Synthesis and Secretion of Beeswax in Honeybees Hr Hepburn, Rtf Bernard, Bc Davidson, Wj Muller, P Lloyd, Sp Kurstjens, Sl Vincent

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis and Secretion of Beeswax in Honeybees Hr Hepburn, Rtf Bernard, Bc Davidson, Wj Muller, P Lloyd, Sp Kurstjens, Sl Vincent Synthesis and secretion of beeswax in honeybees Hr Hepburn, Rtf Bernard, Bc Davidson, Wj Muller, P Lloyd, Sp Kurstjens, Sl Vincent To cite this version: Hr Hepburn, Rtf Bernard, Bc Davidson, Wj Muller, P Lloyd, et al.. Synthesis and secretion of beeswax in honeybees. Apidologie, Springer Verlag, 1991, 22 (1), pp.21-36. hal-00890889 HAL Id: hal-00890889 https://hal.archives-ouvertes.fr/hal-00890889 Submitted on 1 Jan 1991 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Original article Synthesis and secretion of beeswax in honeybees HR Hepburn RTF Bernard BC Davidson WJ Muller P Lloyd SP Kurstjens SL Vincent 1 Rhodes University, Department of Zoology and Entomology, Grahamstown 6140; 2 University of the Witwatersrand, Department of Medical Biochemistry; 3 University of the Witwatersrand, Department of Physiology, Johannesburg, 2193, South Africa (Received 1 July 1990; accepted 15 November 1990) Summary — The ultrastructure of the cells of the wax gland complex in honeybee workers was studied in relation to the synthesis and secretion of beeswax. The hydrocarbon and fatty acid pro- files of epidermal cells and oenocytes were determined in relation to the ages of the bees. Smooth endoplasmic reticulum (SER) is absent from both epidermis and adipocytes from adult emergence until the end of wax secretion. The oenocytes are rich in SER. The hydrocarbon and fatty acid con- tent of the oenocytes, averaged for age, closely matches that of newly secreted wax. That the oe- nocytes are the probable source of the hydrocarbon fraction of beeswax is consistent with histo- chemical and autoradiographic data for honeybees and with biosynthetic data from other insects. The cyclical changes of organelles and chemical composition of the wax gland complex closely coin- cide with measured, age-related rates of wax secretion in honeybee workers. wax secretion / wax synthesis / wax gland / ultrastructure / chemical composition INTRODUCTION Beeswax is a complex mixture (Tul- loch, 1980) produced by tissues in the ab- domen of the bee (Dumas and Edwards, tasks within the division of Many labour of 1843; Piek, 1961). The work of Piek worker honeybees are closely associated (1961, 1964) showed that acetic acid is with of activi- age-related cycles glandular very probably taken up by the oenocytes ty (Ribbands, 1953; Winston, 1987). His- and that acetate is used for the synthesis studies of wax secretion tological suggest of hydrocarbons. This interpretation was that production begins when the worker is strengthened by further studies of micro- slightly less than 1 wk old, peaks at = 2 wk somal preparations from the worker abdo- and then wanes (Rösch, 1927; Freuden- men (Blomquist and Ries, 1979; Lambre- stein, 1960; Boehm, 1965; Hepburn et al, mont and Wykle, 1979). Although the 1984). Of the tissues within the wax gland oenocytes may play a major role in the complex, the epidermis and the oenocytes synthesis of wax, the synthetic capacity of in particular have been implicated as cen- individual cell types within the wax gland tral to the synthesis and secretion of wax complex and their possible contribution to (Rösch, 1927; Reimann, 1952; Boehm, wax production have remained unex- 1965). plored. * Correspondence and reprints Searches for the means by which wax eters were converted to volumes, assuming that synthesized within the abdomen actually the cells were spherical. reaches the surface of the animal suggest that it passes through the pore canal sys- tem of the cuticle (Locke, 1961; Locke and Electron microscopy Huie, 1980). Yet the means by which the precursors are transported from as yet un- Bees were anaesthetized on ice, and fixative established points of origin has remained (2.5% glutaraldehyde in 0.2 M cacodylate buffer elusive. We conducted studies of wax syn- (pH 7.1)) injected into the haemocoel (Locke and After 10 the fat and thesis and secretion in honeybees to spe- Huie, 1980). min, body cifically identify sites for the of hy- overlying epidermis were excised and further origin fixed by immersion in the above fixative for 4 h drocarbon and acids within the wax fatty at room temperature. After primary fixation the gland complex and to establish the neces- tissues were washed in the buffer, secondarily sary ultrastructural correlates of this activi- fixed in 1.0% buffered osmium tetroxide, dehy- ty and of their transport. Equally important, drated and