Mitteilungen 1/2O16

Total Page:16

File Type:pdf, Size:1020Kb

Mitteilungen 1/2O16 Deutsche Geophysikalische Gesellschaft e.V. Konisches 45°-Pendel Isaac Newton, ca. 1666 Isaac Newtons erster Mondtest, der keiner war! – Teil 2: Vom halben Erdradius zum Mond ab Seite 5 Wissenschaftliche Beiträge Isaac Newtons erster Mondtest, der keiner war! Teil 2: Vom halben Erdradius zum Mond . 5 Nachrichten aus der Gesellschaft . 14 Verschiedenes . 18 Mitteilungen 1/2o16 Herausgeber: Deutsche Geophysikalische Gesellschaft e .V. ISSN o934 – 6554 Impressum Herausgeber: Deutsche Geophysikalische Gesellschaft Redaktion: E-Mail: [email protected] Layout: Dirk Biermann Grafik Design, Potsdam, < [email protected] > Druck: Druckservice Uwe Grube, Hirzenhain-Glashütten, < http://druckservice-grube.de > Beiträge für die DGG-Mitteilungen sind aus allen Bereichen der Geophysik und der angrenzenden Fachgebiete erwünscht. Im Vordergrund stehen aktuelle Berichterstattung über wissenschaftliche Projekte und Tagungen sowie Beiträge mit einem stärkeren Übersichtscharakter. Berichte und Informationen aus den Institutionen und aus der Gesellschaft mit ihren Arbeitskreisen kommen regelmäßig hinzu, ebenso Buch - besprechungen und Diskussionsbeiträge. Wissenschaftliche Beiträge werden einer Begutachtung seitens der Redaktion, der Vorstands- und Beiratsmitglieder oder der Arbeitskreissprecher unterzogen. Für den Inhalt der Beiträge sind die Autoren verantwortlich. Bitte beachten Sie, dass die namentlich gekennzeichneten Beiträge persönliche Meinungen bzw. Ansichten enthalten können, die nicht mit der Meinung oder Ansicht des Herausgebers und der Redaktion übereinstimmen müssen. Die Autoren erklären gegenüber der Redaktion, dass sie über die Ver - vielfältigungsrechte aller Fotos und Abbildungen innerhalb ihrer Beiträge verfügen. Die DGG-Mitteilungen sind als Zeitschrift zitierfähig. Bitte senden Sie Ihre Texte möglichst als Word-Datei oder als ASCII-File entweder per E-Mail oder auf CD-Rom an die Redaktion. Zeichnungen und Bilder liefern Sie bitte separat in druckfertigem Format, Vektorgrafiken als PDF-Dateien (mit eingebetteten Schriften), Fotos als Tiff-, JPEG- oder PDF-Dateien. Vorstand der Deutschen Geophysikalischen Gesellschaft e.V. Präsidium (Adresse der Geschäftsstelle Beisitzer Prof. Dr. Charlotte Krawczyk siehe Geschäftsführer) Deutsches GeoForschungsZentrum Telegrafenberg, 14473 Potsdam Prof. Dr. Michael Weber (Präsident) Prof. Dr. Stefan Buske E-Mail: [email protected] Deutsches GeoForschungsZentrum TU Bergakademie Freiberg Telegrafenberg, 14473 Potsdam Institut für Geophysik und Geoinformatik Prof. Dr. Bodo Lehmann E-Mail: [email protected] e Zeunerstr. 12, o9596 Freiberg DMT GmbH & Co. KG E-Mail: [email protected] Am Technologiepark 1, 453o7 Essen Prof. Dr. Michael Korn (Vizepräsident) E-Mail: [email protected] Universität Leipzig Dr. Ellen Gottschämmer Institut für Geophysik und Geologie Karlsruher Institut für Technologie Dr. Klaus Lehmann Talstraße 35, o41o3 Leipzig Geophysikalisches Institut Geologischer Dienst Nordrhein-Westfalen E-Mail: [email protected] Hertzstr. 16, 76187 Karlsruhe – Landesbetrieb – E-Mail: [email protected] De-Greiff-Str. 195, 478o3 Krefeld Dr. Christian Bücker (Designierter Präsident) E-Mail: [email protected] DEA Deutsche Erdoel AG Dipl.-Geophys. Michael Grinat Überseering 4o, 22297 Hamburg Leibniz-Institut für Angewandte Geophysik Nicholas Schliffke E-Mail: [email protected] Stilleweg 2, 3o655 Hannover Westfälische Wilhelms-Universität E-Mail: [email protected] Institut für Geophysik Dr. Kasper D. Fischer (Schatzmeister) Corrensstr. 