12 Reproduction in Flowering Plants

Total Page:16

File Type:pdf, Size:1020Kb

12 Reproduction in Flowering Plants Class: Name: ( ) Date: 12 Reproduction in flowering plants 12.1 Types of reproduction (Book 2, p. 12-3) The process of producing offspring (後代 ) is called (1) _______________. Differences between asexual reproduction (無性生殖 ) and sexual reproduction (有性生殖 ): Asexual reproduction Sexual reproduction Number of (2) ___________ (One / Two) Usually (3) ___________ (one / two) parents Fusion of (4) ___________ (Yes / No) (5) ___________ (Yes / No) gametes Type of cell Mitotic cell division Meiotic and mitotic cell divisions division involved (6) _______________ __________ (7) _______________ __________ Genetic make-up (Identical to / Different from) the (Identical to / Different from) the of offspring parent parents 12.2 Asexual reproduction (Book 2, p. 12-4) A Binary fission in bacteria (Book 2, p. 12 -4) Under favourable conditions, bacteria can reproduce asexually by (1) _______________ _______________ (二分裂 ). During the process, a parent bacterial cell divides mitotically into (2) _______________ daughter cells . bacterial 1 The DNA (3) _______________ chromosome 2 The cell membrane and the cell grows in size. constricts inwards and divides the cytoplasm into two parts. 3 Two daughter cells are formed. ▲ Binary fission in bacteria New Senior Secondary Mastering Biology Oxford University Press 2015 (Second Edition) - 11 - B Vegetative propagation in flowering plants (Book 2, p. 12 -5) (4) ______________ ______________ (營養繁殖 ) is the process in which the (5) _____________ parts (e.g. leaves, stems or roots) of flowering plants develop into new plants. The process of vegetative propagation: 1 In winter, the aerial part of the plant dies. The underground storage organ remains aerial part (6) _______________ ( 休眠 ). bud storage 芽 ( ) organ 2 When conditions become favourable, new (7) ______________ ______________ (地上莖 ) new aerial shoot develop from the buds. The storage organ provides food for the growth of the shoots. flow of food 3 (8) ______________ ______________ ( 不定根 ) are formed. They absorb water and minerals from the soil. Green leaves start to develop. adventitious root 4 The shoots develop into new plants. The green leaf storage organ dries up as food is used up. 5 The plants carry out (9) _______________ to make food. Some food is transported to and stored in the new storage organs. new storage organ old storage organ New Senior Secondary Mastering Biology Oxford University Press 2015 (Second Edition) - 12 - Examples of storage organs that allow vegetative propagation: 1 Stem tuber A (10) _______________ _______________ (塊莖 ) is the swollen end of an underground stem. Potato is a flowering plant that develops stem tubers. In winter In spring In summer aerial shoot new tuber green leaf bud old tuber adventitious developing root tuber 1 Under unfavourable 2 When conditions become 3 The old tuber dries up as food conditions, the potato tuber favourable, a bud develops is used up. Some food made remains dormant in the soil. into an aerial shoot with in the green leaves is adventitious roots using the transported to and stored in food stored in the tuber. the new tubers. ▲ Growth of a potato tuber 2 Bulb A (11) _______________ (鱗莖) is a short vertical underground stem. It has layers of (12) _______________ _______________ _______________ (肉質鱗葉 ) with stored food. Onion and daffodil (水仙 ) are examples of plants that develop bulbs. In spring In summer green leaf fleshy scale leaf aerial flower stalk shoot (花柄 ) new bulb new adventitious root 1 Under favourable conditions, a bud 2 Some food made in the green develops into an aerial shoot using the leaves is transported to and food stored in the fleshy scale leaves. stored in the new bulb. ▲ Growth of an onion bulb New Senior Secondary Mastering Biology Oxford University Press 2015 (Second Edition) - 13 - 3 Corm A (13) _______________ (球莖 ) is a short vertical underground stem surrounded by protective scale leaves. Unlike bulbs, corms do not have fleshy scale leaves . Gladiolus (劍蘭 ) and water chestnut (荸薺 ) are examples of plants that develop corms. In spring In summer flower stalk green leaf bud new corm new