embedded in a Taab/Araldite resin we measured the actual rates of wax se- mixture. Ultrathin sections (silver/gold) were stained with acetate (Watson, 1958) and cretion in bees of different ages to assess uranyl lead citrate and examined us- how well chemical of the tis- (Reynolds, 1963) composition ing a Jeol JEMXII transmission electron micro- sues and of ultrastructural cycles change scope. with the of wax corresponded cycles pro- Volume densities (volume of the component duction within this stage of the division of related to the volume of the containing cell) of labour. the wax gland organelles were calculated using the point count method (Weibel and Bolender, 1973). A grid of 99 squares, each 9 mm2, was MATERIALS AND METHODS drawn on the screen of the electron microscope onto which the image (29 000X) of the tissue was superimposed. At least 10 oenocytes and 10 adipocytes from 3 wax glands per age group Animals were used for the point count analysis. Newly emerged adult bees (Apis mellifera ca- pensis) were marked by painting the thorax, Chemical analyses placed in hives, and subsequently sampled at = 72-h over a use in intervals 25-d period for sub- Wax gland cells used for fatty acid and hydro- and chemical studies. sequent microscopical carbon analysis were harvested as follows. Live bees were flash-frozen in liquid nitrogen and stored at -70 °C until processed. Tissue was ob- Light microscopy tained after thawing by dissection of the abdo- men in a phosphate buffered saline solution. Deep freezing followed by saline rehydration at Bees were anaesthetized on ice and the fat room temperature caused only the adipocytes to body dissected out under saline (Miller and burst. The remaining intact oenocytes in the for- James, 1976). Fat bodies were stained for 2 mer fat body layer were collected with a micropi- min in 0.2% methylene blue and viewed on a pette and the purity of the cell type (exclusion of cavity slide with a light microscope. The vol- adipocytes) confirmed by microscopy. After re- umes of adipocytes and oenocytes were calcu- moval of the inner tissues, only those epidermal lated from light microscope preparations. The cells underlaying wax mirrors were scraped free diameters of 10 adipocytes and 10 oenocytes and similarly harvested. Epidermal cells and oe- from each of 5 bees from each age group were nocytes were separately spun at 200 g for 15 measured with an ocular micrometer. The diam- min to obtain pellets. The cell pellets were extracted with chloro- day the volume density of these tightly form:methanol (2:1 v/v), the extracts washed packed tubules is high (table I). Similarly, with saline and reduced under vacuum (0.9%) there is a large increase in whole oenocyte Half of each was (Floch et al, 1957). sample volume as noted by used for and the remain- (table I) previously hydrocarbon analysis Boehm The relative volumes of the der used to prepare fatty acid esters (FAME) us- (1965). ing the method of Moscatelli (1972). The FAME oenocytes and the SER remain elevated were separated using a 10% SP2330 6 m x throughout the secretory phase (table I, fig 3 mm ID column in a Varian 3400 GC and were 3). By d 18, both oenocytes and SER be- quantitated using a Varian 4270 integrator. The gin to decrease (table I) with the simultane- were 2 m x 0.2 hydrocarbons separated using a ous appearance of primary lysosomes and mm ID QVI column with the same GC/integrator autolytic vacuoles. Lipid and protein drop- system. Samples of scale and comb wax were lets were never observed in the extracted in parallel with the cell samples and oenocytes and other cellular showed no processed in the same way. organelles evident cyclical changes associated with wax synthesis (table I). Wax secretion The adipocytes are characterized by an extensive plasma membrane reticular sys- tem, numerous mitochondria, peroxisomes Wax secretion was measured in worker bees and RER, and a few small bodies from queenright colonies of ≈ 10 000 bees hived Golgi (fig in 5-framed nuclei, 3 frames of which contained 4). SER is notably absent from adult emer- brood and food stores. The bees were heavily gence through foraging. Massive lipid fed sugar syrup (25-50 g sucrose/l water) ad lib- droplets occupy ≈ 60% of cell’s cytoplasm itum to stimulate comb building. Newly emerged in the young worker but decrease substan- at the bees were marked for age and introduced tially over the next few days (table II). Like rate of 150 bees/hive every 3 d into each of 7 colonies. On d 21 the colonies contained a spec- trum of age groups that were 3, 6, 9, 12, 15, 18 and 21 d old. All of these bees were then har- vested and their wax scales removed and weighed on a Cahn C-32 microbalance.