24, 48149 Münster Ruhr-Universität Bochum, Institut für Geologie, Prof. Dr. Manfred Joswig E-Mail: [email protected] Mineralogie und Geophysik Universität Stuttgart, Institut für Geophysik NA 3/174, 4478o Bochum Azenbergstraße 16, 7o174 Stuttgart Dr. Joachim Wassermann E-Mail: [email protected] E-Mail: [email protected] Geophysikalisches Observatorium der Universität München Dipl.-Geophys. Dipl.-Ing. Birger-Gottfried Lühr Prof. Dr. Heidrun Kopp Ludwigshöhe 8, 82256 Fürstenfeldbruck (Geschäftsführer) GEOMAR Helmholtz-Zentrum für Ozeanforschung E-Mail: [email protected] Deutsches GeoForschungsZentrum Wischhofstraße 1-3, 24148 Kiel Telegrafenberg, 14473 Potsdam E-Mail: [email protected] Dr. Ulrike Werban E-Mail: [email protected] Helmholtz-Zentrum für Umweltforschung GmbH – UFZ Permoserstraße 15, o4318 Leipzig E-Mail: [email protected] Dr. Tina Wunderlich Christian-Albrechts-Universität zu Kiel Alle Mitglieder des Vorstandes stehen Ihnen Institut für Geowissenschaften bei Fragen und Vorschlägen gerne zur Verfügung. Otto-Hahn-Platz 1, 24118 Kiel DGG-Homepage: www.dgg-online.de E-Mail: [email protected] DGG-Archiv: Universität Leipzig, Institut für Geophysik und Geologie, Talstraße 35, o41o3 Leipzig, Dr. M. Boerngen, E-Mail: [email protected]. Inhaltsverzeichnis Vorwort der Redaktion . 4 Wissenschaftliche Beiträge Isaac Newtons erster Mondtest, der keiner war! Teil 2: Vom halben Erdradius zum Mond . 5 Nachrichten aus der Gesellschaft Einladung zur Mitgliederversammlung . .14 Wahlen zum Vorstand (§ 7 der Satzung) – Wahlvorschläge des Präsidiums . .15 Geophysikalisches Aktionsprogramm in diesem Jahr in Münster . .16 Ankündigung Gauss-Lecture 2o16 . .16 Nachrichten des Schatzmeisters . .17 Verschiedenes 26. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung . .18 Herbsttagung des Arbeitskreises Geodäsie/Geophysik 2o15 . .22 DGG/BDG-Seminar „Oberflächennahe Erkundung“, 11.–13.11.2o15 in Neustadt/Weinstraße . .23 Geophysical Journal International zu verschenken . .24 „Energie für Bildung“: Schülerlabor Geophysik des KIT erhält Auszeichnung . .25 Bakkalaureats-, Bachelor-, Diplom-, Master- und Doktorarbeiten sowie Habilitationsschriften an deutschsprachigen Universitäten und Hochschulen im Bereich der Geophysik im Jahr 2o15 . .26 DGG-Aufnahmeantrag . 43 Leibniz-Institut für Angewandte Geophysik sucht Interimsleitung . .45 Termine geowissenschaftlicher Veranstaltungen 2o16 . 46 Titelbild: Konisches 45°-Pendel, Isaac Newton, ca. 1666 (Bildquelle: WHITESIDE 1991) Redaktion Ihr Kontakt zu uns: E-Mail: [email protected] Dr. Silke Hock Dipl.-Geophys. Regierungspräsidium Michael Grinat Freiburg Dr. Klaus Lehmann Leibniz-Institut für Landesamt Geologischer Dienst Angewandte für Geologie, Rohstoffe Nordrhein-Westfalen Geophysik und Bergbau – Landesbetrieb – Stilleweg 2 Albertstraße 5 De-Greiff-Str. 195 3o655 Hannover 791o4 Freiburg i. B. 478o3 Krefeld DGG-Mitteilungen 1/2o16 3 Vorwort der Redaktion Liebe Leserin, lieber Leser, wieder stehen wir vor der alljährlichen Tagung unserer Warum fliegen wir bei den schnellen Erddrehungen Gesellschaft: Vom 14. bis 17. März 2o16 treffen wir uns zur nicht ins Weltall? Wie Isaac Newton in seinen „anni mira - 76. Jahrestagung in Münster, die – wie zuletzt 2o11 in biles“ u.a. diese Frage bearbeitete, lesen Sie in dem zweiten Köln – zusammen mit der Arbeitsgemeinschaft Extrater - und abschließenden Teil des Beitrages „Isaac Newtons ers - restrische Forschung und dem Fachverband Extraterres - ter Mondtest, der keiner war!