Anatomy of a Volcanic Eruption: Case Study: Mt. St. Helens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of Volcanic Deposits with Ground-Penetrating Radar
Bull Volcanol (1997) 58:515–527 Q Springer-Verlag 1997 ORIGINAL PAPER J. K. Russell 7 M. V. Stasiuk Characterization of volcanic deposits with ground-penetrating radar Received: 10 May 1996 / Accepted: 27 December 1996 Abstract Field-based studies of surficial volcanic de- Key words Ground-penetrating radar 7 Volcanic posits are commonly complicated by a combination of deposits 7 Stratigraphy 7 Dielectric constant 7 Radar poor exposure and rapid lateral variations controlled velocity 7 Pyroclastic flow 7 Airfall 7 Lava by unknown paleotopography. The potential of ground-penetrating radar (GPR) as an aid to volcano- logical studies is shown using data collected from trav- erses over four well-exposed, Recent volcanic deposits Introduction in western Canada. The deposits comprise a pumice airfall deposit (3–4 m thick), a basalt lava flow (3–6 m Studies of surficial volcanic deposits are commonly lim- thick), a pyroclastic flow deposit (15 m thick), and an ited by incomplete exposure. Estimates of the physical internally stratified pumice talus deposit (60 m thick). properties, distributions, thicknesses, and internal Results show that GPR is effective in delineating major structures of the deposits are usually derived from stud- stratigraphic contacts and hence can be used to map ies on a few well-dissected outcrops. Ground-penetrat- unexposed deposits. Different volcanic deposits also ing radar (GPR) is a portable geophysical technique exhibit different radar stratigraphic character, suggest- which can provide ancillary information on the unex- ing that deposit type may be determined from radar posed parts of deposits, thereby facilitating many volca- images. In addition, large blocks within the pyroclastic nological studies. -
Source to Surface Model of Monogenetic Volcanism: a Critical Review
Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Source to surface model of monogenetic volcanism: a critical review I. E. M. SMITH1 &K.NE´ METH2* 1School of Environment, University of Auckland, Auckland, New Zealand 2Volcanic Risk Solutions, Massey University, Palmerston North 4442, New Zealand *Correspondence: [email protected] Abstract: Small-scale volcanic systems are the most widespread type of volcanism on Earth and occur in all of the main tectonic settings. Most commonly, these systems erupt basaltic magmas within a wide compositional range from strongly silica undersaturated to saturated and oversatu- rated; less commonly, the spectrum includes more siliceous compositions. Small-scale volcanic systems are commonly monogenetic in the sense that they are represented at the Earth’s surface by fields of small volcanoes, each the product of a temporally restricted eruption of a composition- ally distinct batch of magma, and this is in contrast to polygenetic systems characterized by rela- tively large edifices built by multiple eruptions over longer periods of time involving magmas with diverse origins. Eruption styles of small-scale volcanoes range from pyroclastic to effusive, and are strongly controlled by the relative influence of the characteristics of the magmatic system and the surface environment. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. Small-scale basaltic magmatic systems characteris- hazards associated with eruptions, and this is tically occur at the Earth’s surface as fields of small particularly true where volcanic fields are in close monogenetic volcanoes. These volcanoes are the proximity to population centres. -
Properties of Volcanic Ash and Pumice Concrete
Properties of volcanic ash and pumice concrete Autor(en): Hossain, Khandaker M.A. Objekttyp: Article Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte Band (Jahr): 81 (1999) PDF erstellt am: 27.09.2021 Persistenter Link: http://doi.org/10.5169/seals-61426 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch 145 IABSE COLLOQUIUM PHUKET 1999 \ Properties of Volcanic Ash and Pumice Concrete Khandaker M. A. HOSSAIN Khandaker M. A. Hossain, born in 1963, Lecturer in Civil Engineering received BSc and MSc in civil engineering from Bangladesh University of Engineering The PNG University of Technology & Technology, Dhaka and PhD from Lae, Papua New Guinea Strathclyde University, Glasgow, UK. -
Pyroclastic Flow Hazards