Recommended publications
  • Honey Bees: a Guide for Veterinarians
    the veterinarian’s role in honey bee health HONEY BEES: A GUIDE FOR VETERINARIANS 01.01.17 TABLE OF CONTENTS Introduction Honey bees and veterinarians Honey bee basics and terminology Beekeeping equipment and terminology Honey bee hive inspection Signs of honey bee health Honey bee diseases Bacterial diseases American foulbrood (AFB) European foulbrood (EFB) Diseases that look like AFB and EFB Idiopathic Brood Disease (IBD) Parasitic Mite Syndrome (PMS) Viruses Paralytic viruses Sacbrood Microsporidial diseases Nosema Fungal diseases Chalkbrood Parasitic diseases Parasitic Mite Syndrome (PMS) Tracheal mites Small hive beetles Tropilaelaps species Other disease conditions Malnutrition Pesticide toxicity Diploid drone syndrome Overly hygienic hive Drone-laying queen Laying Worker Colony Collapse Disorder Submission of samples for laboratory testing Honeybee Flowchart (used with permission from One Health Veterinary Consulting, Inc.) Additional Resources Acknowledgements © American Veterinary Medical Association 2017. This information has not been approved by the AVMA Board of Directors or the House of Delegates, and it is not to be construed as AVMA policy nor as a definitive statement on the subject, but rather to serve as a resource providing practical information for veterinarians. INTRODUCTION Honey bees weren’t on veterinarians’ radars until the U.S. Food and Drug Administration issued a final Veterinary Feed Directive (VFD) rule, effective January 1, 2017, that classifies honey bees as livestock and places them under the provisions of the VFD. As a result of that rule and changes in the FDA’s policy on medically important antimicrobials, honey bees now fall into the veterinarians’ purview, and veterinarians need to know about their care.
    [Show full text]
  • Effect of Wood Preservative Treatment of Beehives on Honey Bees Ad Hive Products
    1176 J. Agric. Food Chem. 1984. 32, 1176-1180 Effect of Wood Preservative Treatment of Beehives on Honey Bees and Hive Products Martins A. Kalnins* and Benjamin F. Detroy Effects of wood preservatives on the microenvironment in treated beehives were assessed by measuring performance of honey bee (Apis mellifera L.) colonies and levels of preservative residues in bees, honey, and beeswax. Five hives were used for each preservative treatment: copper naphthenate, copper 8-quinolinolate, pentachlorophenol (PCP), chromated copper arsenate (CCA), acid copper chromate (ACC), tributyltin oxide (TBTO), Forest Products Laboratory water repellent, and no treatment (control). Honey, beeswax, and honey bees were sampled periodically during two successive summers. Elevated levels of PCP and tin were found in bees and beeswax from hives treated with those preservatives. A detectable rise in copper content of honey was found in samples from hives treated with copper na- phthenate. CCA treatment resulted in an increased arsenic content of bees from those hives. CCA, TBTO, and PCP treatments of beehives were associated with winter losses of colonies. Each year in the United States, about 4.1 million colo- honey. Harmful effect of arsenic compounds on bees was nies of honey bees (Apis mellifera L.) produce approxi- linked to orchard sprays and emissions from smelters in mately 225 million pounds of honey and 3.4 million pounds a Utah study by Knowlton et al. (1947). An average of of beeswax. This represents an annual income of about approximately 0.1 µg of arsenic trioxide/dead bee was $140 million; the agricultural economy receives an addi- reported.
