Guidelines for Uniform Beef Improvement Programs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Using Beef Cattle Genetics to Manage
Tall Fescue Endophyte Toxicosis in Beef Cattle: Clinical Mode of Action and Potential Mitigation through Cattle Genetics Richard Browning, Jr., Ph.D. Cooperative Agricultural Research Program Tennessee State University Nashville, TN 37209-1561 INTRODUCTION Tall fescue (Festuca arundinacea Schreb.) is the most commonly used cultivated grass in the United States to feed beef cattle. Tall fescue is a cool-season perennial grass that many cattle producers ‘can’t live with, but can’t live without’ because of its hardiness and good forage yields, but adverse effects on cattle well-being and yields. The history of this forage and its effects on animal performance have been extensively reviewed (Hemken et al., 1984; Bacon et al., 1986; Stuedemann and Hoveland, 1988; Porter and Thompson, 1992; Stuedemann and Thompson, 1993; Porter, 1994; Bacon, 1995; Paterson et al., 1995). Tall fescue was unintentionally introduced from Europe sometime in the 1800s. Early university research on growing tall fescue in the U.S. began between 1907 and 1918 in Oregon and in Kentucky in 1931 (Alderson and Sharp, 1993). Tall fescue, primarily the Kentucky-31 variety, was planted across the U.S. throughout the 1940s and 1950s because of its excellent growth under various environmental stressors. Tall fescue may be found across the eastern half of the U.S. and the Pacific Northwest covering an estimated 25 to 40 million acres of pasture and hayland. It has been estimated that over 90% of tall fescue pastures in the U.S. are infected with the fungal endophyte Neotyphodium coenophialum (Bacon and Siegel, 1988; Glenn et al., 1996). -
Crossbreeding of Cattle in Africa
Journal of Agriculture and Environmental Sciences June 2018, Vol. 7, No. 1, pp. 16-31 ISSN: 2334-2404 (Print), 2334-2412 (Online) Copyright © The Author(s). All Rights Reserved. Published by American Research Institute for Policy Development DOI: 10.15640/jaes.v7n1a3 URL: https://doi.org/10.15640/jaes.v7n1a3 Crossbreeding of Cattle in Africa R Trevor Wilson1 Abstract Africa is endowed with a very wide range of mostly Bos indicus indigenous cattle breeds. A general statement with regard to their performance for meat or milk is that they are of inferior genetic value. Attempts to improve their performance have rarely relied on within-breed improvement but have concentrated on crossing to supposedly superior exotic Bos taurus types. Exotic types have not always – indeed have rarely -- been chosen on objective criteria and the imported breeds generally indicate the colonial past of individual African countries rather than on use of “the right animal in the right place”. Most attempts at increasing output have been undertaken under research station conditions. Results on station have been very variable but the limited success achieved has rarely been carried over in to the general African cattle population. This paper documents a number of attempts to alter the genetic make-up of African cattle in several countries and discusses the reasons for the failure of most of these. Keywords: Bos indicus, Bos taurus, livestock experiments, milk production, meat production 1. Introduction African countries differ greatly in climatic, ecological and agricultural conditions and in socioeconomic factors. In many countries, nonetheless, cattle are the most important livestock species. -
Type and Breed Characteristics and Uses
E-190 3/09 Texas Adapted Genetic Strategies for Beef Cattle V: Type and Breed Characteristics and Uses A 1700s painting of the foundation cow of one of the first cattle breeds. Courtesy of Michigan State University Animal Science Department. Stephen P. Hammack* he subject of breeds intrigues most beef cattle sphere. The Bos taurus in the United States originated in producers. However, breeds are only part of a ge- the British Isles and western continental Europe. The Bos netic strategy that should include: indicus arose in south central Asia. T• Matching applicable performance or functional There are some intermediates containing both Bos levels to environmental, management, and taurus and Bos indicus. Some