“ von Jürgen Fertig. trische Physik der Deutschen Physikalischen Gesellschaft In diesem Heft finden Sie außerdem drei Berichte durchgeführt wird. Das Tagungsteam um Ulrich Hansen, über Workshops bzw. Arbeitskreistreffen aus dem Herbst Christine Thomas und Michael Becken hat für diese des vergangenen Jahres. Sollten Sie an Tagungen und Tagung zusätzlich zu einem spannenden Programm meh - Workshops teilgenommen haben oder in den nächsten rere Neuerungen erarbeitet: So werden u.a. die Poster - Monaten teilnehmen, über die ebenfalls berichtet werden präsentationen gestärkt, und es gibt Convener für alle sollte, wenden Sie sich bitte an die Redaktion oder schicken Sessions. Bitte kommen Sie zahlreich nach Münster und Sie uns direkt Ihren Beitrag. überzeugen Sie sich selbst vom neuen Zuschnitt der DGG- Im hinteren Teil dieses Heftes finden Sie wiederum Tagung! Den öffentlichen Abendvortrag am Dienstag wird die Zusammenstellung der Abschlussarbeiten mit geophy - übrigens Alexander Gerst von der ESA halten. sikalischem Bezug – diesmal für das Jahr 2o15. Wir haben Auf der Tagung wird auch die Mitgliederversammlung uns erneut bemüht, möglichst alle Arbeiten zusammenzu - unserer Gesellschaft stattfinden, diesmal am Dienstag, den tragen; bitte informieren Sie uns, wenn in der Liste ein - 15. März 2o16 zwischen 17:oo und 19:oo Uhr. Die Einladung zelne Abschlussarbeiten oder eventuell ganze Arbeitsbe - mit der Tagesordnung finden Sie in diesem Heft. Besonders reiche fehlen sollten. möchten wir Sie auf die anstehenden Wahlen für Beisitze - Wir freuen uns, wenn wir Ihr Interesse an der neuen rinnen und Beisitzer im Vorstand hinweisen. Die vom Prä - Ausgabe der „Roten Blätter“ wecken konnten und das sidium vorgeschlagene Kandidatin und die vorgeschlage - Durchblättern und Lesen der einzelnen Beiträge für Sie nen Kandidaten stellen sich in diesem Heft kurz vor. interessant ist. Für das Jahr 2o16 wünschen wir Ihnen alles Im Anschluss an die DGG-Tagung wird es wieder ei - Gute und hoffen, Sie auf der kommenden Jahrestagung in nen Workshop geben, der gemeinsam von EAGE und DGG Münster zu sehen. durchgeführt wird. Das Thema des diesjährigen Work - shops lautet: „Deep Mineral Exploration: Chasing both Ihr Redaktionsteam Land and Sea Deposits“. Michael Grinat, Silke Hock & Klaus Lehmann Heft-Nr. Heft-Nr. Erscheinungsmonat DGG-Mitteilungen Erscheinungsmonat GMIT mit DGG-Beteiligung
Recommended publications
  • Large Igneous Provinces and Mass Extinctions: an Update
    Downloaded from specialpapers.gsapubs.org on April 29, 2015 OLD G The Geological Society of America Special Paper 505 2014 OPEN ACCESS Large igneous provinces and mass extinctions: An update David P.G. Bond* Department of Geography, Environment and Earth Science, University of Hull, Hull HU6 7RX, UK, and Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway Paul B. Wignall School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK ABSTRACT The temporal link between mass extinctions and large igneous provinces is well known. Here, we examine this link by focusing on the potential climatic effects of large igneous province eruptions during several extinction crises that show the best correlation with mass volcanism: the Frasnian-Famennian (Late Devonian), Capi- tanian (Middle Permian), end-Permian, end-Triassic, and Toarcian (Early Jurassic) extinctions. It is clear that there is no direct correlation between total volume of lava and extinction magnitude because there is always suffi cient recovery time between individual eruptions to negate any cumulative effect of successive fl ood basalt erup- tions. Instead, the environmental and climatic damage must be attributed to single- pulse gas effusions. It is notable that the best-constrained examples of