Harika Kotipalli Et Al, J. Global Trends Pharm Sci, 2017; 8(2): 3860 - 3867

Total Page:16

File Type:pdf, Size:1020Kb

Harika Kotipalli Et Al, J. Global Trends Pharm Sci, 2017; 8(2): 3860 - 3867 Harika Kotipalli et al, J. Global Trends Pharm Sci, 2017; 8(2): 3860 - 3867 An Elsevier Indexed Journal ISSN-2230-7346 Journal of Global Trends in Pharmaceutical Sciences QUALITATIVE PHYSICOCHEMICAL, PHYTOCHEMICAL ANALYSIS AND QUANTITATIVE ESTIMATION OF TOTAL PHENOLS, FLAVONOIDS AND ALKALOIDS OF CASSIA GRANDIS Kotipalli Harika*, Battu Ganga Rao and Devarakonda Ramadevi A.U College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, 530-003, India *Corresponding author E-mail: [email protected] ARTICLE INFO ABSTRACT The aim of present study was to investigate the physicochemical, Key Words phyto-constituents present within the hexane, ethylacetate and methanol extract of Cassia grandis and to estimate the total Cassia grandis, phenolic, flavonoid and alkaloid contents. The amount of total Physicochemical and phenols, were analyzed using a spectrophotometric technique, Phytochemical analysis, based on Folin-ciocalteau reagent. Gallic acid was used as standard Total Phenols, Flavonoids and alkaloids. compound and the total phenols were expressed as mg / g gallic acid equivalents (Standard curve equation: y= 0.0106x + 0.041, R2 = 0.996). Total flavonoid contents of the plant were determined by using quercetin reference standard method. The total alkaloid content was determined by using rutin as standard. Phytochemical analysis indicated the presence of cardiac glycosides, reducing sugars, flavonoids, phenolic compounds and alkaloids. The Physicochemical analysis includes Total Ash (0.072 to 0.666), Water insoluble Ash (0.053 to 0.551), Water soluble Ash (0.019 to 0.170), Acid insoluble Ash (0.033 to 1.946) and Loss on drying (0.471 to 0.924) as per standard methods. INTRODUCTION: Cassia grandis, commonly known as edible, sweet in taste and foul smelling, and coral shower tree, is a semi-deciduous tree, possesses laxative properties.[2] Cassia growing up to a height of about 18 m. The grandis seeds are elliptic, oblong-obovate, tree bears a high, irregular, spreading crown, obovate or obovoid-ellipsoid, with slightly made from dangling branches. Cassia emerginate base. The seeds have biconvex grandis leaves are paripinnate, with 10-20 cross section and are ventrally flattened, leaflets, measuring 3-6 cm in length, and enclosed in a light brown, cartaceous, obtuse or rounded at base and apex. Flower smooth and opaque seed coat. The tree is are in long, drooping, pink or purple generally planted for its ornamental value, coloured axillary racemes, without bracts and the heavy, hard wood is also used in subtending the pedicels. Pods are construction. Fruits ripen in summer. The compresssed-cylindrical, glabrous and sweet pulp and bad smelling of fruit is edible transversely rugose. The pulp of the pods is and used as laxative. 3860 Harika Kotipalli et al, J. Global Trends Pharm Sci, 2017; 8(2): 3860 - 3867 Kingdom Plantae above the flame. Heat till vapours almost cease to be evolved and tare the sample. Sub kingdom Tracheobionta Super Spermatophyta Cool in desiccators. Weigh the ash and division calculate the percentage of total ash with Division Magnoliophyta reference to the air dried sample of crude Class Magnoliopsida drug. Subclass Rosidae Order Fabales Determination of Acid insoluble ash: Family Fabaceae Genus Cassia Using 25 ml of dil. hydrochloric acid, wash Species Cassia grandis the ash from dish for total ash into 1000 ml Taxonomical classification: [3] of beaker. Place a mere gauze over a Bunsen burner. Boil for 5 min. Filter through ash Extraction process less filer paper, wash the residue twice with hot water. Ignite the crucible in the flame and Cool in a desiccator. Weigh and The collected leaves and stem bark were calculate