Estimation of Aloe-Emodin Content in Cassia Grandis and Cassia Garrettiana Leaves Using TLC Densitometric Method and TLC Image Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Research Paper Estimation of Aloe-emodin Content in Cassia grandis and Cassia garrettiana Leaves Using TLC Densitometric Method and TLC Image Analysis A. SIHANAT, C. PALANUVEJ, N. RUANGRUNGSI AND K. RUNGSIHIRUNRAT* College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, 1Faculty of Pharmacy, Rangsit University, Pathumthani 12000, Thailand Sihanat, et al.: Aloe-emodin Content in Cassia grandis and Cassia garrettiana Leaves Plants in genus Cassia contain anthraquinones that possess stimulant laxative property. Cassia grandis L.f. and Cassia garrettiana Craib have been widely distributed throughout Thailand as Thai herbal medicine and ornamental plant. The objective of this study was to develop and validate TLC densitometry and TLC image analysis for quantitative analysis of aloe-emodin content in Cassia grandis and Cassia garrettiana leaves. The fresh mature leaves of Cassia grandis and Cassia garrettiana, collected from 15 locations throughout Thailand were successively extracted with dichloromethane. Silica gel 60 GF254 was used as a stationary phase and hexane-ethyl acetate (1:1, v/v) was used as the mobile phase. Aloe-emodin contents estimated using TLC densitometry and TLC image analysis in Cassia grandis dried crude drug were 0.4122±0.0668 and 0.4130±0.0751 g % and Cassia garrettiana dried crude drug were 0.0346±0.0067 and 0.0351±0.0056 g %, respectively. The method was validated in terms of calibration range, accuracy, repeatability and intermediate precision, limit of detection, limit of quantitation, specificity and robustness. A statistical comparison of the quantitative analysis using TLC densitometry and TLC image analysis of aloe-emodin in Cassia grandis and Cassia garrettiana leaves were not statistically significant (p>0.05). Both validated methods can be used for evaluation of aloe-emodin contents in Cassia grandis and Cassia garrettiana leaves. Key words: Cassia grandis, Cassia garrettiana, TLC densitometry, TLC image analysis, aloe-emodin contents Cassia is a genus of tropical flowering plant belonging as the main anthraquinone isolated from C. grandis and to the family Caesalpiniaceae. There are many C. garrettiana leaves[9-10]. Cassia species worldwide used in herbal medicine. Thin-layer chromatography (TLC) is a fast screening Plants in genus Cassia contain mainly anthraquinone method for compound separation and identification compounds, which are the largest group of natural of herbal extracts. This method is frequently used as quinones used as laxatives and antifungal drug for skin diseases[1]. Several anthraquinones and their derivatives OH O OH from Cassia species have been documented such as rhein, emodin, sennosides and aloe-emodin. Aloe- emodin (fig. 1) is an anthraquinone found in plants (Aloe sp., Rhamnus sp. and Cassia sp.), fungi, lichens and insects[2] has interesting biological activities C such as antiviral, antimicrobial, anticancer and 2 [3-6] hepatoprotective activities . In Thailand, C. grandis O is known as “Kanlaphruek” or “Kalapaphruek” in Thai Fig. 1: Structure of aloe-emodin language. This plant is wildly distributed as ornamental This is an open access article distributed under the terms of the Creative plant throughout the country. C. garrettiana is also a Commons Attribution-NonCommercial-ShareAlike 3.0 License, which traditional Thai medicine called “Sa mae san” which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under has been used as emmenagogue, blood tonic for the identical terms women and used to treat herpes zoster, leukaemia, and constipation[7,8]. Previous study identified aloe-emodin Accepted 25 February 2018 Revised 28 July 2017 Received 15 November 2016 *Address for correspondence E-mail: [email protected] Indian J Pharm Sci 2018;80(2):359-365 March-April 2018 Indian Journal of Pharmaceutical Sciences 359 www.ijpsonline.com a qualitative and quantitative analysis as low cost of diluted to obtain a series dilution of 0.04, 0.08, 0.12, instrumentation, short time for analysis and easy to 0.16, and 0.20 mg/ml of standard solutions and then use[11,12]. Quantitative analysis can be performed using stored in refrigerator at 4°. TLC densitometry and TLC image analysis. TLC Preparation of dichloromethane extracts of densitometry is one of the suitable methods wildly C. grandis and C. garrettiana: used for quantitative analysis due to its accurate, precise and reliable procedure[13]. TLC image analysis Six grams of the leaf powder of C. grandis and using computer software technology has been in C. garrettiana was extracted with dichloromethane using consideration as a simple, inexpensive and convenient a Soxhlet apparatus. The extract was filtered and the quantitation method with good accuracy and precision solvent was evaporated by rotary evaporator. The yield for chemical compounds analysis in crude drug of each plant sample was calculated and recorded. The and medicinal plants[14]. Both methods successfully extract was