death-by- volcanism record the main extinction pulse at the onset of (often explosive) volcanism (e.g., the Capitanian, end-Permian, and end-Triassic examples), suggesting that the rapid injection of vast quantities of volcanic gas (CO2 and SO2) is the trigger for a truly major biotic catastrophe. Warming and marine anoxia feature in many extinc- tion scenarios, indicating that the ability of a large igneous province to induce these proximal killers (from CO2 emissions and thermogenic greenhouse gases) is the single most important factor governing its lethality.
    [Show full text]
  • Evaluating a Fluorosis Hazard After a Volcanic Eruption
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/15253810 Evaluating a Fluorosis Hazard after a Volcanic Eruption Article in Archives of Environmental Health An International Journal · October 1994 DOI: 10.1080/00039896.1994.9954992 · Source: PubMed CITATIONS READS 37 59 6 authors, including: Professor Eric K. Noji, M.D. King Saud University 295 PUBLICATIONS 3,601 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: ICARUS | Max Planck Institute for Ornithology View project The Effects of Extreme Environmental Conditions on Human Physiology and Survivability View project All content following this page was uploaded by Professor Eric K. Noji, M.D. on 19 April 2015. The user has requested enhancement of the downloaded file. Evaluating a Fluorosis Hazard after a Volcanic Eruption CAROL H. RUBIN JORGE GRANDE Epidemic Inlelligence Service U.S. Agency for International Development Epidemiology Program Office Office of Disaster Assistance Atlanta, Georgia San Jose, Costa Rica ERICK. NOJI F. VITTANI Centers for Disease Control and Prevention Ministry of Health and Social Action National Center for Environmental Health Buenos Aires, Argentina Atlanta, Georgia PAULJ. SELIGMAN JOHN L. HOLTZ Centers for Disease Control and Prevention National Institute for Occupational Safety and Health Cincinnati, Ohio ABSTRACT. The August, 1991 eruption of Mt. Hudson (Chile) deposited ash across southern Argentina and contributed to the deaths of thousands
    [Show full text]
  • © 2009 by Richard Vanderhoek. All Rights Reserved
    © 2009 by Richard VanderHoek. All rights reserved. THE ROLE OF ECOLOGICAL BARRIERS IN THE DEVELOPMENT OF CULTURAL BOUNDARIES DURING THE LATER HOLOCENE OF THE CENTRAL ALASKA PENINSULA BY RICHARD VANDERHOEK DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Anthropology in the Graduate College of the University of Illinois at Urbana-Champaign, 2009 Urbana, Illinois Doctoral Committee: Professor R. Barry Lewis, Chair Professor Stanley H. Ambrose Professor Thomas E. Emerson Professor William B. Workman, University of Alaska ABSTRACT This study assesses the capability of very large volcanic eruptions to effect widespread ecological and cultural change. It focuses on the proximal and distal effects of the Aniakchak volcanic eruption that took place approximately 3400 rcy BP on the central Alaskan Peninsula. The research is based on archaeological and ecological data from the Alaska Peninsula, as well as literature reviews dealing with the ecological and cultural effects of very large volcanic eruptions, volcanic soils and revegetation of volcanic landscapes, and northern vegetation and wildlife. Analysis of the Aniakchak pollen and soil data show that the pyroclastic flow from the 3400 rcy BP eruption caused a 2500 km² zone of very low productivity on the Alaska Peninsula. This "Dead Zone" on the central Alaska Peninsula lasted for over 1000 years. Drawing on these data and the results of archaeological excavations and surveys throughout the Alaska Peninsula, this dissertation examines the thesis that the Aniakchak 3400 rcy BP eruption created a massive ecological barrier to human interaction and was a major factor in the separate development of modern Eskimo and Aleut populations and their distinctive cultural traditions.