the percentage of acid insoluble dried under shade and powdered. The ash with reference to the air dried sample of powdered materials were carried out crude drug. successive maceration using different solvents such as hexane, ethyl acetate and Determination of water soluble ash: methanol. This is determined in a similar way to acid Procedure: insoluble ash, using 25 ml of water in place Plant material (Crushed or cut small or of dilute hydrochloric acid. Boil for 5 min. moderately coarse powder) was placed in a Filter through ash less filter paper wash the closed vessel. Allowed to stand for seven residue twice with hot water. Cool in days shaking occasionally and Liquid desiccator. Weigh and calculate the strained off. Solid residue (marc) pressed percentage of water soluble ash with (recover as much as occluded solution) reference to the air dried sample of crude Strained and expressed (liquids mixed). drug. Clarified by subsidence or filtration. Then Evaporation and concentration. The extract Loss on drying: thus obtained were concentrated and dried completely, weighed and stored in a desiccators. Procedure: Weight about 5 g of powder into a porcelain Physico-chemical studies: dish. Dry in oven at 100 & 1050c Cool in desiccator. Weigh and the loss in weight Ash values: Used to determine quality and recorded as moisture content. Calculate the purity of crude drug. And to establish the percentage of loss of drying recorded as identity of it. Also used to determine foreign moisture of sample. inorganic matter present as impurity. Swelling index: Determination of total ash: It gives an idea about the mucilage content Weigh about 2 g of powder into a porcelain of the crude drug. Hence it is useful in the dish. Heat with a burner using a flame about evaluation of crude drugs containing 2cm high and supporting the dish about 7cm mucilage. Procedure: 3861 Harika Kotipalli et al, J. Global Trends Pharm Sci, 2017; 8(2): 3860 - 3867 Weigh about 1 g of powder into a 50 ml Filter into a 50 ml of measuring measuring cylinder. Add water up to 40 ml cylinder. Transfer into filtrate in thin making. Shaking occasionally during 24 hrs. porcelain dish. Keep a side for one hour. Measure the The fitrate evaporated to dryness in a volume occupied by swollen powder. tarred flat bottom dish. Weighed and calculate the % w/w of Foaming index: It is evaluated by extractive values of different measuring the foaming ability in term of solvents foaming index. a) If the height of the foam in every Flourescence analysis [4][5] tube is less than 1 cm it means foaming index is less than 100. If the Fluorescence analysis of the drug was height of foam is more than 1 cm observed in UV light (245nm) using various every test tube; the foaming index is extract of the drug. The drug powder was over 1000. In this case, repeat the treated separately with different solutions. experiment using a new series of dilutions o the decoction in order to Phytochemical Analysis get a result. b) If the height of 1 cm in any tube, the The prepared extract was tested for the type volume of the plant material of chemical constituents present by known decoction in this tube(a) is used for qualitative tests. *The following tests were determination of foaming index carried out on the extracts to detect various using formula follows : phytoconstituents present in them. Foaming index = 100/a 1. Test For Alkaloids [6][7] Extractive values: About 50mg of solvent-free extract was Useful in evaluation of crude drug. stirred with little quantity of dilute To determine give idea of nature of hydrochloric acid and filtered. The filtrate chemical constituents present in was tested carefully with various alkaloidal crude drug. reagents as follows. Useful of estimation of constituents extracted with solvent used for a) Mayer’s test: To a few ml of filtrate, extraction. two drops of mayer’s reagent