intermediates created in the marketing conditions United States, particularly in Texas, are commonly re- • Choosing a breeding system, either continuous ferred to as American breeds, which will be discussed later. (in which replacement females are produced Although it has no strict definition, a breed can be within the herd) or terminal (in which replace- described as animals of common origin with certain dis- ments are introduced externally) tinguishing characteristics that are passed from parent • Selecting genetic types, breeds within types, and individuals within breeds that are compat- *Professor and Extension Beef Cattle Specialist–Emeritus, The Texas A&M System ible with the performance level needed and breeding system chosen. Genetic classifications and breeds Cattle can be divided into two basic classifications, Bos taurus (non-humped) and Bos indicus (humped, also called Zebu). Cattle are not native to the western hemi- to offspring. Breed characteristics result from To characterize milking potential accurately, both natural selection and from that imposed it should be evaluated relative to body size. -
Postweaning Growth and Carcass Traits in Crossbred Cattle from Hereford, Angus, Brangus, Beefmaster, Bonsmara, and Romosinuano Maternal Grandsires E
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Roman L. Hruska U.S. Meat Animal Research U.S. Department of Agriculture: Agricultural Center Research Service, Lincoln, Nebraska 2010 Postweaning growth and carcass traits in crossbred cattle from Hereford, Angus, Brangus, Beefmaster, Bonsmara, and Romosinuano maternal grandsires E. Casas USDA, ARS, US Meat Animal Research Center, [email protected] R. M. Thallman USDA-ARS Meat Animal Research Center, [email protected] L. A. Kuehn USDA- ARS, US Meat Animal Research Center, [email protected] L. V. Cundiff US Meat Animal Research Center, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/hruskareports Casas, E.; Thallman, R. M.; Kuehn, L. A.; and Cundiff, L. V., "Postweaning growth and carcass traits in crossbred cattle from Hereford, Angus, Brangus, Beefmaster, Bonsmara, and Romosinuano maternal grandsires" (2010). Roman L. Hruska U.S. Meat Animal Research Center. 374. http://digitalcommons.unl.edu/hruskareports/374 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Roman L. Hruska U.S. Meat Animal Research Center by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published December 4, 2014 Postweaning growth and carcass traits in crossbred cattle from Hereford, Angus, Brangus, Beefmaster, Bonsmara, and Romosinuano maternal grandsires1,2 E. Casas,3 R. M. Thallman, L. A. Kuehn, and L. V. Cundiff USDA, ARS, US Meat Animal Research Center, Clay Center, NE 68933 ABSTRACT: The objective of this study was to char- est marbling scores when compared with other grand- acterize breeds representing diverse biological types for sire breeds. -
Multiple Choice Choose the Answer That Best Completes Each Statement Or Question
Name Date Hour 5 The Beef Cattle Industry Multiple Choice Choose the answer that best completes each statement or question. _______ 1. Early settlers primarily used cattle as ____ . A. work animals B. a source of meat C. a source of milk D. symbols of wealth _______ 2. The modern cattle industry is concentrated in the ____ . A. South and Midwest B. South and Southwest C. North and Northwest D. North and Midwest _______ 3. Cattle drives were necessary in the past because of the lack of ____ . A. retail stores B. refrigeration C. slaughterhouses D. year-round grazing _______ 4. Which beef cattle breed is known for its solid black color and excellent meat quality? A. Angus B. Hereford C. Shorthorn D. Chianina _______ 5. Which beef cattle breed is from northern England and was often called a Durham after the county in which it originated? A. Angus B. Hereford C. Shorthorn D. Chianina Introduction to Agriscience | Unit 5 Test CIMC 1 _______ 6. Which beef cattle breed originated in England and was originally much larger, weighing more than 3,000 pounds, than it is today? A. Angus B. Hereford C. Shorthorn D. Chianina _______ 7. Which beef cattle breed is red with a white face and may also have white on the neck, underline, legs, and tail switch? A. Angus B. Hereford C. Shorthorn D. Chianina _______ 8. Which beef cattle breed is one of the oldest breeds in the world and originated in Italy? A. Angus B. Hereford C. Shorthorn D. Chianina _______ 9. Which beef cattle breed originated in central France and was developed as a dual-purpose breed and is typically white or off-white in color? A. -