    [Show full text]
  • The Mechanics of Subglacial Basaltic Lava Flow Emplacement: Inferring Paleo-Ice Conditions
    THE MECHANICS OF SUBGLACIAL BASALTIC LAVA FLOW EMPLACEMENT: INFERRING PALEO-ICE CONDITIONS by Jefferson D. G. Hungerford B. S. in Geology, University of Washington, 2002 Submitted to the Graduate Faculty of The Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2013 UNIVERSITY OF PITTSBURGH FACULTY OF THE KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Jefferson D. G. Hungerford It was defended on November 8, 2013 and approved by Dr. William Harbert, Professor, Department of Geology and Planetary Science Dr. Thomas A. Anderson, Professor Emeritus, Department of Geology and Planetary Science Dr. Daniel J. Bain, Assistant Professor, Department of Geology and Planetary Science Dr. Tracy K. P. Gregg, Associate Professor, Department of Geology, University at Buffalo Dissertation Advisor: Dr. Michael S. Ramsey, Professor, Department of Geology and Planetary Science ii Copyright © by Jefferson D. G. Hungerford 2013 iii THE MECHANICS OF SUBGLACIAL BASALTIC LAVA FLOW EMPLACEMENT: INFERRING PALEO-ICE CONDITIONS Jefferson D. G. Hungerford, PhD University of Pittsburgh, 2013 Recent studies of terrestrial glaciovolcanic terrains have elucidated the utility of volcanic deposits as recorders of ice conditions at the time of eruption. Practically all of these investigations, however, have focused upon the associations of volcaniclastic and coherent lava lithofacies at or proximal to the source vent. Very few studies have documented the emplacement of effusion-dominated, basaltic glaciovolcanic eruptions and their distal deposits that more accurately reveal paleo-ice conditions. Both Mauna Kea volcano, Hawaii and the Tennena volcanic center (TVC), on Mount Edziza, British Columbia, Canada, preserve records of interaction between coherent lavas and an ice sheet inferred to be associated with the last glacial maximum (LGM).
    [Show full text]
  • North America Map: Volcano List Name: ______
    ✎ Want to edit this worksheet? Go to File > Make a Copy, and edit away. Name: ___________________________ North America Map: Volcano List Name: ___________________________ 1). Make sure you have the map that goes with this page. It should look like this: 2). Read the location of each volcano out loud so your partner can draw them on the map. After each is done, put a checkmark in the box. Added to map? Location Name of Volcano Country Year Last Erupted ▢ 6, Y Kilauea Hawaii, USA 2015 ▢ 16, R Lassen Peak California, USA 1894 ▢ 17, S Mammoth Mountain California, USA 1400 ▢ 5, K Mount Aniakchak Alaska, USA 1931 ▢ 1, M Mount Cleveland Alaska, USA 2014 ▢ 7, H Mount Redoubt Alaska, USA 2009 Switch jobs with your partner now so you get a chance to map and they get a chance to announce. ▢ 15, O Mount St. Helens Washington, USA 2008 ▢ 9, G Mount Wrangell Alaska, USA 1999 ▢ 24, Z Pacaya Guatemala 2013 ▢ 21, Y Parícutin Mexico 1952 ▢ 22, Y Popocatepetl Mexico 2015 ▢ 18, W Tres Virgines Mexico 1857 ✎ Want to edit this worksheet? Go to File > Make a Copy, and edit away. Name: ___________________________ North America Map Name: ___________________________ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ✎ Want to edit this worksheet? Go to File > Make a Copy, and edit away.