    [Show full text]
  • Bee Varroa Parasitosis Control
    15 November 2010 EMA/CVMP/EWP/324712/2010 Committee for Medicinal Products for Veterinary Use (CVMP) Overview of comments received on 'Guideline on veterinary medicinal products controlling varroa destructor parasitosis in bees' (EMEA/CVMP/EWP/459883/2008-CONSULTATION) Interested parties (organisations or individuals) that commented on the draft document as released for consultation. Stakeholder no. Name of organisation or individual 1 Danish Beekeepers Association 2 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7418 8416 E-mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2014. Reproduction is authorised provided the source is acknowledged. 1. General comments – overview Stakeholder General comment Outcome No. 1 The vast majority of beekeepers provide beeswax-foundation Indeed, some acaricides can lead to residues in honey. Honey always contains for their bees based on recycled beeswax from old comb. wax. Both water soluble and organic solvent soluble substances may end-up in honey. Some hydrophobic veterinary medicinal products or their metabolites may contaminate the beeswax and lead to In relation to the potential contamination of honey with residues transferred increasing levels by repeated recycles of beeswax from from wax it should be noted that the MRL set for honey does not distinguish treated colonies. The accumulation is dependent on the between residues incurred as a result of treatment and residues incurred as a stability of the compounds to the heat-treatment in the wax- result of transfer from wax. In addition, it is acknowledged that wax particles melting process.
    [Show full text]
  • Wax Worms (Galleria Mellonella) As Potential Bioremediators for Plastic Pollution Student Researcher: Alexandria Elliott Faculty Mentor: Danielle Garneau, Ph.D
    Wax Worms (Galleria mellonella) as Potential Bioremediators for Plastic Pollution Student Researcher: Alexandria Elliott Faculty Mentor: Danielle Garneau, Ph.D. Center for Earth and Environmental Science SUNY Plattsburgh, Plattsburgh, NY 12901 Plastic Pollution Life History Stages Results Discussion • 30 million tons of plastic Combination of holes in plastic and • Egg stage: average length (0.478mm) • waste is generated annually and width (0.394mm) and persists 3-10 nylon in frass suggests worms are in the USA (Coalition 2018). days (Kwadha et al. 2017)(Fig. 3). digesting plastic (Figs. 6,7). • Larval stage: max length (30mm), white Of the plastic pilot trials which • 50% landfill, < 10% cream in color, possess 3 apical teeth, exhibited signs of feeding, two were HDPE (Fig. 6). recycled (PlasticsEurope, and persists 22-69 days. A Plastics The Facts 2013) • Pre-pupal/Pupal stage: length (12- • Bombelli et al. (2017) and Yang et al. 20mm) and persists 3-12 and 8-10 days, (2014) found wax worms were capable respectively. All extremities are glued to of PE consumption. • 10% of world’s plastic waste body with molting substance. Common bond (CH -CH ) in PE is 2 2 ends up in ocean 70% • Moth stage: sexual dimorphism is same as that in beeswax (Bombelli et sinks 30% floats in Fig. 1. Plastic Use distinct. Moths max length (20mm) and Fig. 5. Change in worm weight as a function of plastic pilot trial. al. 2017). Fig. 9. PE degradation as currents (Gyres, Fig. 2). (Plastics Europe). persists on average 6-14 days (males) B • Greater negative change in worm weight (g)/day for all FT-IR shows degradation of PE (i.e., evidenced by FT-IR PE and 23 days (females).
    [Show full text]
  • Colony Collapse Disorder in Relation to Human-Produced Toxins: What's
    Colony Collapse Disorder in relation to human-produced toxins: What’s the buzz all about? Available at: http://www.sawyoo.com/postpic/2013/09/honey-bee-hives_77452.jpg Last accessed: 17/04/2017 Abstract: p2 Introduction: p3 Insecticides: p5 Herbicides & fungicides: p7 Miticides & other preventative measures: p9 “Inactive” ingredients: p10 Synergies between pesticides: p11 Conclusions: p12 Discussion: p12 References: p14 1 Abstract In recent years, the global population of pollinating animals has been in decline. The honey bee in particular is one of the most important and well known pollinators and is no exception.The Western honey bee Apis mellifera, the most globally spread honey bee species suffers from one problem in particular. Colony Collapse Disorder (CCD), which causes the almost all the worker bees to abandon a seemingly healthy and food rich hive during the winter. One possible explanation for this disorder is that it is because of the several human produced toxins, such as insecticides, herbicides, fungicides and miticides. So the main question is: Are human-produced toxins the primary cause of CCD? It seems that insecticides and, in particular, neonicotinoid insecticides caused increased mortality and even recreated CCD-like symptoms by feeding the bees with neonicotinoids. Herbicides seem relatively safe for bees, though they do indirectly reduce the pollen diversity, which can cause the hive to suffer from malnutrition. Fungicides are more dangerous, causing several sublethal effects, including a reduced immune response and changing the bacterial gut community. The levels of one fungicide in particular, chlorothalonil, tends to be high in hives. Miticides levels tend to be high in treated hives and can cause result in bees having a reduced lifespan.