Proc1-Beginning Chapters.Pmd
Implications of Breed Type Evaluations Larry V. Cundiff Research Leader, Genetics and Breeding Roman L. Hruska U.S. Meat Animal Research Center Agricultural Research Service U.S. Department of Agriculture Clay Center, NE ()(,) Introduction 23.3 Quality, quantity, and cost of feed resources available for beef production vary from one region of the country to another and within regions, depending upon climatic factors and natural 23.3 resources available in specific production 14.8 situations. Diversity among breeds can be exploited by crossbreeding to optimize performance levels 8.5 and to match genetic resources with the climatic environment, feed resources, and consumer Percent preferences for lean and tender beef products. 8.5 Crossbreeding also provides for significant benefits 14.8 of heterosis on components of production efficiency. In this presentation, research results will be reviewed focusing on effects and utilization of 8.5 8.5 heterosis and breed differences, and on the importance of matching genetic potential with Straightbred Straightbred X-bred consumer preferences and the climatic cows cows cows environment. straightbred X-bred X-bred calves calves calves Heterosis Figure 1. Cumulative effects of heterosis for weight of calf weaned per cow exposed to breeding in crosses A crossbreeding experiment involving of Hereford, Angus, and Shorthorns (Cundiff et al., Herefords, Angus, and Shorthorns demonstrated 1974). that weaning weight per cow was increased by about 23% (Cundiff et al., 1974) due to beneficial was significantly greater than that of either effects of heterosis on survival and growth of straightbred Angus or Herefords (Nunez et al., crossbred calves and on reproduction rate and 1991; Cundiff et al., 1992). -
For Immediate Release Brangus Are Not “Eared” Cattle
For Immediate Release Contact: Doc or Patricia Spitzer FAIR PLAY, SC [email protected] or November 8, 2011 (864)972-9140 or (864)710-0257 Brangus Are Not “Eared” Cattle First and foremost we need to wrap our minds around the fact that God created cattle, he did not create breeds. And while in some cases natural barriers such as oceans and mountain ranges did affect genetic selection, for the most part it is humans who created breeds. And, if you go back far enough in history there really are no pure breeds, only our inflated misconceptions that they exist. That being said, there are two species that make up all cattle of the world; Bos Taurus cattle are primarily cattle populations that originated in the more temperate climates and Bos Indicus cattle populations developed in the more tropical regions of the world. Generally the US beef industry further subdivides Bos Taurus beef cattle into two groups. Continental Breeds of cattle are those breeds originating on the European Continent while British Breeds were originally from selections of bovine populations from the British Isle. It is also typical of US producers to wrongly lump all Bos Indicus breeds of cattle together. This is rather astounding as there are more recognized different breeds of Bos Indicus derivation scattered around the world than specific breeds of Bos Taurus derivation. Americans have also further compounded the confusion by creating new breeds by crossing a variety of specifically recognized Bos Indicus cattle to create the American Brahman and crossing cattle of Bos Indicus and Bos Taurus origin to create what some refer to as the American Breeds. -
Comparing SNP Panels and Statistical Methods for Estimating Genomic Breed Composition of Individual Animals in Ten Cattle Breeds
