Overview of the Precursors and Dynamics of the 2012-13 Basaltic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plate Tectonics, Volcanoes, and Earthquakes / Edited by John P
ISBN 978-1-61530-106-5 Published in 2011 by Britannica Educational Publishing (a trademark of Encyclopædia Britannica, Inc.) in association with Rosen Educational Services, LLC 29 East 21st Street, New York, NY 10010. Copyright © 2011 Encyclopædia Britannica, Inc. Britannica, Encyclopædia Britannica, and the Thistle logo are registered trademarks of Encyclopædia Britannica, Inc. All rights reserved. Rosen Educational Services materials copyright © 2011 Rosen Educational Services, LLC. All rights reserved. Distributed exclusively by Rosen Educational Services. For a listing of additional Britannica Educational Publishing titles, call toll free (800) 237-9932. First Edition Britannica Educational Publishing Michael I. Levy: Executive Editor J. E. Luebering: Senior Manager Marilyn L. Barton: Senior Coordinator, Production Control Steven Bosco: Director, Editorial Technologies Lisa S. Braucher: Senior Producer and Data Editor Yvette Charboneau: Senior Copy Editor Kathy Nakamura: Manager, Media Acquisition John P. Rafferty: Associate Editor, Earth Sciences Rosen Educational Services Alexandra Hanson-Harding: Editor Nelson Sá: Art Director Cindy Reiman: Photography Manager Nicole Russo: Designer Matthew Cauli: Cover Design Introduction by Therese Shea Library of Congress Cataloging-in-Publication Data Plate tectonics, volcanoes, and earthquakes / edited by John P. Rafferty. p. cm.—(Dynamic Earth) “In association with Britannica Educational Publishing, Rosen Educational Services.” Includes index. ISBN 978-1-61530-187-4 ( eBook) 1. Plate tectonics. -
Moüjmtaiim Operations
L f\f¿ áfó b^i,. ‘<& t¿ ytn) ¿L0d àw 1 /1 ^ / / /This publication contains copyright material. *FM 90-6 FieW Manual HEADQUARTERS No We DEPARTMENT OF THE ARMY Washington, DC, 30 June 1980 MOÜJMTAIIM OPERATIONS PREFACE he purpose of this rUanual is to describe how US Army forces fight in mountain regions. Conditions will be encountered in mountains that have a significant effect on. military operations. Mountain operations require, among other things^ special equipment, special training and acclimatization, and a high decree of self-discipline if operations are to succeed. Mountains of military significance are generally characterized by rugged compartmented terrain witn\steep slopes and few natural or manmade lines of communication. Weather in these mountains is seasonal and reaches across the entireSspectrum from extreme cold, with ice and snow in most regions during me winter, to extreme heat in some regions during the summer. AlthoughNthese extremes of weather are important planning considerations, the variability of weather over a short period of time—and from locality to locahty within the confines of a small area—also significantly influences tactical operations. Historically, the focal point of mountain operations has been the battle to control the heights. Changes in weaponry and equipment have not altered this fact. In all but the most extreme conditions of terrain and weather, infantry, with its light equipment and mobility, remains the basic maneuver force in the mountains. With proper equipment and training, it is ideally suited for fighting the close-in battfe commonly associated with mountain warfare. Mechanized infantry can\also enter the mountain battle, but it must be prepared to dismount and conduct operations on foot. -
A Dangling Slab, Amplified Arc Volcanism, Mantle Flow and Seismic Anisotropy in the Kamchatka Plate Corner