corm protective brown scale leaf old adventitious old corm remains of root last year’s corm 1 Under favourable conditions, 2 When green leaves have 3 A new corm develops on top the food stored in the corm is developed, some of the food of the old one each year. transported to the bud for its made is transported to and growth. stored in the new corm. ▲ Growth of a Gladiolus corm 4 Rhizome A (14) _______________ (球莖 ) is an underground stem that grows horizontally . Ginger (薑) and lotus (蓮) are examples of plants that develop rhizomes. In spring In summer flower stalk growing from terminal bud (頂芽 ) green leaf lateral bud (側芽 ) new rhizome developing from lateral bud adventitious root 1 Under favourable conditions, a bud 2 Some food made in the green leaves is develops into an aerial shoot using transported to the rhizome for storage the food stored in the rhizome. and formation of new rhizomes from the lateral buds. ▲ Growth of a ginger rhizome New Senior Secondary Mastering Biology Oxford University Press 2015 (Second Edition) - 14 - C Artificial vegetative propagation (Book 2, p. 12 -8) A particular variety of plants can be produced by (15) _______________ _______________ _______________ (人工營養繁殖 ). (16) _______________ (插枝 ) is one of the methods. African violet (非洲紫羅蘭 ) and Coleus (洋紫蘇 ) can be propagated using this method. 1 Cut a leaf or a portion 2 Place the cutting 3 After (17) ____________ 4 The cutting grows of stem. in water. have developed, plant the and develops into cutting in soil. a new plant. ▲ Propagation of African violet by cutting Go to Practical 12.1 Examination of binary fission in bacteria (Book 2, p. 12-4; Practical Workbook for SBA 2, p. 12-1) 12.3 Sexual reproduction in flowering plants (Book 2, p. 12-10) A Structure and functions of a flower (Book 2, p. 12 -10) Most flowers consist of four main parts: (1) _______________ (萼片 ), (2) _______________ (花瓣 ), (3) _______________ (雄蕊 ) and (4) _______________ (心皮 ). (9) _____________ (柱頭 ) (5) _____________ (花藥) (10) _____________ (花柱 ) stamen carpel (6) _____________ (11) _____________ (子房 ) (花絲) (12) _____________ (胚珠 ) petal (collectively called (7) _______________ (花冠 )) nectary (蜜腺 ) (13) _______________ (花托 ) sepal (collectively called flower stalk (8) _______________ (花萼 )) ▲ General structure of a flower New Senior Secondary Mastering Biology Oxford University Press 2015 (Second Edition) - 15 - Floral part Function Sepal (calyx) (14) _______________ the flower bud Petal (corolla) May be brightly coloured and scented to attract (15) ______________ May have nectaries to produce (16) _______________ (花蜜 ) for insects to feed on May have (17) _______________ _______________ (蜜源標記 ) to lead insects towards the nectaries Stamen Anther produces (18) _______________ _______________ (花粉粒 ) (male reproductive which carry (19) _______________ (male / female) gametes part) (20) _______________ supports the anther Carpel (21) _______________ receives the pollen grains (female Style supports the stigma reproductive part) Ovary with one or more ovules, each ovule contains an (22) _______________ (卵) Each ovule is attached to the ovary wall by the funicle (珠柄 ) and is protected by (23) _______________ (珠被 ) with a small hole called the micropyle (珠孔 ) Flowers with both stamens and carpels are called (24) _______________ flowers (兩性花 ). Flowers with either stamens or carpels are called (25) _______________ flowers (單性花 ). B What is pollination? (Book 2, p. 12 -14) (26) _______________ (傳粉 ) is the transfer of pollen grains from the anthers to the stigmas of flowers. Through this process, the male gametes carried in pollen grains can reach the carpel for (27) _______________ to take place. 