    [Show full text]
  • Changes in Lithium Levels in Bees and Their Products Following Anti-Varroa Treatment
    insects Communication Changes in Lithium Levels in Bees and Their Products Following Anti-Varroa Treatment Éva Kolics 1,2, Zsófi Sajtos 3,4 , Kinga Mátyás 1, Kinga Szepesi 1, Izabella Solti 1, Gyöngyi Németh 1 , János Taller 1, Edina Baranyai 4, András Specziár 5 and Balázs Kolics 1,2,* 1 Festetics Bioinnovation Group, Institute of Genetics and Biotechnology, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary; [email protected] (É.K.); [email protected] (K.M.); [email protected] (K.S.); [email protected] (I.S.); [email protected] (G.N.); [email protected] (J.T.) 2 Kolics Apiaries, H-8710 Balatonszentgyörgy, Hungary 3 Doctoral School of Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; sajtos.zsofi@science.unideb.hu 4 Atomic Spectrometry Partner Laboratory, Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; [email protected] 5 Balaton Limnological Research Institute, ELKH, H-8237 Tihany, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-302629236 Simple Summary: Varroosis caused by the ectoparasitic mite Varroa destructor has been the biggest threat to managed bee colonies over recent decades. Chemicals available to treat the disease imply problems of resistance, inconsistent efficacy, and residues in bee products. Recently, alongside novel compounds to defeat the pest, lithium chloride has been found to be effective. In this study, we found Citation: Kolics, É.; Sajtos, Z.; that lithium treatments leave beeswax residue-free. The possibility of decontamination in adult bees, Mátyás, K.; Szepesi, K.; Solti, I.; bee bread, and uncapped honey was revealed.
    [Show full text]
  • Honey Bee from Wikipedia, the Free Encyclopedia
    Honey bee From Wikipedia, the free encyclopedia A honey bee (or honeybee) is any member of the genus Apis, primarily distinguished by the production and storage of honey and the Honey bees construction of perennial, colonial nests from wax. Currently, only seven Temporal range: Oligocene–Recent species of honey bee are recognized, with a total of 44 subspecies,[1] PreЄ Є O S D C P T J K Pg N though historically six to eleven species are recognized. The best known honey bee is the Western honey bee which has been domesticated for honey production and crop pollination. Honey bees represent only a small fraction of the roughly 20,000 known species of bees.[2] Some other types of related bees produce and store honey, including the stingless honey bees, but only members of the genus Apis are true honey bees. The study of bees, which includes the study of honey bees, is known as melittology. Western honey bee carrying pollen Contents back to the hive Scientific classification 1 Etymology and name Kingdom: Animalia 2 Origin, systematics and distribution 2.1 Genetics Phylum: Arthropoda 2.2 Micrapis 2.3 Megapis Class: Insecta 2.4 Apis Order: Hymenoptera 2.5 Africanized bee 3 Life cycle Family: Apidae 3.1 Life cycle 3.2 Winter survival Subfamily: Apinae 4 Pollination Tribe: Apini 5 Nutrition Latreille, 1802 6 Beekeeping 6.1 Colony collapse disorder Genus: Apis 7 Bee products Linnaeus, 1758 7.1 Honey 7.2 Nectar Species 7.3 Beeswax 7.4 Pollen 7.5 Bee bread †Apis lithohermaea 7.6 Propolis †Apis nearctica 8 Sexes and castes Subgenus Micrapis: 8.1 Drones 8.2 Workers 8.3 Queens Apis andreniformis 9 Defense Apis florea 10 Competition 11 Communication Subgenus Megapis: 12 Symbolism 13 Gallery Apis dorsata 14 See also 15 References 16 Further reading Subgenus Apis: 17 External links Apis cerana Apis koschevnikovi Etymology and name Apis mellifera Apis nigrocincta The genus name Apis is Latin for "bee".[3] Although modern dictionaries may refer to Apis as either honey bee or honeybee, entomologist Robert Snodgrass asserts that correct usage requires two words, i.e.