dissolved in dichloromethane containing applied for quantification of chemical compounds in 10 % methanol to make the final concentration various herbal plants such as Artocarpus lakoocha, 5 mg/ml of C. grandis and 20 mg/ml of C. garrettiana. C. fistula, Senna siamia and Chromolaena odorata[15-18]. TLC densitometry method: The quantification of aloe-emodin in C. grandis and Three microliters of 15 dichloromethane extracted C. garrettiana leaf extracts using TLC densitometry samples of C. grandis and C. garrettiana and aloe- and TLC image analysis has not been reported. Thus, emodin standard solutions were applied on the TLC- the objective of this study was to develop and validate silica gel 60 GF 20×10 cm plate (E. Merck, Germany) TLC densitometry with winCATS software and TLC 254 using a Camag Linomat 5 automatic sample spotter image analysis with ImageJ software for quantification (Camag, Switzerland) under a flow of nitrogen gas. Each of aloe-emodin contents in C. grandis and C. garrettiana sample band was set at 10 mm and distance between leaves collected from different locations in Thailand. bands was 8.9 mm. The TLC plates were developed MATERIALS AND METHODS in a Camag glass twin-through chamber (20×10 cm), which was pre-saturated in mobile phase of hexane- The fresh mature leaves of C. grandis and C. garrettiana ethyl acetate (1:1 v/v) for 1 h at room temperature. The were collected from 15 locations in Thailand. Plant plate was scanned under wavelength at 434 nm using specimens were authenticated at the College of Public TLC scanner 3 (Camag, Switzerland) with winCATS Health Sciences, Chulalongkorn University and Faculty software. Aloe-emodin contents in C. grandis and of Pharmacy, Rangsit University, Thailand. Plant C. garrettiana leaves extract were quantitated by peak specimens were compared to the herbarium specimens area. The test was done in triplicate. at the Botanical Garden Organization, Ministry of TLC image analysis using ImageJ software: Natural Resource. Voucher specimens were deposited at College of Public Health Sciences, Chulalongkorn TLC plate was photographed under ultraviolet light University. Each authentic sample was dried in hot air at 254 nm by a digital camera. Quantitative analysis oven at 45° and ground to a powder for phytochemical of the aloe-emodin contents in C. grandis and screening of anthraquinones. C. garrettiana leaves extract and the colour intensity of spot on TLC plates were observed using ImageJ Phytochemical screening of anthraquinones: software (Department of Health and Human Services, Dilute hydrochloric acid (2 M) was added to the sample National Institutes of Health, United State). The test and the mixture was heated on a hot water bath for 15 min, was done in triplicate. then cooled and filtered. The filtrate was then extracted Method validation: with dichloromethane. The dichloromethane layer was separated and shaken with ammonium hydroxide. Pink TLC densitometry and TLC image analysis of aloe- to red colour was developed in alkali layer[19]. emodin contents in C. grandis and C. garrettiana leaves extracts were validated in terms of calibration Preparation of standard solutions: range, accuracy, repeatability, intermediate precision, A stock solution containing 0.5 mg/ml of standard limit of detection (LOD), limit of quantitation (LOQ), aloe-emodin (Sigma-Aldrich, USA) was prepared specificity and robustness according to the International in dichloromethane containing 10 % methanol and Council for Harmonisation guidelines (ICH Q2R1)[20]. 360 Indian Journal of Pharmaceutical Sciences March-April 2018 www.ijpsonline.com The calibration range was constructed by analysis of densitometry and TLC image analysis were compared five concentrations of standard aloe-emodin in the by paired t-test statistical analysis. range 0.12, 0.24, 0.36, 0.48 and 0.60 µg/spot. A plot of average area under curve versus concentration RESULTS AND DISCUSSION was obtained. The calibration range was expressed The chromatographic condition for quantitating aloe- as the correlation coefficient (r2). The accuracy of the emodin contents was examined using silica gel 60 analytical procedure was performed by recovery of GF254. The selected mobile phase, hexane-ethyl acetate spiking known three concentrations of standard aloe- (1:1 v/v) demonstrated the best separation of aloe- emodin in the sample. The accuracy was determined as emodin in C. grandis and C. garrettiana leaves with recovery of aloe-emodin in percent. The repeatability Rf value 0.50±0.007 and 0.50±0.009, respectively. The and intermediate precision were determined in the aloe-emodin band of the plant samples was confirmed same day and in the three different days and expressed by comparing an Rf value with standard aloe-emodin. as percent relative standard deviation (% RSD). LOD The yield of dichloromethane extract by Soxhlet and LOQ were calculated from the calibration curve as extraction and aloe-emodin contents determination 3.3 (SD/S) and 10 (SD/S), respectively where, SD was using TLC densitometry and TLC image analysis of the standard deviation of regression line and S was the C.