1 Self-pollination and cross-pollination The transfer of pollen grains to the stigma of the same flower or to the stigma of another flower of the same plant is called (28) _______________-_______________ (自花傳粉 ). The transfer of pollen grains to the stigma of a flower on a different plant of the same species is called (29) _______________-_______________ (異花傳粉 ). Cross-pollination leads to (30) _______________ (greater / smaller) genetic variations in the offspring. New Senior Secondary Mastering Biology Oxford University Press 2015 (Second Edition) - 16 - 2 Insect pollination and wind pollination Differences in characteristics of insect-pollinated flowers and wind-pollinated flowers : Insect-pollinated flower (蟲媒花 ) Wind-pollinated flower (風媒花 ) stigma anther filament anther stigma filament nectary Petals Large and brightly coloured Reduced, green or dull-coloured Often have nectar guides Scent (31) _______________ (32) _______________ (Present / Absent) (Present / Absent) Nectaries (33) _______________ (34) _______________ (Present / Absent) (Present / Absent) Anthers Located inside the flower Hang outside the flower to release pollen grains into the air (35) _______________ (36) _______________ (Firmly / Loosely) attached to the (Firmly / Loosely) attached to the filaments filaments Pollen Larger and heavier Smaller and lighter grains Rough, spiky and sticky to help Smooth and dry attach to insects (37) _______________ (38) _______________ (Larger / Smaller) in number (Larger / Smaller) in number Stigmas Located (39) _______________ Hang (40) _______________ (inside / outside) the flower (inside / outside) the flower to catch pollen grains in the air (41) _______________
Recommended publications
  • Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids During Plant Development
    Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development. Monique Liebers, Björn Grübler, Fabien Chevalier, Silva Lerbs-Mache, Livia Merendino, Robert Blanvillain, Thomas Pfannschmidt To cite this version: Monique Liebers, Björn Grübler, Fabien Chevalier, Silva Lerbs-Mache, Livia Merendino, et al.. Regu- latory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development.. Frontiers in Plant Science, Frontiers, 2017, 8, pp.23. 10.3389/fpls.2017.00023. hal-01513709 HAL Id: hal-01513709 https://hal.archives-ouvertes.fr/hal-01513709 Submitted on 26 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fpls-08-00023 January 17, 2017 Time: 16:47 # 1 MINI REVIEW published: 19 January 2017 doi: 10.3389/fpls.2017.00023 Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development Monique Liebers, Björn Grübler, Fabien Chevalier, Silva Lerbs-Mache, Livia Merendino, Robert Blanvillain and Thomas Pfannschmidt* Laboratoire de Physiologie Cellulaire et Végétale, Institut de Biosciences et Biotechnologies de Grenoble, CNRS, CEA, INRA, Université Grenoble Alpes, Grenoble, France Plastids display a high morphological and functional diversity.
    [Show full text]
  • Isa Islamic School National Grade Nine Assessment Science Project 2015
    ISA ISLAMIC SCHOOL NATIONAL GRADE NINE ASSESSMENT SCIENCE PROJECT 2015 Name: Nusaibah Hussain Subject: Biology Topic: Project One - Food Storage Organs Teacher: Naudyah Hoosein Date of Submission: 21st April, 2015 1 TABLE OF CONTENTS SCHEDULE OF ACTIVITIES 3 OBJECTIVES 4 MA TERlALS 5 PROCEDURE 6 RESULTS: 7 DISCUSSION 8 PICTURE CHART 11 CONCLUSION 13 REFERENCE 14 2 SCHEDULE OF ACTIVITIES 6) Schedule· Date Completed Outline of project: Collect materials 10-03-2015 ../ Sketch samples 13-03-2015 ../ Complete picture chart 23-03-2015 ../ Preparation of seed 12-03-2015 ../ containers Planting of samples 13-03-2015 ../ Discussion: Complete table 30-03-2015 ../ Answer questions 30-03-2015 ../ Conclusion 30-03-2015 ../ Submission 13-04-2015 ../ - ~y (0 3 OBJECTIVES 1. To classify food storage organs found in plants 2. To draw sketches of storage organs showing structural details used to identify class. 3. To compare growth of buds and young plants from each class of storage organs. 4 MATERIALS • Four (4) samples of storage organs: Onion, Ginger, Sugarcane and Potato. • Stationery: Notepads, Sketchpads, Pencil, eraser etc. • Potting soil • Four (4) Containers (1)1 • 30cm ruler \V • Water can • Knife 5 PROCEDURE 1. Samples offour storage organs were collected 2. The samples were sketched, labeled and described 3. A picture chart with written descriptions was prepared 4. From each sample, parts with buds were selected for planting 5. Containers were prepared with potting soil 6. The selected materials were planted 7. The date of planting .and date of sprouting of buds or young plants was recorded 8. Growth of the plants was measured and recorded every three days for twenty one days 9.