    [Show full text]
  • On the Role of Climate Forcing by Volcanic Sulphate and Volcanic Ash
    Hindawi Publishing Corporation Advances in Meteorology Volume 2014, Article ID 340123, 17 pages http://dx.doi.org/10.1155/2014/340123 Review Article On the Role of Climate Forcing by Volcanic Sulphate and Volcanic Ash Baerbel Langmann Institute of Geophysics, University of Hamburg, Geomatikum, Office 1411, Bundesstraße 55, 20146 Hamburg, Germany Correspondence should be addressed to Baerbel Langmann; [email protected] Received 27 October 2013; Accepted 7 January 2014; Published 27 February 2014 Academic Editor: Klaus Dethloff Copyright © 2014 Baerbel Langmann. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. There is overall agreement that volcanic sulphate aerosols in the stratosphere can reduce solar radiation reaching the earth’s surface for years, thereby reducing surface temperatures, affecting global circulation patterns and generally the global climate system. However, the response of the climate system after large volcanic eruptions is not fully understood and global climate models have difficulties to reproduce the observed variability of the earth system after large volcanic eruptions until now. For geological timescales, it has been suggested that, in addition to the stratospheric climate forcing by volcanic sulphate aerosols, volcanic ash affects climate by modifying the global carbon cycle through iron fertilising the surface ocean and stimulating phytoplankton growth. This process has recently also been observed after the eruption of the volcano Kasatochi on the Aleutian Islands in summer 2008. To trigger future research on the effect of volcanic ash on the climate system via ocean iron fertilisation, this review paper describes the formation processes and atmospheric life cycles of volcanic sulphate and volcanic ash, contrasts their impact on climate, and emphasises current limitations in our understanding.
    [Show full text]
  • Use of Remote Sensing in Detecting and Analyzing Natural Hazards and Disasters, 1972-1998: a Partially Annotated Bibliography
    The Use of Remote Sensing in Detecting and Analyzing Natural Hazards and Disasters, 1972-1998: A Partially Annotated Bibliography Compiled by Pamela S. Showalter1 and Matthew Ramspott2, with additional contributions by 3 4 Dave Morton , Linda Prosperie , and Louis Walter5 Published by The James and Marilyn Lovell Center for Environmental Geography and Hazards Research Department of Geography Southwest Texas State University (SWT) San Marcos, Texas 78666 Occasional Paper No. 1 June 1999 1- Assistant Professor, SWT; 2 - Masters student, SWT; 3 - Librarian, Natural Hazards Research and Applications Information Center, University of Colorado, Boulder; 4 - Doctoral student, SWT; 5 -Research Professor, Institute for Crisis, Disaster, and Risk Management, George Washington University Additional hard copies of this annotated bibliography are available at the cost of reproduction and shipping, which is currently $10.00 each (inside the US). Extra shipping costs for international orders will be assessed on an ―as ordered‖ basis (please contact the Lovell Center before placing international orders). Price increases due to changes in US postage rates may occur. For orders inside the US, checks or money orders should be made out to the Department of Geography and requests for the copies sent to: The James and Marilyn Lovell Center for Environmental Geography and Hazards Research 601 University Drive Department of Geography Southwest Texas State University San Marcos, Texas 78666 Please note that we cannot accept credit card orders or fill orders without receiving payment in advance. THE JAMES AND MARILYN LOVELL CENTER FOR ENVIRONMENTAL GEOGRAPHY AND HAZARDS RESEARCH Geography has always been about exploration and the environment. The pinnacle of scientific exploration in the 20th Century was NASA's Apollo program.
