Honey Bees: a Guide for Veterinarians
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Save the Bees Save the Bees
Unit for week 5 save the bees Save the bees Stresses on the Honey bee Several factors may create stress in the hive, which can cause a decrease in population. Below are some of those possible contributors. All of these effects on the colony can be observed, some more easily than others, in the Observation Hive. VARROA MITES: The Varroa mite is a parasitic, invasive species that was introduced to the United States in the 1980’s . It BEYOND THE originated in Asia and the western honey bee has no resistance. The mated adult female Varroa mites enter the brood cells right before HIVE the bees cap the pupae and feed on the growing bee. The bee will hatch with deformities such as misshapen wings that result in an inability to fly. SMALL HIVE BEETLES: Hive beetles are pests to honey bees. Ask the Audience They entered the United States in the late 90’s. Most strong hives will not be severely affected by the beetle; however, if the hive • Do you know what it feels like beetle becomes too overbearing, the colony will desert the hive. The to be stressed? beetle tunnels in the comb and creates destruction in the storage of honey and pollen. Ways to identify a beetle problem is a smell of • Do you have any pests in your fermented honey, a slimy covering of the comb, and the presence life? of beetle maggots. • Do you have a vegetable DISEASE: although bees keep their hive very clean and try to garden or any flowers in your maintain sanitation as best as possible, there are many pathogens, yard? disease causing microorganisms, which can infect the bees. -
An Economic Approach to Assess the Annual Stock in Beekeeping Farms: the Honey Bee Colony Inventory Tool
sustainability Article An Economic Approach to Assess the Annual Stock in Beekeeping Farms: The Honey Bee Colony Inventory Tool Monica Vercelli 1 , Luca Croce 2 and Teresina Mancuso 1,* 1 Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Turin, Italy; [email protected] 2 Independent Researcher, Borgata Baratta 27, 10040 Villardora, Turin, Italy; [email protected] * Correspondence: [email protected] Received: 7 October 2020; Accepted: 5 November 2020; Published: 7 November 2020 Abstract: For beekeepers, the beehive stock represents a fundamental means of ensuring the continuity of their activity, whether they are professionals or hobbyists. The evaluation of this asset for economic purposes requires knowledge of the rhythms and adaptations of honey bee colonies during the annual seasons. As in any breeding activity, it is necessary to establish the numerical and economic size of the species bred. Beekeepers are interested in this evaluation to monitor beehive stock. For keeping economic accounts of stock, a specific tool has been developed and proposed, here called the “Honey Bee Colony Inventory (HBCI)”. The HBCI can be used as either a final or preventive scheme to assess the numbers of honey bee colonies and nuclei, and the mortality rate, in order to calculate the monetary value. This tool allows the strength of honey bee colony stocks to be monitored, including fluctuations throughout the year, and will prove useful for determining solutions to maintain or increase how long stocks last. Data can be registered in countries such as Italy where the veterinary authorities request data on the stock owned and its variations. -
Effect of Wood Preservative Treatment of Beehives on Honey Bees Ad Hive Products
1176 J. Agric. Food Chem. 1984. 32, 1176-1180 Effect of Wood Preservative Treatment of Beehives on Honey Bees and Hive Products Martins A. Kalnins* and Benjamin F. Detroy Effects of wood preservatives on the microenvironment in treated beehives were assessed by measuring performance of honey bee (Apis mellifera L.) colonies and levels of preservative residues in bees, honey, and beeswax. Five hives were used for each preservative treatment: copper naphthenate, copper 8-quinolinolate, pentachlorophenol (PCP), chromated copper arsenate (CCA), acid copper chromate (ACC), tributyltin oxide (TBTO), Forest Products Laboratory water repellent, and no treatment (control). Honey, beeswax, and honey bees were sampled periodically during two successive summers. Elevated levels of PCP and tin were found in bees and beeswax from hives treated with those preservatives. A detectable rise in copper content of honey was found in samples from hives treated with copper na- phthenate. CCA treatment resulted in an increased arsenic content of bees from those hives. CCA, TBTO, and PCP treatments of beehives were associated with winter losses of colonies. Each year in the United States, about 4.1 million colo- honey. Harmful effect of arsenic compounds on bees was nies of honey bees (Apis mellifera L.) produce approxi- linked to orchard sprays and emissions from smelters in mately 225 million pounds of honey and 3.4 million pounds a Utah study by Knowlton et al. (1947). An average of of beeswax. This represents an annual income of about approximately 0.1 µg of arsenic trioxide/dead bee was $140 million; the agricultural economy receives an addi- reported. -