    [Show full text]
  • Vegetative Vs. Reproductive Morphology
    Today’s lecture: plant morphology Vegetative vs. reproductive morphology Vegetative morphology Growth, development, photosynthesis, support Not involved in sexual reproduction Reproductive morphology Sexual reproduction Vegetative morphology: seeds Seed = a dormant young plant in which development is arrested. Cotyledon (seed leaf) = leaf developed at the first node of the embryonic stem; present in the seed prior to germination. Vegetative morphology: roots Water and mineral uptake radicle primary roots stem secondary roots taproot fibrous roots adventitious roots Vegetative morphology: roots Modified roots Symbiosis/parasitism Food storage stem secondary roots Increase nutrient Allow dormancy adventitious roots availability Facilitate vegetative spread Vegetative morphology: stems plumule primary shoot Support, vertical elongation apical bud node internode leaf lateral (axillary) bud lateral shoot stipule Vegetative morphology: stems Vascular tissue = specialized cells transporting water and nutrients Secondary growth = vascular cell division, resulting in increased girth Vegetative morphology: stems Secondary growth = vascular cell division, resulting in increased girth Vegetative morphology: stems Modified stems Asexual (vegetative) reproduction Stolon: above ground Rhizome: below ground Stems elongating laterally, producing adventitious roots and lateral shoots Vegetative morphology: stems Modified stems Food storage Bulb: leaves are storage organs Corm: stem is storage organ Stems not elongating, packed with carbohydrates Vegetative
    [Show full text]
  • Rutgers Home Gardeners School: the Beauty of Bulbs
    The Beauty of Bulbs Bruce Crawford March 17, 2018 Director, Rutgers Gardens Rutgersgardens.rutgers.edu In general, ‘bulbs’, or more properly, geophytes are easy plants to grow, requiring full sun, good drainage and moderately fertile soils. Geophytes are defined as any non-woody plant with an underground storage organ. These storage organs contain carbohydrates, nutrients and water and allow the plant to endure extended periods of time that are not suitable for plant growth. Types of Geophytes include: Bulb – Swollen leaves or leaf stalks, attached at the bottom to a modified stem called a basal plant. The outer layers are modified leaves called scales. Scales contain necessary foods to sustain the bulb during dormancy and early growth. The outermost scales become dry and form a papery covering or tunic. At the center are developed, albeit embryonic flowers, leaves and stem(s). Roots develop from the basal plate. Examples are Tulipia (Tulip), Narcissus (Daffodil), and Allium (Flowering Onion). Corm – A swollen stem that is modified for food storage. Eyes or growing points develop on top of the corm. Roots develop from a basal plate on the bottom of the corm, similar to bulbs. The dried bases of the leaves from an outer layer, also called the tunic. Examples include Crocus and Erythronium (Dog Tooth Violet). Tuber – Also a modified stem, but it lacks a basal plate and a tunic. Roots, shoots and leaves grow from eyes. Examples are Cyclamen, Eranthis (Winter Aconite) and Anemone (Wind Flower). Tuberous Roots – These enlarged storage elements resemble tubers but are swollen roots, not stems. During active growth, they produce a fibrous root system for water and nutrient absorption.
    [Show full text]
  • Bioenergetics of Growth of Seeds, Fruits, and Storage Organs F
    BIOENERGETICS OF GROWTH OF SEEDS, FRUITS, AND STORAGE _ORGANS F. W. T. Penning de Vries, H. H. VanLaar, and M. C. M. Chardon In Potential Productivity of Field Crops Under Different Environments. IRRI, Los Banos Philipines, 1983, pp. 37-60 The amount of substrate required for growth of seeds, fruits, and other storage organs is computed for 23 major crops. The compu­ tations are based on knowledge of the biochemical conversion processes that occur during growth, and the biochemical composi­ tion of the storage organs. The amount of substrate required for maintenance processes in these organs is estimated from literature data. The procedures in calculating the growth processes are explained and justified. The substrate requirement for synthesis of 1 kg of the total storage organ varies from 1.3 to 2.4 kg glucose, and from I .6 to 5.5 kg glucose when the substrate is expressed per kg of the storage organ principal component. Synthesis of 1 kg of the total storage organ requires 0.02-0.3 kg amides, or 0.02-0.4 kg ami des I kg of the principal component. Respiration during growth is also computed. There is good evidence th(lt there is no scope for improvement of the efficiency with which plants convert substrates into storage organs. Higher yields per unit of substrate can be achieved only by the production of energetically cheaper storage organs. Mainte­ nance of the storage organs during their development consumes 6 to 25% of the total substrate requirement for their growth. Research should further quantify this fraction and indicate the scope for breeding and selection of varieties with lower mainte­ nance requirements.