AGU Geodynamics Series Volume 30, PLATE BOUNDARY ZONES Edited by Seth Stein and Jeffrey T. Freymueller, p. 295-324 1 A Dangling Slab, Amplified Arc Volcanism, Mantle Flow and Seismic Anisotropy in the Kamchatka Plate Corner Jeffrey Park,1 Yadim Levin,1 Mark Brandon,1 Jonathan Lees,2 Valerie Peyton,3 Evgenii Gordeev ) 4 Alexei Ozerov ,4 Book chapter in press with "Plate Boundary Zones," edited by Seth Stein and Jeffrey Freymuller Abstract The Kamchatka peninsula in Russian East Asia lies at the junction of a transcurrent plate boundary, aligned with the western Aleutian Islands, and a steeply-dipping subduction zone with near-normal convergence. Seismicity patterns and P-wave tomography argue that subducting Pacific lithosphere terminates at the Aleutian junction, and that the downdip extension (>150km depth) of the slab edge is missing. Seismic observables of elastic anisotropy (SKS splitting and Love-Rayleigh scattering) are consistent \Vith asthenospheric strain that rotates from trench-parallel beneath the descending slab to trench-normal beyond its edge. Present-day arc volcanism is concentrated near the slab edge, in the Klyuchevskoy and Sheveluch eruptive centers. Loss of the downdip slab edge, whether from thermo-convective or ductile instability, and subsequent "slab-window" mantle return flow is indicated by widespread Quaternary volcanism in the Sredinny Range inland of Klyuchevskoy and Sheveluch, as well as the inferred Quaternary uplift of the central Kamchatka depression. The slab beneath Klyuchevskoy has shallower dip (35°) than the subduction zone farther south (55°) suggesting a transient lofting of the slab edge, either from asthenospheric flow or the loss of downdip load. -
Russia): 2003–9 Results
CHAPTER 6 OBSIDIAN PROVENANCE STUDIES ON KAMCHATKA PENINSULA (FAR EASTERN RUSSIA): 2003–9 RESULTS Andrei V. Grebennikov, Vladimir K. Popov, Michael D. Glascock, Robert J. Speakman, Yaroslav V. Kuzmin, and Andrei V. Ptashinsky Abstract: The results of obsidian provenance research on the Kamchatka Peninsula based on extensive study of the chemical composition of volcanic glasses from both ‘geological’ sources and archaeological sites are presented. At least 16 geochemical groups reflecting different sources of obsidian have been identified for Kamchatka using Instrumental Neutron Activation Analysis. Seven sources of archaeological obsidian have been linked to specific geologic outcrops, with the distances between sites and obsidian sources up to 550km. At least seven geochemical groups based only on artefact analysis are also described. The use of multiple obsidian sources was a common pattern during the Palaeolithic, Neolithic, and Palaeometal periods of Kamchatkan prehistory. Keywords: Obsidian, Source Identification, Palaeolithic, Neolithic, Kamchatka Peninsula, Russian Far East Introduction 6.1, A). The main geomorphic features of the Kamchatka Peninsula are two major mountain ranges, Central and Studies of the geochemistry of waterless volcanic glasses Eastern, with a sedimentary basin between them occupied (i.e., obsidians) and sources of archaeological obsidian by the Kamchatka River drainage; mountains of the in the Russian Far East have been ongoing since the southern region; and lowlands on the western coast (Suslov early 1990s, -
Weathering of Volcanic Ash in the Cryogenic Zone of Kamchatka, Eastern Russia
Clay Minerals, (2014) 49, 195–212 OPEN ACCESS Weathering of volcanic ash in the cryogenic zone of Kamchatka, eastern Russia 1, 2 E. KUZNETSOVA * AND R. MOTENKO 1 SINTEF Building and Infrastructure, Trondheim, NO-7465, Norway, and 2 Lomonosov Moscow State University, Moscow, 119991, Russia (Received 8 August 2012; revised 28 August 2013; Editor: Harry Shaw) ABSTRACT: The nature of the alteration of basaltic, andesitic and rhyolitic glass of Holocene and Pleistocene age and their physical and chemical environments have been investigated in the ash layers within the cryogenic soils associated with the volcanoes in the central depression of Kamchatka. One of the main factors controlling the alteration of the volcanic glass is their initial chemistry with those of andesitic (SiO2 =53À65 wt.%) and basaltic (SiO2 < 53 wt.%) compositions being characterized by the presence of allophane, whereas volcanic glass of rhyolitic composition (SiO2>65 wt.%) are characterized by opal. Variations in the age of eruption of individual ashes, the amount and nature of the soil water, the depth of the active annual freeze-thawing layer, the thermal conductivity of the weathering soils, do not play a controlling role in the type of weathering products of the ashes but may affect their rates of alteration. KEYWORDS: volcanic ash, allophane, opal, unfrozen water, thermal conductivity, permafrost, Kamchatka. The highly active volcanic area of Kamchatka in local and remote eruptions and from the secondary eastern Russia is part of the circum-Pacific belt of re-deposition of ash (Bazanova et al., 2005). andesitic volcanism. It is situated north of the 49th Considerable research has been carried out on the parallel of latitude and is characterized by a weathering of volcanic glass. -