Bee Varroa Parasitosis Control
15 November 2010 EMA/CVMP/EWP/324712/2010 Committee for Medicinal Products for Veterinary Use (CVMP) Overview of comments received on 'Guideline on veterinary medicinal products controlling varroa destructor parasitosis in bees' (EMEA/CVMP/EWP/459883/2008-CONSULTATION) Interested parties (organisations or individuals) that commented on the draft document as released for consultation. Stakeholder no. Name of organisation or individual 1 Danish Beekeepers Association 2 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7418 8416 E-mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2014. Reproduction is authorised provided the source is acknowledged. 1. General comments – overview Stakeholder General comment Outcome No. 1 The vast majority of beekeepers provide beeswax-foundation Indeed, some acaricides can lead to residues in honey. Honey always contains for their bees based on recycled beeswax from old comb. wax. Both water soluble and organic solvent soluble substances may end-up in honey. Some hydrophobic veterinary medicinal products or their metabolites may contaminate the beeswax and lead to In relation to the potential contamination of honey with residues transferred increasing levels by repeated recycles of beeswax from from wax it should be noted that the MRL set for honey does not distinguish treated colonies. The accumulation is dependent on the between residues incurred as a result of treatment and residues incurred as a stability of the compounds to the heat-treatment in the wax- result of transfer from wax. In addition, it is acknowledged that wax particles melting process. -
American Foulbrood Identification and Management
American foulbrood identification and management November 2020, Primefact 209, Fourth edition Plant Biosecurity and Product Integrity, Tocal American foulbrood (AFB) disease is the most serious brood disease of honeybees in NSW. It is caused by the bacterium Paenibacillus larvae. AFB has been found in all states and territories in Australia. AFB is a notifiable disease under the NSW Biosecurity Act 2015. There is a persistent low level of infection in NSW and some evidence it is increasing. Early and accurate diagnosis of this disease is essential if control is to be effective. Figure 1 When the larva first dies the diseased material ropes or strings out when touched with a Examining brood match. Honeybee colonies must be carefully examined for disease several times each year. Brood should be thoroughly examined for AFB at least twice a year, in spring and autumn as a minimum. Remove each brood comb from the colony and shake or brush most of the bees into the box, or at the entrance, leaving the comb clear for examination. Hold the comb by the top bar, at such an angle that the light reaches the base of Figure 2 As the ropy mass dries out it forms a hard the cells being examined. scale (this image is looking into the bottom of cells with top bar closest to viewer). Examine each comb in a regular pattern, so all areas of the comb are thoroughly checked. American foulbrood identification and management Signs of the disease Infected brood becomes discoloured, turning light brown at first then darker brown as the disease progresses. -
Wax Worms (Galleria Mellonella) As Potential Bioremediators for Plastic Pollution Student Researcher: Alexandria Elliott Faculty Mentor: Danielle Garneau, Ph.D
Wax Worms (Galleria mellonella) as Potential Bioremediators for Plastic Pollution Student Researcher: Alexandria Elliott Faculty Mentor: Danielle Garneau, Ph.D. Center for Earth and Environmental Science SUNY Plattsburgh, Plattsburgh, NY 12901 Plastic Pollution Life History Stages Results Discussion • 30 million tons of plastic Combination of holes in plastic and • Egg stage: average length (0.478mm) • waste is generated annually and width (0.394mm) and persists 3-10 nylon in frass suggests worms are in the USA (Coalition 2018). days (Kwadha et al. 2017)(Fig. 3). digesting plastic (Figs. 6,7). • Larval stage: max length (30mm), white Of the plastic pilot trials which • 50% landfill, < 10% cream in color, possess 3 apical teeth, exhibited signs of feeding, two were HDPE (Fig. 6). recycled (PlasticsEurope, and persists 22-69 days. A Plastics The Facts 2013) • Pre-pupal/Pupal stage: length (12- • Bombelli et al. (2017) and Yang et al. 20mm) and persists 3-12 and 8-10 days, (2014) found wax worms were capable respectively. All extremities are glued to of PE consumption. • 10% of world’s plastic waste body with molting substance. Common bond (CH -CH ) in PE is 2 2 ends up in ocean 70% • Moth stage: sexual dimorphism is same as that in beeswax (Bombelli et sinks 30% floats in Fig. 1. Plastic Use distinct. Moths max length (20mm) and Fig. 5. Change in worm weight as a function of plastic pilot trial. al. 2017). Fig. 9. PE degradation as currents (Gyres, Fig. 2). (Plastics Europe). persists on average 6-14 days (males) B • Greater negative change in worm weight (g)/day for all FT-IR shows degradation of PE (i.e., evidenced by FT-IR PE and 23 days (females). -
Colony Collapse Disorder in Relation to Human-Produced Toxins: What's