    [Show full text]
  • Ferns: Any of Numerous Seedless Vascular Plants Belonging to the Phylum Pterophyta That
    Cooke County 4-H Horticulture Project Rules 2013 - 2014 Validation: January 2nd & 3rd, 2014 Judging: March 12th, 2014 1. Juniors 8-13 years old, seniors 14-18 years old 2. May enter as many categories as you deserve, but may enter each category one time 3. May use any type of container but will be judge of appropriate for that category 4. The following are definition of each category: • Foliage: A plant cultivated chiefly for its ornamental leaves. • Flowering: A plant that produces flowers and fruit; an angiosperm. • Succulent: Any of various plants having fleshy leaves or stems that store water. Cacti and the jade plant are succulents. Succulents are usually adapted to drier environments and display other characteristics that reduce water loss, such as waxy coatings on leaves and stems, fewer stomata than occur on other plants, and stout, rounded stems that minimize surface area. • Trailer/Vines: any plant with a long stem that grows along the ground or that climbs a support by winding or by clinging with tendrils or claspers. • Bulbs: A rounded underground storage organ that contains the shoot of a new plant. A bulb consists of a short stem surrounded by fleshy scales (modified leaves) that store nourishment for the new plant. Tulips, lilies, and onions grow from bulbs. • Herbs: are, technically, plants with aerial parts used for seasoning foods, and a spice (also called seasoning) is any substance used for seasoning foods; many herbs are used as spices • Ferns: Any of numerous seedless vascular plants belonging to the phylum Pterophyta that reproduce by means of spores and usually have feathery fronds divided into many leaflets.
    [Show full text]
  • Basic Plant Science
    Master Gardener Program Utah State University Cooperative Extension Plant Parts and Functions Overview Plant Classification Stems Buds Leaves Flowers Fruits Roots Plant Classifications Woody vs. Herbaceous Deciduous vs. Evergreen Annual vs. Perennial vs. Biennial Gymnosperms vs. Angiosperms Monocots vs. Dicots Botanical, Scientific (Latin) Name Herbaceous vs. Woody Woody – plants that develop woody stems Herbaceous – soft green plants that have little or no woody tissue Deciduous vs. Evergreen Deciduous Loose their leaves annually Evergreen Retain leaves during the winter Annual, Perennial, Biennial Annual – completes life cycle in one year (seed to seed) Perennial – plant lives through the winter to grow from same roots the following year Biennial – takes two years to complete the life cycle. Stores energy in roots then flowers after cold of winter Gymnosperms, Angiosperms Gymnosperms – cone bearers Angiosperms – seeds inside fruit Dicots and Monocots Monocots, Dicots, Polycots Monocots – grasses Dicots – broadleafs Germination Scientific Names Binomial nomenclature system devised by Carl Linnaeus (1707-1778) Species are uniquely identified by name Many species have more than one common name Multiple species may share a common name Species names consist of: Genus + specific epithet Species Names Genus + specific epithet “Genus” groups plants that are genetically related, have similar characteristics. Acer = MAPLE, BOX ELDER “specific epithet” identifies unique plants within a genus, usually an adjective. Acer palmatum = JAPANESE MAPLE, palmatum implies radiation from a single point – leaflets or veins Cultivar, Variety, Cross Cultivar – a variant of a species whose characteristics reproduced vegetatively Acer palmatum `Garnet’ Variety – a naturally occurring variant of a wild species. Propagated by seed. Gleditsia triacanthos var. inermis –thornless honeylocust.