2006 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory
The Alaska Volcano Observatory is a cooperative program of the U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys. The Alaska Volcano Observatory is funded by the U.S. Geological Survey Volcano Hazards Program and the State of Alaska 2006 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory Scientific Investigations Report 2008–5214 U.S. Department of the Interior U.S. Geological Survey Cover: Water vapor and volcanic gas billows from a line of explosion and/or collapse pits in the glacial ice cover north of the summit of Fourpeaked volcano. In the middleground, glacial ice shows disruption from an outburst flood on September 17, 2006, the day of a phreatic eruption seen from Homer, Alaska. Photograph by K. Lawson, UAFGI, October 20, 2006. AVO database image url: http://www.avo.alaska.edu/image.php?id=12404. 2006 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory By Christina A. Neal, Robert G. McGimsey, James P. Dixon, U.S. Geological Survey, and Alexander Manevich, Institute of Volcanology and Seismology, and Alexander Rybin, Institute of Marine Geology and Geophysics The Alaska Volcano Observatory is a cooperative program of the U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys. The Alaska Volcano Observatory is funded by the U.S. Geological Survey Volcano Hazards Program and the State of Alaska. Scientific Investigations Report 2008–5214 U.S. -
Atrakcje Geoturystyczne Grupy Wulkanєw Kluczewskiej Sopki, Pєłnocna Kamczatka, Rosja
Geoturystyka 1 (20) 2010: 51-63 Atrakcje geoturystyczne grupy wulkanów Kluczewskiej Sopki, SyáQRFQD.DPF]DWND5RVMD Geotouristic attractions of the Klyuchevskoy group volcanoes, North Kamchatka, Russia 0DUHNàRG]LĔVNL $NDGHPLD*yUQLF]R+XWQLF]D:\G]LDá*HRORJLL*HR¿]\NLL2FKURQ\ĝURGRZLVND $O0LFNLHZLF]D.UDNyZ HPDLOPDUHNORG]LQVNL#DJKHGXSO :VWĊS Morze Czukockie .DPF]DWNDMHVWSyáZ\VSHPRQLHGRFHQLRQ\FKLQLHZ\NR- U]\VWDQ\FKZDORUDFKJHRWXU\VW\F]Q\FK3RWHQFMDáJHRWXU\VW\F]- Stany Rosja Zjednoczone Q\WHJRREV]DUXMHVWRJURPQ\]HZ]JOĊGXQDWRĪH.DPF]DW- NDZFKRG]LZVNáDGW]ZÄRNRáRSDF\¿F]QHJRSLHUĞFLHQLDRJQLD´ Alaska Kanada F]\OLSLHUĞFLHQLDZRNyá3DF\¿NXWZRU]RQHJRSU]H]OLF]QHZXO- NDQ\ QD.DPF]DWFHMHVWZXONDQyZ -HVWWRĞFLĞOH]ZLą- Morze a ]DQH]JHRWHNWRQLF]Q\PSRáRĪHQLHP.DPF]DWNLQDJUDQLF\ k Beringa t a Sá\WOLWRVIHU\F]Q\FKSDF\¿F]QHMLPLNURSá\W\RFKRFNLHM 7XU- z c n y m j ner HWDO.RQVWDQWLQRYVNDLD*DHGLFNHHWDO a k o K p o O c e a n S Golonka HWDO.R]KXULQ.R]KXULQHWDO 3RUWQ\DJLQHWDO )LJ± 3RZV]HFKQLH]ZDQDWHĪMHVW ÄNUDLQąRJQLDLORGX´LVWąGZ\QLNDMHMQLH]Z\NáRĞüMDNRRELHN- 7UHĞü$UW\NXáSU]HGVWDZLDZDORU\JHRWXU\VW\F]QHJUXS\ZXOND- WXJHRWXU\VW\F]QHJRJG\ĪRGVáDQLDZ\MąWNRZRGREU]H]DFKR- QyZ.OXF]HZVNLHM6RSNLQD3yáQRFQHM.DPF]DWFH3RND]DQRSRáR- ZDQHUyĪQRURGQHIRUP\L]MDZLVNDZXONDQLF]QHRUD]IRUP\ ĪHQLHSyáZ\VSX.DPF]DFNLHJRQDWOHDNWXDOQ\FKJUDQLFSá\WOLWRV- DNXPXODFMLLHUR]MLORGRZFRZHM - IHU\F]Q\FKRUD]Z\MDĞQLRQRJHQH]ĊLEXGRZĊW]Z.RUMDFNR.DP :DUWRSRGNUHĞOLüĪHZUD]]DUFKLSHODJLHP:\VS.XU\O- - F]DFNLHJRSDVDZXONDQLF]QHJR*HRWHNWRQLF]QHSRáRĪHQLH.DP VNLFKMHVWWRQDMEDUG]LHMDNW\ZQ\SRáRĪRQ\QDOąG]LHIUDJPHQW F]DWNLZVWUH¿HÄRNRáRSDF\¿F]QHJRSLHUĞFLHQLDRJQLD´XPRĪOLZLD -
2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory
The Alaska Volcano Observatory is a cooperative program of the U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys . The Alaska Volcano Observtory is funded by the U.S. Geological Survey Volcano Hazards Program and the State of Alaska. 2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory Scientific Investigations Report 2007–5269 U.S. Department of the Interior U.S. Geological Survey Cover: Southeast flank of Augustine Volcano showing summit steaming, superheated fumarole jet, and ash dusting on snow. View is toward the northwest with Iniskin Bay in the distance. Photograph taken by Chris Waythomas, AVO/USGS, December 20, 2005. 2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory By R.G. McGimsey, C.A. Neal, J.P. Dixon, U.S. Geological Survey, and Sergey Ushakov, Institute of Volcanology and Seismology The Alaska Volcano Observatory is a cooperative program of the U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophuysical Surveys. The Alaska Volcano Observatory is funded by the U.S. Geological Survey Volcano Hazards Program and the State of Alaska. Scientific Investigations Report 2007–5269 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. -
Thermal Remote Sensing Reveals Communication Between
www.nature.com/scientificreports OPEN Thermal remote sensing reveals communication between volcanoes of the Klyuchevskoy Volcanic Group Diego Coppola1,2*, Marco Laiolo1,2, Francesco Massimetti1,3, Sebastian Hainzl3, Alina V. Shevchenko3,4, René Mania3, Nikolai M. Shapiro5,6 & Thomas R. Walter3 Volcanoes are traditionally considered isolated with an activity that is mostly independent of the surrounding, with few eruptions only (< 2%) associated with a tectonic earthquake trigger. Evidence is now increasing that volcanoes forming clusters of eruptive centers may simultaneously erupt, show unrest, or even shut-down activity. Using infrared satellite data, we detail 20 years of eruptive activity (2000–2020) at Klyuchevskoy, Bezymianny, and Tolbachik, the three active volcanoes of the Klyuchevskoy Volcanic Group (KVG), Kamchatka. We show that the neighboring volcanoes exhibit multiple and reciprocal interactions on diferent timescales that unravel the magmatic system’s complexity below the KVG. Klyuchevskoy and Bezymianny volcanoes show correlated activity with time-predictable and quasiperiodic behaviors, respectively. This is consistent with magma accumulation and discharge dynamics at both volcanoes, typical of steady-state volcanism. However, Tolbachik volcano can interrupt this steady-state regime and modify the magma output rate of its neighbors for several years. We suggest that below the KVG the transfer of magma at crustal level is modulated by the presence of three distinct but hydraulically connected plumbing systems. Similar complex interactions may occur at other volcanic groups and must be considered to evaluate the hazard of grouped volcanoes. Closely located or clustered volcanoes may become conjointly active and are hence considered especially haz- ardous, yet robust evidence for their connectivity remains sparse. -
Russia's Kamchatka Volcanoes Calm After Eruptions 29 October 2010
Russia's Kamchatka volcanoes calm after eruptions 29 October 2010 coated the nearby town of Ust-Kamchatsk, reducing visibility to only a few feet (meters) and turning buildings ghostly white. Emergency officials said the town's 5,000 residents weren't in any immediate danger but urged them to stay indoors and tightly close doors and windows to avoid inhaling ash particles that could lead to respiratory illnesses and allergic reactions. Businesses in Ust-Kamchatsk quickly closed and all streets were shut down to traffic. Scientists warned that ashes will likely continue falling on the Smoke rises from the Shiveluch volcano in the area for at least 10 days. Kamchatka Peninsula eastern Russia is this image taken from TV Thursday Oct. 28, 2010. Volcanic eruptions on Ust-Kamchatsk is 45 miles (70 kilometers) east of Russia's far-eastern Kamchatka Peninsula have tossed Shiveluch and 75 miles (120 kilometers) northeast massive ash clouds into the air, forcing flights to divert of Klyuchevskaya Sopka, and winds blew ash from and blanketing a town with ashes. (AP Photo/RTR, via both on the town. APTN) Jen Burke, a meteorologist with the Alaska Aviation Weather Unit, said Thursday ash from the Shiveluch eruption - the larger of the two - was (AP) -- Two volcanoes that erupted on the far- moving across the Bering Sea at a height of 25,000 eastern Kamchatka Peninsula, blanketing a town feet (7,620 meters). with dust and spreading ash clouds across the Pacific, have mostly stopped spewing ash and ©2010 The Associated Press. All rights reserved. flights are no longer diverted, Russian officials said This material may not be published, broadcast, Friday. -