He et al. BMC Genetics (2018) 19:56 https://doi.org/10.1186/s12863-018-0654-3 RESEARCH ARTICLE Open Access Comparing SNP panels and statistical methods for estimating genomic breed composition of individual animals in ten cattle breeds Jun He1,2†,YageGuo1,3†, Jiaqi Xu1,4, Hao Li1,5,AnnaFuller1, Richard G. Tait Jr1,Xiao-LinWu1,5* and Stewart Bauck1 Abstract Background: SNPs are informative to estimate genomic breed composition (GBC) of individual animals, but selected SNPs for this purpose were not made available in the commercial bovine SNP chips prior to the present study. The primary objective of the present study was to select five common SNP panels for estimating GBC of individual animals initially involving 10 cattle breeds (two dairy breeds and eight beef breeds). The performance of the five common SNP panels was evaluated based on admixture model and linear regression model, respectively. Finally, the downstream implication of GBC on genomic prediction accuracies was investigated and discussed in a Santa Gertrudis cattle population. Results: There were 15,708 common SNPs across five currently-available commercial bovine SNP chips. From this set, four subsets (1,000, 3,000, 5,000, and 10,000 SNPs) were selected by maximizing average Euclidean distance (AED) of SNP allelic frequencies among the ten cattle breeds. For 198 animals presented as Akaushi, estimated GBC of the Akaushi breed (GBCA) based on the admixture model agreed very well among the five SNP panels, identifying 166 animals with GBCA = 1. Using the same SNP panels, the linear regression approach reported fewer animals with GBCA = 1. -
ISAG Programme Abs Am.Indd
30 S0001 – S0016 Invited Speaker Abstracts INVITED SPEAKERS S0001–S0016 31 S0001 The power of comparative genetics and genomics S0004 Finding the causal variant in selective sweeps Kerstin Linbald-Toh. Elinor Karlsson. Broad Institute, USA; Uppsala University, Sweden. Broad Institute, Cambridge, MA, USA. The human genome contains hundreds of regions with patterns of genetic variation that refl ect recent, positive natural selection, yet for most the underlying gene and S0002 Using intra-species variation to understanding basic the advantageous mutation remain unknown. We have developed a method, the biology Composite of Multiple Signals (CMS), that, by combining multiple different tests for natural selection, increases our resolution by up to 100-fold. By applying CMS to the International Haplotype Map, we localize hundred signals, reducing the candidate Ewan Birney. region for each to just ~50-100kb. In many cases, we can identify the precise gene EMBL Outstation – Hinxton, European Bioinformatics Institute, Welcome Trust Genome and polymorphism targeted by selection. This includes genes involved in infectious Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom. disease susceptibility, skin pigment, metabolism, and hair and sweat. Nearly half Quantitative genetics based on large, outbred populations has had a long history in of the ~200 regions we localized contain no genes at all, and 13 contain long, non- both animal breeding and human disease studies. It is one of the few techniques coding RNAs, which can regulate nearby genes. In several regions we signifi cantly which one can apply to understand a complex phenotype when nothing else is known associate variants under selection with the expression of nearby genes. -
Purebred Livestock Registry Associations
Purebred livestock registry associations W. Dennis Lamm1 COLORADO STATE UNIVERSITY EXTENSION SERVICE no. 1.217 Beef Devon. Devon Cattle Assn., Inc., P.O. Box 628, Uvalde, TX 78801. Mrs. Cammille Hoyt, Sec. Phone: American. American Breed Assn., Inc., 306 512-278-2201. South Ave. A, Portales, NM 88130. Mrs. Jewell Dexter. American Dexter Cattle Assn., P.O. Jones, Sec. Phone: 505-356-8019. Box 56, Decorah, IA 52l01. Mrs. Daisy Moore, Amerifax. Amerifax Cattle Assn., Box 149, Exec. Sec. Phone: 319-736-5772, Hastings, NE 68901. John Quirk, Pres. Phone Friesian. Beef Friesian Society, 213 Livestock 402-463-5289. Exchange Bldg., Denver, CO 80216. Maurice W. Angus. American Angus Assn., 3201 Freder- Boney, Adm. Dir. Phone: 303-587-2252. ick Blvd., St. Joseph, MO 64501. Richard Spader, Galloway. American Galloway Breeders Assn., Exec. Vice. Pres. Phone: 816-233-3101. 302 Livestock Exchange Bldg., Denver, CO 80216. Ankina. Ankina Breeders, Inc., 5803 Oaks Rd,. Cecil Harmon, Pres. Phone: 303-534-0853. Clayton, OH 45315. James K. Davis, Ph.D., Pres. Galloway. Galloway Cattle Society of Amer- Phone: 513-837-4128. ica, RFD 1, Springville, IA 52336. Phone: 319- Barzona. Barzona Breeders Assn. of America, 854-7062. P.O. Box 631, Prescott, AZ 86320. Karen Halford, Gelbvieh. American Gelbvieh Assn., 5001 Na- Sec. Phone: 602-445-2290. tional Western Dr., Denver, CO 80218. Daryl W. Beefalo. American Beefalo Breeders, 1661 E. Loeppke, Exec. Dir. Phone: 303-296-9257. Brown Rd., Mayville 22, MI 48744. Phone: 517-843- Hays Convertor. Canadian Hays Convertor 6811. Assn., 6707 Elbow Dr. SW, Suite 509, Calgary, Beefmaster. -