    [Show full text]
  • Investigating Hormone Regulation and Sugar Storage During Tuber Development in Turnip Plants (Brassica Rapa)
    Investigating Hormone Regulation and Sugar Storage during Tuber Development in Turnip Plants (Brassica rapa) MSc Thesis Report (PBR-80436) Temesgen Menamo (Reg. No. 860717-557-050) Supervisors: Dr. Ningwen Zhang Dr. Guusje Bonnema Laboratory of Plant Breeding, Wageningen University The Netherlands, Wageningen April-December, 2012 Investigating Hormone Regulation and Sugar Storage during Tuber Development in Turnip Plants (Brassica rapa) MSc Thesis Report (PBR-80436) Temesgen Menamo (Reg. No. 860717-557-050) Supervisors: Dr. Ningwen Zhang Dr. Guusje Bonnema Examiners : Dr. Guusje Bonnema Dr. Christian Bachem Laboratory of Plant Breeding, Wageningen University The Netherlands, Wageningen April-December, 2012 Acknowledgement I would like to thank the Brassica group leader Guusje Bonnema for giving me this opportunity to join in this group. I would like to thank Ningwen for support, guidance and encouragement in doing each part. I thank to Johan Bucher for his support in lab work. My thanks go to Luc Suurs who also supported me in biochemical lab works. I also would like to say thanks to Christian Bachem for being my examiner. I would like to thank for Fu Shi for helping on the transplanting of explants. I would like to acknowledge NFP for financially supporting until finishing of my study. Last but not least for all Brassica group members for support by ideas. Abstract Brassica rapa belongs to Brassicaceae family with diploid (2n=20) genotype and this species consists of morphological diverse crops. It includes leafy vegetables, turnip vegetables, and vegetable oil. This study focused on investigation of hormones and sugar storage during turnip tuber formation in turnip plants.
    [Show full text]
  • Bontany and Basic Plant Science
    Plant Science Botany and Basic Plant Science Adapted from the Texas Master Gardener Manual Curtis W. Smith, Extension Horticulture Specialist Plant science or botany is the study Angiosperms are all flowering plants, and gymno- of plants. Horticulture, on the other sperms are cone-bearing plants (though the cones hand, along with agronomy and may not look like cones as with junipers and ginko). other applied sciences, is the applica- Angiosperms are further divided into monocotyle- tion of that knowledge to accomplish dons (monocots) and dicotyledons (dicots). an economic or aesthetic purpose. Although monocots and dicots are similar in many Botany consists of several subsciences: ways, there are differences in seed leaf number, flower part numbers, leaf vein patterns, and root • taxonomy, naming and classifying plants structures. Also there are physiological differences, such as the plant’s response to weed killers. • morphology, descriptions and structures, includes anatomy All plants are classified further by the number of growing seasons required to complete a life cycle. • physiology, the inner workings of plants Annuals pass through their entire life cycle, from seed germination to seed production, in one growing • genetics, plant breeding season, and then die. • ecology, biological relationships in the environ- Biennials are plants that start from seeds. They ment produce vegetative structures and food storage organs in the first season. During the first winter, a hardy • autecology, individual organisms and their interac- evergreen rosette of basal leaves persists. During the tion with the physical environment second season, flowers, fruit and seed develop to complete the life cycle. The plant then dies. Carrots, • synecology, interactions with other biological beets, cabbage, celery and onions are biennial plants systems that produce seed by flowers that develop in the second growth year.