    [Show full text]
  • Lava and Ice Interaction at Stratovolcanoes: Use of Characteristic Features to Determine Past Glacial Extents and Future Volcanic Hazards
    Portland State University PDXScholar Geology Faculty Publications and Presentations Geology 10-10-2000 Lava and Ice Interaction at Stratovolcanoes: Use of Characteristic Features to Determine Past Glacial Extents and Future Volcanic Hazards David T. Lescinsky Arizona State University Jonathan H. Fink Portland State University, [email protected] Follow this and additional works at: https://pdxscholar.library.pdx.edu/geology_fac Part of the Geology Commons, and the Volcanology Commons Let us know how access to this document benefits ou.y Citation Details Lescinsky, D. T., & Fink, J. H. (2000). Lava and ice interaction at stratovolcanoes: use of characteristic features to determine past glacial extents and future volcanic hazards. Journal of Geophysical Research: Solid Earth (1978–2012), 105(B10), 23711-23726. This Article is brought to you for free and open access. It has been accepted for inclusion in Geology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. JOURNAL OF GEOPHYSICALRESEARCH, VOL. 105,NO. B10,PAGES 23,711-23,726, OCTOBER 10, 2000 Lava and ice interaction at stratovolcanoes: Use of characteristic features to determine past glacialextents and future volcanichazards DavidT. LescinskyI and Jonathan H. Fink Departmentof Geology,Arizona State University, Tempe Abstract. Structuresresulting from lava and ice interactionare common at glaciated stratovolcanoes.During summit eruptions at stratovolcanoes,meltwater is producedand travelsfreely down steep slopes and thin permeable valley glaciers, eroding the ice and enlargingpreexisting glacial drainages. As a result,eruptions in thisenvironment have producedfew catastrophicfloods. Lava flowing into the open channels and voids in the glaciersbecomes confined and grows thicker, filling the availablespace and producing steep- sidedbodies with smooth,bulbous contact surfaces.
    [Show full text]
  • Emissions from Volcanoes
    7 Emissions from volcanoes Christiane Textor, Hans-F. Graf, Claudia Timmreck, Alan Robock 1. GLOBAL VOLCANISM Around 380 volcanoes were active during the last century, with around 50 volcanoes active per year (Andres and Kasgnoc 1998). Volcanic activity is not randomly distributed over the Earth, but is linked to the active zones of plate tectonics, as shown in figure 1. More than 2/3 of the world’s volcanoes are located in the northern hemisphere, and in tropical regions. The emission of volcanic gases depends on the thermodynamic conditions (pressure, temperature) and on the magma type (i.e., its chemical composition, which in turn depends on the tectonic environment). Globally, most of the magma mass erupted is of basaltic composition. Basaltic volcanoes erupt most frequently along mid-oceanic ridges in deep ocean water, where magma rises along the oceanic plate boundaries. On very rare locations, these volcanoes erupt into the atmosphere (called subaerial eruptions), such as in Iceland and the Azores, where the eruption rate is so large that volcanic islands have been formed along the mid-Atlantic ridge. Their basaltic magmas are primitive melts from the Earth’s mantle. Basaltic magma is rich in magnesium and iron, and poor in silicate. In general, this magma type is characterized by low viscosity and low gas content, and eruptions are mostly effusive. They consist of a high portion of CO2 and sulfur in the gas fraction. Long lasting basaltic lava streams can cover large areas (e.g., the Deccan traps in India, Yellowstone in North America, and the Laki fissure in Iceland).