A Compilation of Research Results Involving Tropically Adapted Beef Cattle Breeds
A COMPILATION OF RESEARCH RESULTS INVOLVING TROPICALLY ADAPTED BEEF CATTLE BREEDS S-243 and S-277 Multistate Research Projects Southern Cooperative Series Bulletin 405 http://www.lsuagcenter.com/en/crops_livestock/livestock/beef_cattle/breeding_genetics/trpoical+breeds.htm Contact information: Dr. David G. Morrison, Associate Director Louisiana Agricultural Experiment Station P. O. Box 25055 Baton Rouge, Louisiana 70894-5055 Phone: 225-578-4182 FAX: 225-578-6032 Email: [email protected] ISBN: 1-58161-405-5 State Agricultural Experiment Stations do not discriminate on the basis of race, sex, color, religion, national origin, age, disability, or veteran status in provision of educational opportunities or employment opportunities and benefits. - 1 - Preface The Southern region of the U.S. contains approximately 42% of the nation’s beef cows and nearly 50% of its cow-calf producers. The region’s environment generally can be characterized as subtropical, i.e. hot, humid summers with ample rainfall supporting good forage production. Efficient cow-calf production in the humid South is dependent on heat and parasite tolerance and good forage utilization ability. Brahman and Brahman-derivative breeds generally possess these characteristics and excel in maternal traits. Consequently, they have been used extensively throughout the Southern Region in crossbreeding systems with Bos taurus breeds in order to exploit both breed complementarity and heterosis effects. However, several characteristics of Brahman and Brahman crossbred cattle, such as poor feedlot performance, lower carcass quality including meat tenderness, and poor temperament, whether real or perceived can result in economic discounts of these cattle. Therefore, determining genetic variation for economically important traits among Brahman and Brahman-derivative breeds and identifying tropically adapted breeds of cattle from other countries that may excel in their performance of economically important traits in Southern U.S. -
The Hungarian Grey Cattle Breed
THE HUNGARIAN GREY CATTLE BREED THE HUNGARIAN GREY CATTLE BREED A technical publication Second revised edition Subsidised by Ministry of Agriculture and Rural Development FVM BU DA PEST 2004 LIMITED EDITION This book is the No. Authors: Imre BODO´ , István GERA and Gábor KOPPÁ´ NY Translation: Béla BORSOS Lector: György KOVA´ CS Puplished by: ASSOCIATION OF THE HUNGARIAN GREY CATTLE BREEDERS (A Ma gyar Szür ke Szar vas mar hát Te nyész tôk Egye sü le te) Budapest, 2004 Printing: PASSZER LTD, Budapest Book design & tipography: Katalin GYULAI The Hungarian Grey cattle breed CONTENTS Introduction 1. page 7 History of the Hungarian Grey cattle 2. page 9 2. 1. The origin of the breed..........................................................................................page 9 2. 2. The age of prosperity..............................................................................................page 10 2. 3. Turkish times...............................................................................................................page 11 2. 4. Decline.............................................................................................................................page 11 2. 5. The breed issue...........................................................................................................page 12 2. 6. Breed districts .............................................................................................................page 14 2. 7. The years after World War I.............................................................................page