    [Show full text]
  • Small Hive Beetle a Serious New Threat to European Apiculture
    68639_CENTSCILAB 6/4/03 20:48 Page 1 The Small Hive Beetle A serious new threat to European apiculture About this leaflet This leaflet describes the Small Hive Beetle (Aethina tumida), a potential new threat to UK beekeeping. This beetle, indigenous to Africa, has recently spread to the USA and Australia where it has proved to be a devastating pest of European honey bees. There is a serious risk of its accidental introduction into the UK. All beekeepers should now be aware of the fundamental details of the beetle’s lifecycle and how it can be recognised and controlled. 68639_CENTSCILAB 6/4/03 20:49 Page 2 Introduction: the small hive beetle problem The Small Hive Beetle, Aethina tumida It is not known how the beetle reached either (Murray) (commonly referred to as the 'SHB'), the USA or Australia, although in the USA is a major threat to the long-term shipping is considered the most likely route. sustainability and economic prosperity of UK By the time the beetle was detected in both beekeeping and, as a consequence, to countries it was already well established. agriculture and the environment through disruption to pollination services, the value of The potential implications for European which is estimated at up to £200 million apiculture are enormous, as we must now annually. assume that the SHB could spread to Europe and that it is likely to prove as harmful here The beetle is indigenous to Africa, where it is as in Australia and the USA. considered a minor pest of honey bees, and until recently was thought to be restricted to Package bees and honey bee colonies are that continent.
    [Show full text]
  • Beeswax (Cera Alba) a Fundamental Requirement of the Colony a Colony Without Combs Combs Natural Hexagonal Formation Natural Hexagonal Formation
    Beeswax (Cera alba) A fundamental requirement of the colony A colony without combs Combs Natural hexagonal formation Natural hexagonal formation http://thelazybfarm.com/hauling-hay Physical force demonstration Rolled tightly Cut Through For bees, beeswax is a multiuse, expensive, expendable product • Home site • Food storage • Brood production • Dance floor • Pharmacy • Wintering structure • Communication device • Ladder/scaffolding Yet, all is abandoned if necessary A natural nest • Color range • Rendered wax color • Not combs all in use • Old comb thickened • Humidity control • Old comb attractive • Attractive to pests • Bottom degraders • Overall ecosystem Wax foundation Today, plastic inserts One season comb Seven season comb Seven season comb magnified Replace every 3-5 years • Honestly, I rarely do • I date frames as though I plan to… • Becoming a bit cranky as years pass • Comb replacement is work • Science to support? • However – weight increases One beekeeper’s comb replacement technique • Put old comb frames in a barrel • Encourage wax moths • Scrap webbing and residue • Pressure wash (improvise a holder) • Recoat with liquid beeswax • Heat gun as needed • Heating mats for wax coat leveling • Disinfectants? • Wax fate? Whiting or Whitening Wax production biology Wax glands at work https://www.bee-queen.com https://queenbcandles.wordpress.com Festooning • Free hang forming a net • Orients with gravity • Allows for wax scale transfer • Food and materials transfer • Construction stability • Mobility within hive Propolis mix Becomes
    [Show full text]
  • Bee-Buzz-Winter-2016.Pdf
    North Carolina Bee Buzz The Official Magazine of the NCSBA Beeswax Products Growing Beekeepers Cooking With Honey Recipes And Much, Much More... Wi nt er: Time to Reflect & Plan Winter 2016 North Carolina Bee Buzz Photo: Lane Kreitlow Lane Photo: Winter 2016 Features North Carolina State Beekeepers Association 13 Message from the President 5 Learning on the Internet 7 "Beefeeders" 8 AFB Treatments Soon To Be Hard To Get NCSBA Library Update 9 5CBA's HIP Updat e 10 Disast er Relief 11 17 Wolfpack's Waggle 12 Mast er Beekeeper Program 15 NCSBA Beekeeper 's Calendar 18 The Brood Chamber Cooking Wit h Honey Recipes 24 In the Apiary 26 21 Bee Love 30 Mem bership Not ice 31 Growing Beekeepers ON THE COVER Adapted from the 28 original photo by Bill Adney Blue Ribbon Winner Beeswax: Beekeeping 2016 NC State Fair Beyond Honey Black & White Photo NC Bee Buzz - Winter 2016 3 North Carolina State Beekeepers Association The mission of the NCSBA is to advance beekeeping in North Carolina through improved communication with members, improved education about beekeeping, and support of science enhancing the knowledge of beekeeping. 