Colony Collapse Disorder in relation to human-produced toxins: What’s the buzz all about? Available at: http://www.sawyoo.com/postpic/2013/09/honey-bee-hives_77452.jpg Last accessed: 17/04/2017 Abstract: p2 Introduction: p3 Insecticides: p5 Herbicides & fungicides: p7 Miticides & other preventative measures: p9 “Inactive” ingredients: p10 Synergies between pesticides: p11 Conclusions: p12 Discussion: p12 References: p14 1 Abstract In recent years, the global population of pollinating animals has been in decline. The honey bee in particular is one of the most important and well known pollinators and is no exception.The Western honey bee Apis mellifera, the most globally spread honey bee species suffers from one problem in particular. Colony Collapse Disorder (CCD), which causes the almost all the worker bees to abandon a seemingly healthy and food rich hive during the winter. One possible explanation for this disorder is that it is because of the several human produced toxins, such as insecticides, herbicides, fungicides and miticides. So the main question is: Are human-produced toxins the primary cause of CCD? It seems that insecticides and, in particular, neonicotinoid insecticides caused increased mortality and even recreated CCD-like symptoms by feeding the bees with neonicotinoids. Herbicides seem relatively safe for bees, though they do indirectly reduce the pollen diversity, which can cause the hive to suffer from malnutrition. Fungicides are more dangerous, causing several sublethal effects, including a reduced immune response and changing the bacterial gut community. The levels of one fungicide in particular, chlorothalonil, tends to be high in hives. Miticides levels tend to be high in treated hives and can cause result in bees having a reduced lifespan. -
The Early History of Beekeeping the Moveable-Frame Hive Lorenzo Langstroth
Lorenzo L. Langstroth and The Quest for the Perfect Hive The early history of beekeeping Lorenzo Langstroth The Moveable-frame Hive The earliest evidence of human interaction with Lorenzo Langstroth was born on Langstroth found that the bees would honey bees dates back 8,000 years to a Meso- December 25, 1810 in Philadelphia, seal the top of the Bevan hive to the lithic cliff painting in Spain that depicts a human Pennsylvania. He attended Yale Col- bars with propolis, meaning that the figure robbing a colony of its honey. Honeycomb lege and was eventually ordained as bars would remain attached to the theft was probably the reason for our ancestors’ a minister. He had a childhood inter- cover when it was removed. In 1851, first intentional encounters with bees. est in insects and was first introduced Langstroth discovered that if he creat- to beekeeping in 1838, when he saw ed a 3/8” space between the cover and a large glass jar containing glistening the bars, the bees would not glue them honeycomb. Langstroth’s first hives, together. He eventually realized that if this 3/8” space surrounded all sides of purchased in 1838, were simple box the frame within the hive box, he could easily lift out the frames without hav- hives with crisscrossed sticks inside ing to cut them away from the hive walls. This “bee space” set Langstroth’s which provided support for honey- hives apart from all the others, resulting in a true moveable-frame hive. The identity of the first beekeepers is unknown, but the oldest historical evi- combs. -
BEEKEEPING: General Information by R
BEEKEEPING: General Information by R. A. Morse and E. J. Dyce A Cornell Cooperative Extension Publication Information Bulletin 90 The New York State College of Agriculture and Life Sciences is a statutory college of the State University, at Cornell University, Ithaca, N.Y. 2 BEEKEEPING: This bulletin provides general informa Honey Bee as a Pollinator tion about beekeeping that is not usually General Information included in current publications. Informa The pollination of agricultural crops is by R. A. Morse and E. J. Dyce tion on specific beekeeping problems can the most important contribution of honey be obtained by writing to the Office of bees to our national economy. Although Apiculture, Department of Entomology, the value of honey bees for pollination Contents Cornell University, Ithaca, NY 14853. cannot be estimated , it is many times the 2 Extent of Beekeeping Industry total value of both the honey and bees wax that they produce . Without cross 2 Honey Bee as a Pollinator Extent of Beekeeping Industry pollination many crops would not set seed 3 Who Keeps Bees? or produce fruit. Many insects other than In New York State about 8,500 people the honey bee can carry pollen from one 3 Where Bees Can Be Kept keep at least 125,000 colonies of honey plant to another; but in areas where agri 4 A Skilled Occupation bees. The annual production is about 8 culture has been intensified, such as the million pounds of honey and 120,000 fruit areas in New York State, the number 4 How to Acquire a Knowledge of pounds of beeswax. -
INTEGRATED PEST MANAGEMENT May 15Th, 2011
