The Mechanics of Subglacial Basaltic Lava Flow Emplacement: Inferring Paleo-Ice Conditions
THE MECHANICS OF SUBGLACIAL BASALTIC LAVA FLOW EMPLACEMENT: INFERRING PALEO-ICE CONDITIONS by Jefferson D. G. Hungerford B. S. in Geology, University of Washington, 2002 Submitted to the Graduate Faculty of The Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2013 UNIVERSITY OF PITTSBURGH FACULTY OF THE KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Jefferson D. G. Hungerford It was defended on November 8, 2013 and approved by Dr. William Harbert, Professor, Department of Geology and Planetary Science Dr. Thomas A. Anderson, Professor Emeritus, Department of Geology and Planetary Science Dr. Daniel J. Bain, Assistant Professor, Department of Geology and Planetary Science Dr. Tracy K. P. Gregg, Associate Professor, Department of Geology, University at Buffalo Dissertation Advisor: Dr. Michael S. Ramsey, Professor, Department of Geology and Planetary Science ii Copyright © by Jefferson D. G. Hungerford 2013 iii THE MECHANICS OF SUBGLACIAL BASALTIC LAVA FLOW EMPLACEMENT: INFERRING PALEO-ICE CONDITIONS Jefferson D. G. Hungerford, PhD University of Pittsburgh, 2013 Recent studies of terrestrial glaciovolcanic terrains have elucidated the utility of volcanic deposits as recorders of ice conditions at the time of eruption. Practically all of these investigations, however, have focused upon the associations of volcaniclastic and coherent lava lithofacies at or proximal to the source vent. Very few studies have documented the emplacement of effusion-dominated, basaltic glaciovolcanic eruptions and their distal deposits that more accurately reveal paleo-ice conditions. Both Mauna Kea volcano, Hawaii and the Tennena volcanic center (TVC), on Mount Edziza, British Columbia, Canada, preserve records of interaction between coherent lavas and an ice sheet inferred to be associated with the last glacial maximum (LGM).
[Show full text]