was added along with the sides of test tube. If the Employed for material for which as test is positive, it gives white or creamy yet no suitable chemical or precipitate. biological assay exists. b) Wagner’s test: To a few ml of the Procedure filtrate, few drops of Wagner’s reagent were added along with the sides of the Weigh about 1 g of powder in add test tube. Formation of reddish brown different solvents like (Hexane, precipitate confirms the test as positive. Dichloromethane, chloroform, ethyl c) Hager’s test: To a few ml of filtrate 1 acetate, acetone, methanol, water, or 2 ml of Hager’s reagent was added. A petroleum ether) into a boiling tubes. prominent yellow precipitate indicates Cork the flask and set aside for 24 positive test. hrs. d) Dragendroff’s test: To a few ml of Shaking frequently occasionally filtrate, 1 or 2 ml of Dragendroff’s during 6 hrs and allowed to stand for reagent was added. A prominent reddish 24 hrs. brown precipitate indicates positive test. 2. Test For Carbohydrates [8] 3862 Harika Kotipalli et al, J. Global Trends Pharm Sci, 2017; 8(2): 3860 - 3867 About 100mg of the extract was dissolved in 4. Test For Saponins[11,12] 5ml of distilled water and filtered. The filtrate was subjected to the following tests. a) Froth test: A small quantity of the extract was diluted with distilled water a) Molisch’s test: To 2 ml of filtrate, two to 20 ml. The suspension was shaken in drops of alcoholic solution of α- napthol graduated cylinder for 15 minutes. A was added. The mixture was shaken well two centimeter layer of foam or froth and 1 ml of concentrated sulphuric acid which is stable for 10 minutes indicates was added slowly along the sides of the the presence of saponins. test tube, the test tube was cooled in ice water and allowed to stand. A violet ring 5. Test For Phytosterols And at the junction of two liquids indicates Triterpenoids[13] the presence of carbohydrates b) Fehling’s test: 1 ml of filtrate was a) Liebermann- burchard ‘s test: The boiled on a water bath with 1 ml each of extract was dissolved in acetic anhydride, Fehling’s solution A and B.
Recommended publications
  • Light Intensity and Type of Container on Producing Cassia Grandis L. F
    ISSN 1807-1929 Revista Brasileira de Engenharia Agrícola e Ambiental v.19, n.10, p.939–945, 2015 Campina Grande, PB, UAEA/UFCG – http://www.agriambi.com.br DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v19n10p939-945 Light intensity and type of container on producing Cassia grandis L. f. seedlings Caio C. P. Leal1, Salvador B. Torres2, Rômulo M. O. de Freitas3, Narjara W. Nogueira1 & Raul M. de Farias4 1 Programa de Pós-Graduação em Fitotecnia/Universidade Federal Rural do Semi-Árido. Mossoró, RN. E-mail: [email protected]; [email protected] 2 Departamento de Ciências Vegetais/Universidade Federal Rural do Semi-Árido. Mossoró, RN. E-mail: [email protected] (Autor correspondente) 3 Instituto Federal de Educação, Ciência e Tecnologia Baiano. Valencia, BA. E-mail: [email protected] 4 RM Agrícola/Biolchim do Brasil Imp. e Com. Ltda. São Paulo, SP. E-mail: [email protected] Key words: A B S T R A C T pink shower cassia This study aimed to determine the effects of the luminosity and type of container on producing forest species Cassia grandis seedlings. Thus, in a substrate composed by topsoil + wood powder (1:1) the 3 forest species seeds seedlings were grown into plastic tubets containing 0.3 dm of such substrate, or into plastic pots containing 1.0 dm3 of the same substrate, and subjected to 50 and 25% shading or full seedling growth sunlight. The assessments were performed every two weeks by measuring plant height and shading stem diameter, during eight weeks period. At the end of this period, the leaf area, dry mass of shoots and roots, the ratio between height of plant/diameter of stem, and the Dickson quality index were also assessed.