    [Show full text]
  • Geothermal Potential of the Cascade and Aleutian Arcs, with Ranking of Individual Volcanic Centers for Their Potential to Host Electricity-Grade Reservoirs
    DE-EE0006725 ATLAS Geosciences Inc FY2016, Final Report, Phase I Final Research Performance Report Federal Agency and Organization: DOE EERE – Geothermal Technologies Program Recipient Organization: ATLAS Geosciences Inc DUNS Number: 078451191 Recipient Address: 3372 Skyline View Dr Reno, NV 89509 Award Number: DE-EE0006725 Project Title: Geothermal Potential of the Cascade and Aleutian Arcs, with Ranking of Individual Volcanic Centers for their Potential to Host Electricity-Grade Reservoirs Project Period: 10/1/14 – 10/31/15 Principal Investigator: Lisa Shevenell President [email protected] 775-240-7323 Report Submitted by: Lisa Shevenell Date of Report Submission: October 16, 2015 Reporting Period: September 1, 2014 through October 15, 2015 Report Frequency: Final Report Project Partners: Cumming Geoscience (William Cumming) – cost share partner GEODE (Glenn Melosh) – cost share partner University of Nevada, Reno (Nick Hinz) – cost share partner Western Washington University (Pete Stelling) – cost share partner DOE Project Team: DOE Contracting Officer – Laura Merrick DOE Project Officer – Eric Hass Project Monitor – Laura Garchar Signature_______________________________ Date____10/16/15_______________ *The Prime Recipient certifies that the information provided in this report is accurate and complete as of the date shown. Any errors or omissions discovered/identified at a later date will be duly reported to the funding agency. Page 1 of 152 DE-EE0006725 ATLAS Geosciences Inc FY2016, Final Report, Phase I Geothermal Potential of
    [Show full text]
  • New Insights Into the Characteristics and Dynamics of Rhyolite Long-Lasting Volcanic Eruptions
    New insights into the characteristics and dynamics of rhyolite long-lasting volcanic eruptions Dissertation zur Erlangung des Grades ―Doktor der Naturwissenchaften‖ Im Promotionsfach Geologie/Paleontologie am Fachberich Chemie, Pharmazie und Geowissenschften der Johannes Gutenberg-Universität Mainz Pablo Brian Forte geb. in Buenos Aires Mainz, 2018 II 1. Berichterstatter: 2. Berichterstatter: Tag der mündlichen Prüfung: 06.05.19 III IV Table of Contents Table of Contents .......................................................................................................... V List of Figures ............................................................................................................... VIII List of Tables ................................................................................................................. X Preamble ........................................................................................................................ XI Zusammenfassung ....................................................................................................... 1 Abstract ......................................................................................................................... 3 1. Introduction… ........................................................................................................... 5 1.1 Pre-2008 state of knowledge of rhyolite eruptions. ............................................... 7 1.1.1 Bubble nucleation and growth ......................................................................
    [Show full text]
  • Towards Coordinated Regional Multi-Satellite Insar Volcano Observations: Results from the Latin America Pilot Project M
    Pritchard et al. Journal of Applied Volcanology (2018) 7:5 https://doi.org/10.1186/s13617-018-0074-0 RESEARCH Open Access Towards coordinated regional multi-satellite InSAR volcano observations: results from the Latin America pilot project M. E. Pritchard1* ,J.Biggs2,C.Wauthier3, E. Sansosti4,D.W.D.Arnold2, F. Delgado1,S.K.Ebmeier5, S. T. Henderson1,6, K. Stephens3,C.Cooper2,K.Wnuk3, F. Amelung7, V. Aguilar8,P.Mothes9, O. Macedo8,10, L. E. Lara11,M.P.Poland12 and S. Zoffoli13 Abstract Within Latin America, about 319 volcanoes have been active in the Holocene, but 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) developed a 4-year pilot project (2013-2017) to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring as well as with the international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). The goal is to make sure that the most useful data are collected at each volcano following the guidelines of the Santorini report that observation frequency is related to volcano activity, and to communicate the results to the local institutions in a timely fashion. Here we highlight how coordinated multi-satellite observations have been used by volcano observatories to monitor volcanoes and respond to crises.
    [Show full text]