INTEGRATED PEST MANAGEMENT May 15 th , 2011 Disease & Pest Identification CAPA Honey Bee Diseases and Pests Publication. OBA Beekeeping Manual Tech-Transfer Website - http://techtransfer.ontariobee.com American Foulbrood (AFB) A bacteria affecting brood ( Bacillus larvae ) Found on every continent Spores remain viable indefinitely on beekeeping equipment Larvae are susceptible up to 3 days after hatching Spores germinate in the midgut, then penetrate to body cavity Spread by robbing and drifting bees and through transfer of hive equipment AFB Combs of infected colonies have a mottled appearance Cell cappings containing diseased larvae appear moist and darkened Larval and pupal colour changes to creamy brown, then dark brown Unpleasant odour in advanced stages Death in the pupal stage results in the formation of the pupal tongue Diseased brood eventually dries out to form characteristic brittle scales adhering tightly to the cell wall Monitoring - visual exam every time hive is opened AFB AFB Diagnosis Ropiness test Use twig or matchstick to ‘stir’ larvae 2 cm ‘rope’ will be attached to stick Microscopic examination Spores resemble slender rods in chains European Foulbrood (EFB) A bacteria affecting brood Not as widespread as AFB Larvae are infected by nurse bees EFB Twisted larvae Slight ropiness Monitoring - visual exam Chalkbrood A fungus affecting brood Patchy brood White/black “mummies” in cells, at hive entrance, on bottom board Monitoring - visual exam Sacbrood A virus affecting brood Patchy brood, punctured cells Larvae are like -
Changes in Lithium Levels in Bees and Their Products Following Anti-Varroa Treatment
insects Communication Changes in Lithium Levels in Bees and Their Products Following Anti-Varroa Treatment Éva Kolics 1,2, Zsófi Sajtos 3,4 , Kinga Mátyás 1, Kinga Szepesi 1, Izabella Solti 1, Gyöngyi Németh 1 , János Taller 1, Edina Baranyai 4, András Specziár 5 and Balázs Kolics 1,2,* 1 Festetics Bioinnovation Group, Institute of Genetics and Biotechnology, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary; [email protected] (É.K.); [email protected] (K.M.); [email protected] (K.S.); [email protected] (I.S.); [email protected] (G.N.); [email protected] (J.T.) 2 Kolics Apiaries, H-8710 Balatonszentgyörgy, Hungary 3 Doctoral School of Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; sajtos.zsofi@science.unideb.hu 4 Atomic Spectrometry Partner Laboratory, Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; [email protected] 5 Balaton Limnological Research Institute, ELKH, H-8237 Tihany, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-302629236 Simple Summary: Varroosis caused by the ectoparasitic mite Varroa destructor has been the biggest threat to managed bee colonies over recent decades. Chemicals available to treat the disease imply problems of resistance, inconsistent efficacy, and residues in bee products. Recently, alongside novel compounds to defeat the pest, lithium chloride has been found to be effective. In this study, we found Citation: Kolics, É.; Sajtos, Z.; that lithium treatments leave beeswax residue-free. The possibility of decontamination in adult bees, Mátyás, K.; Szepesi, K.; Solti, I.; bee bread, and uncapped honey was revealed. -
Comb the Honey: Bee Interface Design by Ri Ren
Comb the Honey: Bee Interface Design by Ri Ren Ph.D., Central Academy of Fine Arts (2014) S.M., Saint-Petersburg Herzen State University (2010) B.A.,Tsinghua University (2007) Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning in partial fulfillment of the requirements for the degree of Master of Science in Media Arts and Sciences at the Massachusetts Institute of Technology May 2020 © Massachusetts Institute of Technology, 2020. All rights reserved. Author ………………………………………………………………………………………………………… Program in Media Arts and Sciences May 2020 Certified by ……………………………………………………………………………………………………………… Neri Oxman Associate Professor of Media Arts and Sciences Accepted by ……………………………………………………………………………………………………………… Tod Machover Academic Head, Program in Media Arts and Sciences 2 Comb the Honey: Bee Interface Design by Ri Ren Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning on May 2020 in partial fulfillment of the requirements for the degree of Master of Science in Media Arts and Sciences Abstract: The overarching goal of the thesis is to understand the mechanisms by which complex forms are created in biological systems and how the external environment and factors can influence generations over different scales of space, time, and materials. My research focuses on Nature’s most celebrated architects — bees — and their architectural masterpiece — the honeycomb. Bee honeycombs are wax-made cellular structures of hexagonal prismatic geometries. Within the comb, bees form their nests, grow their larvae, and store honey and pollen. They operate as a “social womb” informed, at once, by communal (genetic) makeup and environmental forces. Resource sharing, labor division, and unique communication methods all contribute to the magic that is the bee “Utopia.” Given that the geometrical, structural, and material make up of honeycombs is informed by the environment, these structures act as environmental footprints, revealing, as a time capsule, the history of its external environment and factors.