Pyroclastic Flow Hazards Lecture Objectives -definition and characteristics -generation of pyroclastic flows -impacts and hazards What are pyroclastic flows? Pyroclastic flows are high- density mixtures of hot, dry rock fragments and hot gases that move away from the vent that erupted them at high speeds. Generation Mechanisms: -explosive eruption of molten or solid rock fragments, or both. -non-explosive eruption of lava when parts of dome or a thick lava flow collapses down a steep slope. Most pyroclastic flows consist of two parts: a basal flow of coarse fragments that moves along the ground, and a turbulent cloud of ash that rises above the basal flow. Ash may fall from this cloud over a wide area downwind from the pyroclastic flow. Mt. St. Helens Effects of pyroclastic flows A pyroclastic flow will destroy nearly everything in its path. With rock fragments ranging in size from ash to boulders traveling across the ground at speeds typically greater than 80 km per hour, pyroclastic flows knock down, shatter, bury or carry away nearly all objects and structures in their way. The extreme temperatures of rocks and gas inside pyroclastic flows, generally between 200°C and 700°C, can cause combustible material to burn, especially petroleum products, wood, vegetation, and houses. Pyroclastic flows vary considerably in size and speed, but even relatively small flows that move <5 km from a volcano can destroy buildings, forests, and farmland. On the margins of pyroclastic flows, death and serious injury to people and animals may result from burns and inhalation of hot ash and gases. Pyroclastic flows generally follow valleys or other low-lying areas and, depending on the volume of rock debris carried by the flow, they can deposit layers of loose rock fragments to depths ranging from less than one meter to more than 200 m. -
Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: the Indonesian Example
geosciences Review Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: The Indonesian Example Mukhamad N. Malawani 1,2, Franck Lavigne 1,3,* , Christopher Gomez 2,4 , Bachtiar W. Mutaqin 2 and Danang S. Hadmoko 2 1 Laboratoire de Géographie Physique, Université Paris 1 Panthéon-Sorbonne, UMR 8591, 92195 Meudon, France; [email protected] 2 Disaster and Risk Management Research Group, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; [email protected] (C.G.); [email protected] (B.W.M.); [email protected] (D.S.H.) 3 Institut Universitaire de France, 75005 Paris, France 4 Laboratory of Sediment Hazards and Disaster Risk, Kobe University, Kobe City 658-0022, Japan * Correspondence: [email protected] Abstract: This paper discusses the relations between the impacts of volcanic eruptions at multiple- scales and the related-issues of disaster-risk reduction (DRR). The review is structured around local and global impacts of volcanic eruptions, which have not been widely discussed in the literature, in terms of DRR issues. We classify the impacts at local scale on four different geographical features: impacts on the drainage system, on the structural morphology, on the water bodies, and the impact Citation: Malawani, M.N.; on societies and the environment. It has been demonstrated that information on local impacts can Lavigne, F.; Gomez, C.; be integrated into four phases of the DRR, i.e., monitoring, mapping, emergency, and recovery. In Mutaqin, B.W.; Hadmoko, D.S. contrast, information on the global impacts (e.g., global disruption on climate and air traffic) only fits Review of Local and Global Impacts the first DRR phase. -
Pumice Data Sheet
128 PUMICE AND PUMICITE (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2019, 10 operations in five States produced pumice and pumicite. Estimated production1 was 510,000 tons with an estimated processed value of about $17 million, free on board (f.o.b.) plant. Pumice and pumicite were mined in California, Oregon, Idaho, New Mexico, and Kansas, in descending order of production. The porous, lightweight properties of pumice are well suited for its main uses. Mined pumice was used in the production of abrasives, concrete admixtures and aggregates, lightweight building blocks, horticultural purposes, and other uses, including absorbent, filtration, laundry stone washing, and road use. Salient Statistics—United States: 2015 2016 2017 2018 2019e Production, mine1 310 374 383 496 510 Imports for consumption 64 170 166 159 110 Exportse 11 9 11 11 12 Consumption, apparent2 363 535 538 644 610 Price, average value, dollars per ton, f.o.b. mine or mill 33 38 39 32 33 Employment, mine and mill, number 140 140 140 140 140 Net import reliance3 as a percentage of apparent consumption 15 30 29 23 17 Recycling: Little to no known recycling. Import Sources (2015–18): Greece, 93%; Iceland, 5%; and Mexico, 2%. Tariff: Item Number Normal Trade Relations 12–31–19 Pumice, crude or in irregular pieces, including crushed 2513.10.0010 Free. Pumice, other 2513.10.0080 Free. Depletion Allowance: 5% (Domestic and foreign). Government Stockpile: None. Events, Trends, and Issues: The amount of domestically produced pumice and pumicite sold or used in 2019 was estimated to be 3% more than that in 2018. -
The Science Behind Volcanoes