    [Show full text]
  • Contributions to the Solution of Phylogenetic Problem in Fabales
    Research Article Bartın University International Journal of Natural and Applied Sciences Araştırma Makalesi JONAS, 2(2): 195-206 e-ISSN: 2667-5048 31 Aralık/December, 2019 CONTRIBUTIONS TO THE SOLUTION OF PHYLOGENETIC PROBLEM IN FABALES Deniz Aygören Uluer1*, Rahma Alshamrani 2 1 Ahi Evran University, Cicekdagi Vocational College, Department of Plant and Animal Production, 40700 Cicekdagi, KIRŞEHIR 2 King Abdulaziz University, Department of Biological Sciences, 21589, JEDDAH Abstract Fabales is a cosmopolitan angiosperm order which consists of four families, Leguminosae (Fabaceae), Polygalaceae, Surianaceae and Quillajaceae. The monophyly of the order is supported strongly by several studies, although interfamilial relationships are still poorly resolved and vary between studies; a situation common in higher level phylogenetic studies of ancient, rapid radiations. In this study, we carried out simulation analyses with previously published matK and rbcL regions. The results of our simulation analyses have shown that Fabales phylogeny can be solved and the 5,000 bp fast-evolving data type may be sufficient to resolve the Fabales phylogeny question. In our simulation analyses, while support increased as the sequence length did (up until a certain point), resolution showed mixed results. Interestingly, the accuracy of the phylogenetic trees did not improve with the increase in sequence length. Therefore, this study sounds a note of caution, with respect to interpreting the results of the “more data” approach, because the results have shown that large datasets can easily support an arbitrary root of Fabales. Keywords: Data type, Fabales, phylogeny, sequence length, simulation. 1. Introduction Fabales Bromhead is a cosmopolitan angiosperm order which consists of four families, Leguminosae (Fabaceae) Juss., Polygalaceae Hoffmanns.
    [Show full text]
  • MG Study Travel Program, Costa Rica 2016 Feb 22 – Floating To
    MG Study Travel Program, Costa Rica 2016 Feb 22 – Floating to Tortuguero On our first day of the 2016 MG tour of Costa Rica, we left the big city of San Jose up in the mountains of the central valley, drove across the Continental Divide, and down the Atlantic slope to the Caribbean lowlands. We went from the lush rainforest of Braulio Carrillo National Park at the top of the Central Volcanic Mountain Range down to open pasture, banana plantations – stopping briefly at the edge of one field to look at the plants and bagged fruits – Driving through Braulio Carrillo National Park. Banana plantation (L), inflorescence (LC), flowers (RC), and bagged fruit (R). and other agriculture on the flat lands, to eventually arrive at the landing spot for boat transportation to our lodge in Tortuguero. This small town on the edge of one of the most remote and pristine parks in Costa Rica, Tortuguero National Park, is accessible only by boat or air. This coastal area of northern Costa Rica and adjacent Nicaragua is a low alluvial floodplain with permanent or seasonal swamp forests in the lowest and flattest areas. This was once an archipelago of volcanic islands until alluvial sediments from the interior mountains filled in the spaces and formed an extensive network of marshy islands interspersed by natural freshwater creeks, canals and lagoons, forming the flooded forest. After we were settled in the long, flat boat our captain navigated the shallow water of the tidal canal, slowing to maneuver around submerged obstacles, and speeding up in straight spots.