"Constraints on the Potential Subsurface Area of Disruption
CONSTRAINTS ON THE POTENTIAL SUBSURFACE AREA OF DISRUPTION ASSOCIATED WITH YUCCA MOUNTAIN REGION BASALTIC VOLCANOES Prepared for Nuclear Regulatory Commission Contract NRC-02-93-005 Prepared by Brittain Hill Center for Nuclear Waste Regulatory Analyses San Antonio, Texas November 1996 3/193 ABSTRACT Determining the subsurface area that a basaltic volcano can disrupt is a key parameter in calculating the amount of high-level radioactive waste that conceivably can be transported into the accessible environment. Although there is evidence that some Quaternary Yucca Mountain region (YMR) volcanoes disrupted anomalously large amounts of subsurface rock, the volume of disruption cannot be calculated directly. An analog volcanic eruption at Tolbachik volcano in Kamchatka, however, provides critical constraints on the subsurface area potentially disrupted by basaltic cinder cones. During a 12 hr period of the 1975 Tolbachik eruption, 2.8x10 6 m3 of subsurface rock was brecciated and ejected from the volcano. Using geologic and geometric constraints, this volume represents a circular diameter of disruption of 49±7 m. An unusual type of volcanic bomb was produced during this disruptive event, which contains multiple subsurface rock types that each show a range in thermal effects. These bombs represent the mixing of different stratigraphic levels and significant distances outward from the conduit during a single event. The same type of unusual volcanic bomb is found at Lathrop Wells and Little Black Peak volcanoes in the YMR. In addition, Lathrop Wells and to a lesser extent Little Black Peak have anomalously high subsurface rock-fragment abundances and are constructed of loose, broken tephra. These characteristics strongly suggest that subsurface disruptive events analogous to that at 1975 Tolbachik occurred at these YMR volcanoes. -
The Alaska Volcano Observatory - 20 Years of Volcano Research, Monitoring, and Eruption Response
http://www.dggs.dnr.state.ak.us Vol. 11, No. 1, March 2008 THE ALASKA VOLCANO OBSERVATORY - 20 YEARS OF VOLCANO RESEARCH, MONITORING, AND ERUPTION RESPONSE Since 1988, the Alaska Volcano Observatory (AVO) has been monitoring volcanic activity across the state, conducting scientifi c research on volcanic processes, producing volcano-hazard assessments, and informing both the public and emergency managers of volcanic unrest. Below are some examples of the activity at Alaska’s volcanoes that have held the attention of AVO staff. 1977 photo (a) 1989-90, Redoubt (b) 1992, Bogoslof (c) 1992, Spurr (d) 1992, (e) 1993, Seguam Westdahl 2002 photo (f) 1994, Kanaga (g) 1996, Akutan (h) 1996, Pavlof (i) 1997, Okmok (j) 1998, Korovin (k) 1999, Shishaldin (l) 2004-06, Spurr (m) 2005, Veniaminof (n) 2005, Chiginagak (o) 2006, Augustine (p) 2006, Cleveland (q) 2006, Fourpeaked (r) 2007, Pavlof Photo credits: (a) J. Warren, (b) T. Keith, USGS, (c) R. McGimsey, USGS, (d) C. Dau, USFWS, (e) U.S. Coast Guard (1977 photo), (f) E. Klett, USFWS, (g) R. McGimsey, USGS, (h) S. Schulmeister, (i) J. Freymueller, UAF/GI, (2002 photo), (j) R. McGimsey, USGS, (k) C. Nye, ADGGS, (l) D. Schneider, USGS, (m) K. Wallace, USGS, (n) J. Schaefer, ADGGS, (o) C. Read, USGS, (p) NASA, (q) K. Lawson, (r) C. Waythomas, USGS. To see more photographs of Alaska volcanoes and learn more about these eruptions and others, visit the Alaska Volcano Observatory website at www.avo.alaska.edu. MONITORING THE ACTIVE VOLCANOES OF ALASKA BY JANET SCHAEFER AND CHRIS NYE INTRODUCTION Active volcanoes in Alaska? Yes! In fact, there are more than in the last few thousand years exist in southeastern Alaska and 50 historically active volcanoes in Alaska.