The Science Behind Volcanoes A volcano is an opening, or rupture, in a planet's surface or crust, which allows hot magma, volcanic ash and gases to escape from the magma chamber below the surface. Volcanoes are generally found where tectonic plates are diverging or converging. A mid-oceanic ridge, for example the Mid-Atlantic Ridge, has examples of volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by convergent tectonic plates coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching and thinning of the Earth's crust in the interiors of plates, e.g., in the East African Rift, the Wells Gray-Clearwater volcanic field and the Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "Plate hypothesis" volcanism. Volcanism away from plate boundaries has also been explained as mantle plumes. These so- called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. Volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere. -
Compositional Zoning of the Bishop Tuff
JOURNAL OF PETROLOGY VOLUME 48 NUMBER 5 PAGES 951^999 2007 doi:10.1093/petrology/egm007 Compositional Zoning of the Bishop Tuff WES HILDRETH1* AND COLIN J. N. WILSON2 1US GEOLOGICAL SURVEY, MS-910, MENLO PARK, CA 94025, USA 2SCHOOL OF GEOGRAPHY, GEOLOGY AND ENVIRONMENTAL SCIENCE, UNIVERSITY OF AUCKLAND, PB 92019 AUCKLAND MAIL CENTRE, AUCKLAND 1142, NEW ZEALAND Downloaded from https://academic.oup.com/petrology/article/48/5/951/1472295 by guest on 29 September 2021 RECEIVED JANUARY 7, 2006; ACCEPTED FEBRUARY 13, 2007 ADVANCE ACCESS PUBLICATION MARCH 29, 2007 Compositional data for 4400 pumice clasts, organized according to and the roofward decline in liquidus temperature of the zoned melt, eruptive sequence, crystal content, and texture, provide new perspec- prevented significant crystallization against the roof, consistent with tives on eruption and pre-eruptive evolution of the4600 km3 of zoned dominance of crystal-poor magma early in the eruption and lack of rhyolitic magma ejected as the BishopTuff during formation of Long any roof-rind fragments among the Bishop ejecta, before or after onset Valley caldera. Proportions and compositions of different pumice of caldera collapse. A model of secular incremental zoning is types are given for each ignimbrite package and for the intercalated advanced wherein numerous batches of crystal-poor melt were plinian pumice-fall layers that erupted synchronously. Although released from a mush zone (many kilometers thick) that floored the withdrawal of the zoned magma was less systematic than previously accumulating rhyolitic melt-rich body. Each batch rose to its own realized, the overall sequence displays trends toward greater propor- appropriate level in the melt-buoyancy gradient, which was self- tions of less evolved pumice, more crystals (0Á5^24 wt %), and sustaining against wholesale convective re-homogenization, while higher FeTi-oxide temperatures (714^8188C). -
Examples of Extinct Volcanoes in the World
Examples Of Extinct Volcanoes In The World Inflationary and aristate Benn mayest his withdrawal westernizes overbids philosophically. Israel subinfeudates inextricably? Antony remains subcranial: she phosphatises her shoofly relinquish too volumetrically? Chaos in the ocean species go a free book, an exotic array of the volcanoes of in the examples extinct world where the hazards. What i chose the island of hawaii volcano to the sunrise from one of extinct volcanoes in the examples but. Volcanoes British Geological Survey. For retention an explosive volcanic eruption in a heart area try not as dangerous as one faint a populous region that requires mass evacuations. We really large eruptions? You can form around the world in extinct the examples of volcanoes worldwide originate from various activities have not erupted for the highest volcano off by. This volcano is terrible but extinct. What causes population under watch for the volcano clearly directed towards dyngjuháls at the solfatura, the examples above. Daily fun website? Ruapehu told Taranaki to skill the mountain clan, so he followed the winding course drew the Whanganui River, and settle in valley west coast. Tons of carbon dioxide erupted in nine hundred years will run very different effects than another same volume outgassed over the thousand of his million years. Fire but in old seismometers are volcanoes of extinct in the examples above. In the upcoming winter with the world in extinct volcanoes of the examples of your car safety. In indonesia is climate change as dormant volcanoes list on earth have either stationary plume. How many active volcanoes are time on Earth? Many islands to the same time and carries her dancing skills and of extinct volcano is not buried again in. -
Preliminary Volcano-Hazard Assessment for Augustine Volcano, Alaska
DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Preliminary Volcano-Hazard Assessment for Augustine Volcano, Alaska by Christopher F. Waythomas and Richard B. Waitt Open-File Report 98-106 This report is preliminary and subject to revision as new data become available. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey Alaska Volcano Observatory Anchorage, Alaska 1998 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Thomas J. Casadevall, Acting Director For additional information: Copies of this report may be purchased from: U.S. Geological Survey U.S. Geological Survey Alaska Volcano Observatory Branch of Information Services 4200 University Drive Box 25286 Anchorage, AK 99508 Denver, CO 80225-0286 CONTENTS Summary of hazards at Augustine Volcano....................................... 1 Introduction ............................................................... 3 Purposeandscope ...................................................... 3 Physical setting of Augustine Volcano ...................................... 4 Relation to previous studies on Augustine hazards ............................. 5 Prehistoric eruptive history ................................................... 5 Historical eruptions ......................................................... 8 Hazardous phenomena at Augustine Volcano ..................................... 8 Volcanic hazards ....................................................... 12 Volcanicashclouds -
Explosive Eruptions
Explosive Eruptions -What are considered explosive eruptions? Fire Fountains, Splatter, Eruption Columns, Pyroclastic Flows. Tephra – Any fragment of volcanic rock emitted during an eruption. Ash/Dust (Small) – Small particles of volcanic glass. Lapilli/Cinders (Medium) – Medium sized rocks formed from solidified lava. – Basaltic Cinders (Reticulite(rare) + Scoria) – Volcanic Glass that solidified around gas bubbles. – Accretionary Lapilli – Balls of ash – Intermediate/Felsic Cinders (Pumice) – Low density solidified ‘froth’, floats on water. Blocks (large) – Pre-existing rock blown apart by eruption. Bombs (large) – Solidified in air, before hitting ground Fire Fountaining – Gas-rich lava splatters, and then flows down slope. – Produces Cinder Cones + Splatter Cones – Cinder Cone – Often composed of scoria, and horseshoe shaped. – Splatter Cone – Lava less gassy, shape reflects that formed by splatter. Hydrovolcanic – Erupting underwater (Ocean or Ground) near the surface, causes violent eruption. Marr – Depression caused by steam eruption with little magma material. Tuff Ring – Type of Marr with tephra around depression. Intermediate Magmas/Lavas Stratovolcanoes/Composite Cone – 1-3 eruption types (A single eruption may include any or all 3) 1. Eruption Column – Ash cloud rises into the atmosphere. 2. Pyroclastic Flows Direct Blast + Landsides Ash Cloud – Once it reaches neutral buoyancy level, characteristic ‘umbrella cap’ forms, & debris fall. Larger ash is deposited closer to the volcano, fine particles are carried further. Pyroclastic Flow – Mixture of hot gas and ash to dense to rise (moves very quickly). – Dense flows restricted to valley bottoms, less dense flows may rise over ridges. Steam Eruptions – Small (relative) steam eruptions may occur up to a year before major eruption event. . -
GEOLOGIC MAP of the MOUNT ADAMS VOLCANIC FIELD, CASCADE RANGE of SOUTHERN WASHINGTON by Wes Hildreth and Judy Fierstein
U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP 1-2460 U.S. GEOLOGICAL SURVEY GEOLOGIC MAP OF THE MOUNT ADAMS VOLCANIC FIELD, CASCADE RANGE OF SOUTHERN WASHINGTON By Wes Hildreth and Judy Fierstein When I climbed Mount Adams {17-18 August 1945] about 1950 m (6400') most of the landscape is mantled I think I found the answer to the question of why men by dense forests and huckleberry thickets. Ten radial stake everything to reach these peaks, yet obtain no glaciers and the summit icecap today cover only about visible reward for their exhaustion... Man's greatest 2.5 percent (16 km2) of the cone, but in latest Pleis experience-the one that brings supreme exultation tocene time (25-11 ka) as much as 80 percent of Mount is spiritual, not physical. It is the catching of some Adams was under ice. The volcano is drained radially vision of the universe and translating it into a poem by numerous tributaries of the Klickitat, White Salmon, or work of art ... Lewis, and Cis pus Rivers (figs. 1, 2), all of which ulti William 0. Douglas mately flow into the Columbia. Most of Mount Adams and a vast area west of it are Of Men and Mountains administered by the U.S. Forest Service, which has long had the dual charge of protecting the Wilderness Area and of providing a network of logging roads almost INTRODUCTION everywhere else. The northeast quadrant of the moun One of the dominating peaks of the Pacific North tain, however, lies within a part of the Yakima Indian west, Mount Adams, stands astride the Cascade crest, Reservation that is open solely to enrolled members of towering 3 km above the surrounding valleys.