    [Show full text]
  • UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto De Biologia
    UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Biologia TIAGO PEREIRA RIBEIRO DA GLORIA COMO A VARIAÇÃO NO NÚMERO CROMOSSÔMICO PODE INDICAR RELAÇÕES EVOLUTIVAS ENTRE A CAATINGA, O CERRADO E A MATA ATLÂNTICA? CAMPINAS 2020 TIAGO PEREIRA RIBEIRO DA GLORIA COMO A VARIAÇÃO NO NÚMERO CROMOSSÔMICO PODE INDICAR RELAÇÕES EVOLUTIVAS ENTRE A CAATINGA, O CERRADO E A MATA ATLÂNTICA? Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Mestre em Biologia Vegetal. Orientador: Prof. Dr. Fernando Roberto Martins ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO/TESE DEFENDIDA PELO ALUNO TIAGO PEREIRA RIBEIRO DA GLORIA E ORIENTADA PELO PROF. DR. FERNANDO ROBERTO MARTINS. CAMPINAS 2020 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Gloria, Tiago Pereira Ribeiro da, 1988- G514c GloComo a variação no número cromossômico pode indicar relações evolutivas entre a Caatinga, o Cerrado e a Mata Atlântica? / Tiago Pereira Ribeiro da Gloria. – Campinas, SP : [s.n.], 2020. GloOrientador: Fernando Roberto Martins. GloDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia. Glo1. Evolução. 2. Florestas secas. 3. Florestas tropicais. 4. Poliploide. 5. Ploidia. I. Martins, Fernando Roberto, 1949-. II. Universidade Estadual de Campinas. Instituto de Biologia. III. Título. Informações para Biblioteca Digital Título em outro idioma: How can chromosome number
    [Show full text]
  • Cássia-Rósea
    ISSN 1517-5278 Cássia-Rósea Taxonomia e Nomenclatura 117 De acordo com o Sistema de Classificação de Cronquist, a posição taxonômica de Cassia grandis obedece à seguinte hierarquia: Divisão: Magnoliophyta (Angiospermae) Classe: Magnoliopsida (Dicotyledonae) Foto 1 (1) Ordem: Fabales Família: Fabaceae (Leguminosae) Foto2 Subfamília: Caesalpinioideae Foto 3 Gênero: Cassia (5) Carlos Eduardo F. Barbeiro. Foto: (1) Eduardo B. Fernandes, (2, 3, 4) Paulo Ernani R. Carvalho), Foto 5 Espécie: Cassia grandis Linnaeus f. Foto 4 Colombo, PR Dezembro, 2006 Publicação: Kungl. Sv. Vet. Akad. Handl.,Ser. III. 12 (2): 27, 1933 Autor Sinonímia botânica: Cassia brasiliana Lam Paulo Ernani Ramalho Nomes vulgares por Unidades da Federação: no Amazonas, acácia e marimari; na Bahia, Carvalho Engenheiro Florestal, canafístula e cássia-grande; no Ceará, canafístula; em Mato Grosso, cana-fístula, Doutor, Pesquisador canafístula, fedegoso, marizeiro e mata-pasto; em Mato Grosso do Sul, canafístula, da Embrapa Florestas. fedegoso, marizeiro e mata-pasto; em Minas Gerais, marimari; no Paraná, cássia-rosa; no [email protected] Estado do Rio de Janeiro, canafístula, cássia, cássia-grande e cássia-rosa; no Estado de São Paulo, cássia-grande e cássia-rosa, e em Sergipe, canafístula. Nos seguintes nomes vulgares, não foi encontrada a devida correspondência com as Unidades da Federação: canafístula-grande; jeneúna; marimari-grande; marimari-preto; marimari-sarro; marimarirana. Nomes vulgares no exterior: cañafistulo, na Colômbia; carao, em Costa Rica e em Honduras. É, também, conhecida por pink shower ou horse cassia (TROPICAL LEGUMES, 1979). Etimologia: o nome genérico Cassia é nome hebraico ou grego; o epíteto específico grandis significa grande (vagem com até 60 cm de comprimento).
    [Show full text]
  • Soil and Stem Water Storage Determine Phenology and Distribution of Tropical Dry Forest Trees Rolf Borchert Ecology, Vol. 75, No
    Soil and Stem Water Storage Determine Phenology and Distribution of Tropical Dry Forest Trees Rolf Borchert Ecology, Vol. 75, No. 5. (Jul., 1994), pp. 1437-1449. Stable URL: http://links.jstor.org/sici?sici=0012-9658%28199407%2975%3A5%3C1437%3ASASWSD%3E2.0.CO%3B2-E Ecology is currently published by Ecological Society of America. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/esa.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Wed Jul 25 14:19:07 2007 Ecology, 75(5), 1994, pp.