2017 Executive Committee President: Rick Coor 1st Vice President: Paul Madren 2nd Vice President: Doug Vinson Secretary: Lynn Wilson Treasurer: Bob Gaddis Membership Secretary: Suzy Spencer Education Coordinator: Dr. David R. Tarpy State Apiarist: Don Hopkins Past President: Julian Wooten Regional Directors Mountain Region Piedmont Region Coastal Region Senior: Allen Blanton Senior: Todd Walker Senior: Eric Talley Junior: Eugene
    [Show full text]
  • 10. Production and Trade of Beeswax
    10. PRODUCTION AND TRADE OF BEESWAX Beeswax is a valuable product that can provide a worthwhile income in addition to honey. One kilogram of beeswax is worth more than one kilogram of honey. Unlike honey, beeswax is not a food product and is simpler to deal with - it does not require careful packaging which this simplifies storage and transport. Beeswax as an income generating resource is neglected in some areas of the tropics. Some countries of Africa where fixed comb beekeeping is still the norm, for example, Ethiopia and Angola, have significant export of beeswax, while in others the trade is neglected and beeswax is thrown away. Worldwide, many honey hunters and beekeepers do not know that beeswax can be sold or used for locally made, high-value products. Knowledge about the value of beeswax and how to process it is often lacking. It is impossible to give statistics, but maybe only half of the world’s production of beeswax comes on to the market, with the rest being thrown away and lost. WHAT BEESWAX IS Beeswax is the creamy coloured substance used by bees to build the comb that forms the structure of their nest. Very pure beeswax is white, but the presence of pollen and other substances cause it to become yellow. Beeswax is produced by all species of honeybees. Wax produced by the Asian species of honeybees is known as Ghedda wax. It differs in chemical and physical properties from the wax of Apis mellifera, and is less acidic. The waxes produced by bumblebees are very different from wax produced by honeybees.
    [Show full text]
  • Colony Collapse Disorder Progress Report
    Colony Collapse Disorder Progress Report CCD Steering Committee June 2009 CCD Steering Committee Members Federal: Kevin Hackett USDA Agricultural Research Service (co-chair) Rick Meyer USDA Cooperative State Research, Education, and Mary Purcell-Miramontes and Extension Service (co-chair) Robyn Rose USDA Animal and Plant Health Inspection Service Doug Holy USDA Natural Resources Conservation Service Evan Skowronski Department of Defense Tom Steeger Environmental Protection Agency Land Grant University: Bruce McPheron Pennsylvania State University Sonny Ramaswamy Purdue University This report has been cleared by all USDA agencies involved, and EPA. DoD considers this a USDA publication, to which DoD has contributed technical input. 2 Content Executive Summary 4 Introduction 6 Topic I: Survey and (Sample) Data Collection 7 Topic II: Analysis of Existing Samples 7 Topic III: Research to Identify Factors Affecting Honey Bee Health, Including Attempts to Recreate CCD Symptomology 8 Topic IV: Mitigative and Preventive Measures 9 Appendix: Specific Accomplishments by Action Plan Component 11 Topic I: Survey and Data Collection 11 Topic II: Analysis of Existing Samples 14 Topic III: Research to Identify Factors Affecting Honey Bee Health, Including Attempts to Recreate CCD Symptomology 21 Topic IV: Mitigative and Preventive Measures 29 3 Executive Summary Mandated by the 2008 Farm Bill [Section 7204 (h) (4)], this first annual report on Honey Bee Colony Collapse Disorder (CCD) represents the work of a large number of scientists from 8 Federal agencies, 2 state departments of agriculture, 22 universities, and several private research efforts. In response to the unexplained losses of U.S. honey bee colonies now known as colony collapse disorder (CCD), USDA’s Agricultural Research Service (ARS) and Cooperative State Research, Education, and Extension Service (CSREES) led a collaborative effort to define an approach to CCD, resulting in the CCD Action Plan in July 2007.
    [Show full text]