    [Show full text]
  • Botany, Plant Physiology and Plant Growth
    BOTANY, PLANT PHYSIOLOGY AND PLANT GROWTH Lesson 3: PLANT PARTS AND FUNCTIONS Overview and Stems PART 1 Script to Narrate the PowerPoint, 03_Stems_PowerPoint.ppt It is not permitted to export or reuse any images in the PowerPoint presentation. PowerPoint Slide 1: Title Slide, “Plant Parts and Functions, Part One: Overview and Stems” In order to gain a working knowledge of horticulture, it is necessary to understand the structure and function of plants and the environmental factors that affect plant growth. PowerPoint Slide 2: Photograph In the greatly diversified kingdom of plants, all flowering plants have certain structures and functions in common. These similarities are the basis for the lessons on Botany and Plant Growth. QUESTION: If you would list the basic parts of an animal as head, torso, arms and legs, how would you list the basic parts of a plant? STUDENT RESPONSE: For about 1 minute, students can submit their ideas. PowerPoint Slide 3: Plant Parts and Functions • Lesson One – Overview and Stems • Lesson Two – Leaves • Lesson Three – Roots, Flowers, and Fruits There are three lessons in the series “Plant Parts and Functions”. We’ll discuss stems in this lesson, leaves in the next lesson, then roots, flowers, and fruits in the third lesson. 1 PowerPoint Slide 4: Plant Parts and Functions • Lesson One – Overview and Stems Segment One - Plant Parts and Functions Segment Two – Parts of the Stem Interior Exterior Segment Three – Modifications of the Stem Above-ground modifications Below-ground modifications • Lesson Two – Leaves • Lesson Three – Roots, Flowers, and Fruits In Segment One of this lesson we’ll discuss the parts of a typical plant, the parts of a stem, and then stem modifications above and below ground.
    [Show full text]
  • Proches Et Al. (2005)
    Diversity and Distributions, (Diversity Distrib.) (2005) 11, 101–109 Blackwell Publishing, Ltd. BIODIVERSITY Patterns of geophyte diversity and RESEARCH storage organ size in the winter-rainfall region of southern Africa 3erban Proche41,2*, Richard M. Cowling1,2 and Derek R. du Preez1 1Botany Department and 2Terrestrial Ecology ABSTRACT Research Unit, University of Port Elizabeth 6031, South Africa The winter-rainfall region of southern Africa, covered largely by the fynbos and succulent karoo biomes, harbours the world’s greatest concentration of geophyte species. Species diversity is greatest in the south-west, where more than 500 species co-occur in one quarter-degree square; in the south-east the values are generally around 100, and in the arid north-west, always less than 50 (more often less than 10). In at least three species-rich genera (Moraea, Eriospermum and Oxalis), the size of storage organs (bulbs, corms, tubers) varies inversely, with the largest average values occurring in the species-poorer areas — both in the north-western, and in the south-eastern parts of the region. This negative correlation between average storage organ size and species diversity is, however, only observed at relatively large spatial scales, which suggests that there is no direct relationship between storage organ size and species diversity. More likely, both these measures are driven by winter rainfall amount and reliability, both of which peak in the south-western Cape. We sug- gest that reliable winter rainfall makes large storage organs unnecessary and depresses extinction rates, thus leading to the accumulation of species. *Correspondence: 3erban Proche4, Botany Key words Department, University of Port Elizabeth 6031, Bulbs, Cape Floristic Region, geophytes, Namaqualand, southern Africa, species South Africa.
    [Show full text]
  • Lab 14-Bulbs and Corms.Pdf
    PLSC 368 - Plant Propagation Name_____________________ Group_________ April 13, 2009 Lab Exercise 14 13. PLANT PROPAGATION BY BULBS AND CORMS Note: The objective of this lab is to learn various types of underground organs that are used as plant propagules. Work as a team project. 1. INTRODUCTION Bulbs and corms, although outwardly similar and functionally alike, differ in many aspects. Bulbs consist of a basal plate of stem tissue (containing apical bud and axillary buds) surrounded by either tunicate (as in onions and tulips) or non-tunicate (as in lily) bulb scales. These bulb scales compose the majority of the bulb and serve as food storage organs and in tunicate bulbs as a protective covering. On the other hand, corms consist mainly of stem tissue with an apical bud and several "axillary" buds on the corms surface that are protected by old leaf bases. In corms the swollen stem tissue acts as the food storage organ. Bulbs reproduce by offsets that form from axillary buds between the scales of the bulb. Corms reproduce by the formation of corms and cormels, originating from apical and axillary buds, on the original corm which then dies. In many bulb or corm plants natural production of offsets or cormels is sufficient for commercial production. In others, bulb or corm production must be artificially stimulated by scooping, scoring, coring, sectioning or scaling. 2. PROCEDURES A. Tunicate Bulbs (Laminate Bulbs): tulip, hyacinth, onion, daffodil, narcissus a. Scooping Remove the entire basal plate with cork borers or knife. Following scooping, dip the bulb in a fungicide to protect the cut surface.
    [Show full text]