    [Show full text]
  • Plantations of 64 Tree Species Native to Panama and the Neotropics
    GUIDE TO EARLY GROWTH AND SURVIVAL IN PLANTATIONS OF 64 TREE SPECIES NATIVE TO PANAMA AND THE NEOTROPICS JEFFERSON S. HALL MARK S. ASHTON GUIDE TO EARLY GROWTH AND SURVIVAL IN PLANTATIONS OF 64 TREE SPECIES NATIVE TO PANAMA AND THE NEOTROPICS Jefferson s. Hall Mark s. asHton 2016 COPYRIGHT AND CREDITS © 2016 Smithsonian Tropical Research Institute Published by Smithsonian Tropical Research Institute 401 Avenida Roosevelt Balboa, Panama, Republic of Panama PHOTOGRAPHS Andrés Hernández (Smithsonian Tropical Research Institute) Jacob Slusser (Environmental Leadership and Training Program) Dylan Craven (Yale School of Forestry and Environmental Studies and STRI) Florencia Montagnini (Yale University) Smithsonian Tropical Research Institute archives FOREST COVER MAP Milton Solano (GIS Analyst, Smithsonian Tropical Research Institute) ARTWORK ON COVER AND IN GUIDE Blanca Martínez GRAPHIC DESIGN Blanca Martínez EDITOR Geetha Iyer ISBN 978-9962-614-37-1 Table of Contents Acknowledgments 6 Preface 8 CHAPTER 1 Introduction Overview 12 Regional or Broad Biogeographic Patterns 13 Physical Conditions and Ecological Aspects of Site 16 The Importance of Mimicking Natural Processes 19 Design and Spacing Considerations 21 Species Data Presented in this Guide 26 How to Read the Graphs in this Guide 28 CHAPTER 2 Species Performance Across a Rainfall-Soil Fertility Matrix 33 SCIENTIFIC NAME COMMON NAME IN PANAMA 1 Albizia adinocephala Frijolillo, guábilo 34 2 Albizia guachapele Guayapalí, guábilo, frijolillo 36 3 Albizia saman Guachapalí, cenízaro 38 4 Anacardium
    [Show full text]
  • Antioxidant Properties of Leaves of Cassia Grandis Linn 1 *1 1 2 2 3 3 M
    Asian Journal of Pharmaceutical and Clinical Research IN-VITRO ANTIOXIDANT PROPERTIES OF LEAVES OF CASSIA GRANDIS LINN 1 *1 1 2 2 3 3 M. K. MEENA , KALPESH GAUR , M. L. KORI , C. S. SHARMA , R. K. NEMA , A. K. JAIN , C. P. JAIN The in-vitro antioxidant activity of various extracts of Cassia grandis leaves was investigated. The extracts and the reference standard, butylated hydroxyl toluene (BHT) were evaluated for DPPH, nitric oxide, superoxide and hydroxyl radical scavenging activity. The methanolic extract exhibited significant antioxidant activity but petroleum ether and chloroform extracts of Cassia grandis did not show any significant antioxidant activity in comparison with standard (BHT). Keywords : DPPH, Nitric oxide, butylated hydroxyl toluene, superoxide and hydroxyl radical scavenging activity. INTRODUCTION strengthen the blood11-17. Oxygen is essential for survival however, its univalent MATERIAL AND METHODS reduction generates several harmful reactive oxygen species (ROS), inevitable to living cells and highly associated with The chemicals used DPPH (1,1-diphenyl-2-100 µg/ml) the wide range of pathogenesis such as diabetes, liver were dissolved in methanol and incubated at 25°C for 30 damage, inflammation, aging, neurological disorders and min. After 30 min, To 1.5 ml of the incubated solution cancer. In spite of comprehensive network of cellular was diluted with 1.5 ml of Griess reagent (1% defensive antioxidants, many ROS still escape this sulphanilamide, 2% phosphoric acid, and 0.1% naphthyl surveillance inflicting serious anomalies favouring such ethylenediamine dichloride). The absorbance of the diseases states1-3. Though synthetic antioxidants, BHT, chromophore formed during the diazotization of the nitrile BHA and radioprotector, Warfarin are being used widely, with sulphanilamide and the subsequent coupling with however, due to their potential health hazards, they are naphthyethylene diamine dihydrochloride was measured under strict regulation4-5.
