Signs of the disease Infected brood becomes discoloured, turning light brown at first then darker brown as the disease progresses.
    [Show full text]
  • TPM/IPM Weekly Report for Arborists, Landscape Managers & Nursery Managers
    TPM/IPM Weekly Report for Arborists, Landscape Managers & Nursery Managers Commercial Horticulture July 12, 2019 In This Issue... Coordinator Weekly IPM Report: Stanton Gill, Extension Specialist, IPM for Nursery, Greenhouse and Managed - Cannibalistic predators Landscapes, [email protected]. 301-596-9413 (office) or 410-868-9400 (cell) - Impatiens downy mildew - Peach tree borer - Perennial program Regular Contributors: - Seed pods on magnolia Pest and Beneficial Insect Information: Stanton Gill and Paula Shrewsbury (Extension - Summer fruit tree pruning Specialists) and Nancy Harding, Faculty Research Assistant - Chiggers Disease Information: Karen Rane (Plant Pathologist) and David Clement (Extension - Powdery mildew on crape Specialist) myrtle Weed of the Week: Chuck Schuster (Extension Educator, Montgomery County) - Crape myrtle problems Cultural Information: Ginny Rosenkranz (Extension Educator, Wicomico/Worcester/ - Orangestriped oakworm Somerset Counties) - Japanese beetles and green Fertility Management: Andrew Ristvey (Extension Specialist, Wye Research & June beetles Education Center) - Redheaded pine sawflies Design, Layout and Editing: Suzanne Klick (Technician, CMREC) - Fall webworms - Yellownecked caterpillars - Rust and powdery mildew Cannibalistic Predators - Barklice (pscocids) By: Stanton Gill - Photos: deer, fall webworm adult, dobsonfly, tobacco Marie Rojas, IPM Scout, sent in hornworm, and mites some pictures of lady bird beetle Beneficial of the Week: Black larvae feeding on eggs in the cluster and gold bumble bee from which they hatched. I put these Weed of the Week: Small pictures out to entomologists across carpetgrass the US and received responses Plant of the Week: Prunus laurocerasus ‘schipkaensis’ noting that this activity is common. Pest Predictions Robin Rosetta sent in a picture from Degree Days Oregon with a larvae feeding on its Announcements sibling’s egg.
    [Show full text]
  • An Abstract of the Thesis Of
    AN ABSTRACT OF THE THESIS OF Sarah A. Maxfield-Taylor for the degree of Master of Science in Entomology presented on March 26, 2014. Title: Natural Enemies of Native Bumble Bees (Hymenoptera: Apidae) in Western Oregon Abstract approved: _____________________________________________ Sujaya U. Rao Bumble bees (Hymenoptera: Apidae) are important native pollinators in wild and agricultural systems, and are one of the few groups of native bees commercially bred for use in the pollination of a range of crops. In recent years, declines in bumble bees have been reported globally. One factor implicated in these declines, believed to affect bumble bee colonies in the wild and during rearing, is natural enemies. A diversity of fungi, protozoa, nematodes, and parasitoids has been reported to affect bumble bees, to varying extents, in different parts of the world. In contrast to reports of decline elsewhere, bumble bees have been thriving in Oregon on the West Coast of the U.S.A.. In particular, the agriculturally rich Willamette Valley in the western part of the state appears to be fostering several species. Little is known, however, about the natural enemies of bumble bees in this region. The objectives of this thesis were to: (1) identify pathogens and parasites in (a) bumble bees from the wild, and (b) bumble bees reared in captivity and (2) examine the effects of disease on bee hosts. Bumble bee queens and workers were collected from diverse locations in the Willamette Valley, in spring and summer. Bombus mixtus, Bombus nevadensis, and Bombus vosnesenskii collected from the wild were dissected and examined for pathogens and parasites, and these organisms were identified using morphological and molecular characteristics.
    [Show full text]