    [Show full text]
  • United States Department of Agriculture
    SEP-5 UNITED STATES DEPARTMENT OF AGRICULTURE INVENTORY No. 112 Washington, D. C. • Issued September 1934 PLANT MATERIAL INTRODUCED BY THE DIVISION OF FOREIGN PLANT INTRODUCTION, BUREAU OF PLANT INDUSTRY, JULY 1 TO SEPTEMBER 30, 1932 (Nos. 100468-101157) CONTENTS Page Introductory statement „ 1 Inventory.., - - _ 3 Index of common and scientific names 27 INTRODUCTORY STATEMENT Inventory no. 112 lists the introductions (nos. 100468-101157) received by the Division of Foreign Plant Introduction during the period from July 1 to Septem- ber 30, 1932. It records the further kindness of Maj. Lionel de Rothschild and the Honorable Henry MacLaren in presenting additional seeds from the sixth Forrest expedition to southwestern China. Nos. 10072^-100798, Solatium tuberosum, collected by C. O. Erlanson and H. G. MacMillan, represent the last collection from that expedition to South America, together with various miscellaneous collections (100688-100709, 100713-100718, 100833-100837) gathered in the same territory. The principal collections represent very large special collections made for Department specialists, as, for example, two sugar collections, one from Charles H. Thrall, Habana, Cuba (101115-101130), and one from the experiment station of the Hawaiian Sugar Planters' Association, Hawaii (10102^-101057); forage plants, chiefly grasses, from New Zealand (100660-100676), and from Wales (100678- 100681); a collection of cinchona, Guatemalan cuttings, from Colonel Ruehl (100799-100832); and seeds purchased from the Hindustan Nursery Co., Calcutta, India (100986-100988), and the Chandra Nursery, Rhenock, Sikkim State, Bengal (101064). The botanical determinations of these introductions have been made and the nomenclature determined by the late H. C. Skeels,1 who had general supervision of this inventory.
    [Show full text]
  • Maui County Planting Plan Third Edition
    MAUI COUNTY PLANTING PLAN THIRD EDITION Maui County Arborist Committee MAUI COUNTY PLANTING PLAN—THIRD EDITION IT’S ALL ABOUT SHADE! UH Maui College Science Parking Lot, E. H. Rezents photograph, taken January 2011. This document has been researched, written and coordinated for the Maui County Arborist Committee By Ernest H. Rezents Professor Emeritus Agriculture, University of Hawaii Maui College Certified Arborist, International Society of Arboriculture Registered Consulting Arborist, American Society of Consulting Arborists September 1, 1991, First Edition July 20, 1994, Second Edition December 2000, Second Edition Reprinted March 9, 2016, Third Edition Maui County Planting Plan—Third Edition MAUI COUNTY ARBORIST COMMITTEE – 2016 Kimberly Thayer, Chair Heather A. K. Heath, Vice Chair Jackie Brainard Casey A. Foster, ISA* Certified Arborist Alex Haller William G. Jacintho, ISA* Certified Arborist William R. Myrter Jean A. Pezzoli, PhD Chris Reynolds Ex-Officio Members Maui County Corporation Council Maui County Parks and Recreation Department Maui County Planning Department Maui County Public Works Department Maui County Water Department Maui County Arborist *International Society of Arboriculture Maui County Planting Plan—Third Edition MAYOR'S MESSAGE Maui County Planting Plan—Third Edition ACKNOWLEDGEMENTS The author wishes to thank the following individuals and organizations for their support and contributions that made possible the publication of the Maui County Planting Plan. Robert (Bob) Hobdy for his assistance with plant scientific names and characteristics, exceptional tree research, and the Maui County Island maps with planting zones. Philip Thomas, a former Database Administrator with the Hawaii Ecosystems at Risk project (HEAR), for assisting with plant database storage and formatting chapter tables.
    [Show full text]
  • Ornamental Garden Plants of the Guianas, Part 4
    Bromeliaceae Epiphytic or terrestrial. Roots usually present as holdfasts. Leaves spirally arranged, often in a basal rosette or fasciculate, simple, sheathing at the base, entire or spinose- serrate, scaly-lepidote. Inflorescence terminal or lateral, simple or compound, a spike, raceme, panicle, capitulum, or a solitary flower; inflorescence-bracts and flower-bracts usually conspicuous, highly colored. Flowers regular (actinomorphic), mostly bisexual. Sepals 3, free or united. Petals 3, free or united; corolla with or without 2 scale-appendages inside at base. Stamens 6; filaments free, monadelphous, or adnate to corolla. Ovary superior to inferior. Fruit a dry capsule or fleshy berry; sometimes a syncarp (Ananas ). Seeds naked, winged, or comose. Literature: GENERAL: Duval, L. 1990. The Bromeliads. 154 pp. Pacifica, California: Big Bridge Press. Kramer, J. 1965. Bromeliads, The Colorful House Plants. 113 pp. Princeton, New Jersey: D. Van Nostrand Company. Kramer, J. 1981. Bromeliads.179pp. New York: Harper & Row. Padilla, V. 1971. Bromeliads. 134 pp. New York: Crown Publishers. Rauh, W. 1919.Bromeliads for Home, Garden and Greenhouse. 431pp. Poole, Dorset: Blandford Press. Singer, W. 1963. Bromeliads. Garden Journal 13(1): 8-12; 13(2): 57-62; 13(3): 104-108; 13(4): 146- 150. Smith, L.B. and R.J. Downs. 1974. Flora Neotropica, Monograph No.14 (Bromeliaceae): Part 1 (Pitcairnioideae), pp.1-658, New York: Hafner Press; Part 2 (Tillandsioideae), pp.663-1492, New York: Hafner Press; Part 3 (Bromelioideae), pp.1493-2142, Bronx, New York: New York Botanical Garden. Weber, W. 1981. Introduction to the taxonomy of the Bromeliaceae. Journal of the Bromeliad Society 31(1): 11-17; 31(2): 70-75.
    [Show full text]
  • Lecture Exam 1 Statistics
    Lecture Exam 1 Statistics Average 76.6 Range 54 (42-96) SD: 15.5 Median: 81.5 Skewness: -0.76 Sample size: 28 Field Trip: August 2nd Day-long trip over Grand Park, Mt. Rainier; UW vans for transportation; Sign-up sheets in lab Photos: Yaowu Yuan Previous lecture Rosids I II Eurosids Vitaceae Eurosids Saxifragales Eurosids I: Eurosids II: Zygophyllales Brassicales Celastrales Malvales Malpighiales Sapindales Oxalidales Myrtales Fabales Geraniales Rosales Cucurbitales Fagales After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374 Wind pollination syndrome Textbook DVD WSJ Textbook DVD DLN Photo: Yaowu Yuan What do they share in common in terms of floral presentation? Wind pollination syndrome Flowers appear before leaves are out; tend to flower early in the year. Often unisexual flowers; Flowers often aggregated in catkins; Individual flowers small and inconspicuous; Big stamens (large anthers) produce lots of pollen; Stigmas large and plumose or roughened (papillate) to catch pollen; Ratio of pollen to ovules VERY HIGH (up to 6,000 to 1); Phylogeny of Rosids Rosids I II Eurosids Eurosids Vitaceae Saxifragales Saxifragales Eurosids II: Eurosids I: Brassicales Zygophyllales Malvales Celastrales Sapindales Malpighiales Myrtales Oxalidales Geraniales Fabales Rosales Cucurbitales Fagales After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374 Saxifragaceae (Saxifrage family) Photo: Yaowu Yuan Herbs; Leaves often palmate and serrate; in a basal rosette Saxifraga sp.; Photo: Yaowu Yuan Textbook DVD DLN Heuchera sanguinea;
    [Show full text]