2017 Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neural Construction of Conscious Perception
Neural construction of conscious perception Thesis by Janis Karan Hesse In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2020 (Defended May 28th, 2020) ii 2020 Janis Hesse ORCID: 0000-0003-0405-8632 iii ACKNOWLEDGEMENTS I'd like to thank Doris Tsao for being an incredible advisor and undepletable source of ideas, advice and inspiration, for sharing her passion for science with me, and giving me the courage to ask big questions. I am very happy about the choice of my thesis committee. Markus Meister, Ueli Rutishauser, and Ralph Adolphs contributed substantially by providing useful ideas, discussions, and criticisms throughout this thesis. I want to thank current and past members of the Tsao lab, including Varun Wadia, Nicole Schweers, Audo Flores, Pinglei Bao, Liang She, Steven Le Chang, Xueqi Cheng Shay Ohayon, Tomo Sato, Joseph Wekselblatt, Francisco Luongo, Lu Liu, Anne Martin, Jessa Alexander, Erin Koch, Jialiang Lu, Yuelin Shi, Alex Farhang, Irene Caprara, Frank Lanfranchi, Lindsay Salay, Hongsun Guo, Abriana Sustaita, and Sebastian Moeller, who have all been very willing to offer me help whenever I needed, taught me the different techniques in the lab, and gave me great comments, ideas and discussions. I would also like to note that the work on human epilepsy patients described in Chapter VI is as much of Varun Wadia's work as it is mine. I am grateful to have started my PhD with such a lovely cohort. My PhD would not have been as fun without Mason McGill, Vineet Augustine, Gabriela Tavares, and Ryan Cho. -
A Review and Selective Analysis of 3D Display Technologies for Anatomical Education
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2018 A Review and Selective Analysis of 3D Display Technologies for Anatomical Education Matthew Hackett University of Central Florida Part of the Anatomy Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Hackett, Matthew, "A Review and Selective Analysis of 3D Display Technologies for Anatomical Education" (2018). Electronic Theses and Dissertations, 2004-2019. 6408. https://stars.library.ucf.edu/etd/6408 A REVIEW AND SELECTIVE ANALYSIS OF 3D DISPLAY TECHNOLOGIES FOR ANATOMICAL EDUCATION by: MATTHEW G. HACKETT BSE University of Central Florida 2007, MSE University of Florida 2009, MS University of Central Florida 2012 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Modeling and Simulation program in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Summer Term 2018 Major Professor: Michael Proctor ©2018 Matthew Hackett ii ABSTRACT The study of anatomy is complex and difficult for students in both graduate and undergraduate education. Researchers have attempted to improve anatomical education with the inclusion of three-dimensional visualization, with the prevailing finding that 3D is beneficial to students. However, there is limited research on the relative efficacy of different 3D modalities, including monoscopic, stereoscopic, and autostereoscopic displays. -
The Physiology and Computation of Pyramidal Neurons
The Physiology and Computation of Pyramidal Neurons Thesis by Adam Shai In Partial Fulfillment of the Requirements for the degree of Bioengineering CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2016 (Defended December 8, 2015) ii © 2016 Adam Shai All Rights Reserved iii ACKNOWLEDGEMENTS “Sitting in the gaudy radiance of those windows hearing the organ play and the choir sing, his mind pleasantly intoxicated from exhaustion, Daniel experienced a faint echo of what it must be like, all the time, to be Isaac Newton: a permanent ongoing epiphany, an endless immersion in lurid radiance, a drowning in light, a ringing of cosmic harmonies in the ears.” Neal Stephenson in Quicksilver Sometimes it feels as if graduate school was designed specifically to keep a certain type of soul happy. Those of us whose obsessions tend to overtake polite conversation, betraying either a slight social ineptitude or quirky personality trait, depending on who you ask, tend to find a home in the academic life. That such a setting was afforded to me requires my unrelenting thanks. I cannot think of a more joyous situation than the last six years of my life, where I was expected and able to be thinking intensely about what I wanted to think about. I came to Caltech primarily as a result of an interesting conversation with Christof Koch, about consciousness, quantum mechanics, and art, when I first visited during the winter of 2009. That he became my advisor guaranteed that I would be cared for during my graduate studies. Christof takes the calling of Doktorvater seriously. The environment of K-lab, by Christof’s example and design, was one of intense intellectual playfulness. -
Dynamics of Excitatory-Inhibitory Neuronal Networks With
I (X;Y) = S(X) - S(X|Y) in c ≈ p + N r V(t) = V 0 + ∫ dτZ 1(τ)I(t-τ) P(N) = 1 V= R I N! λ N e -λ www.cosyne.org R j = R = P( Ψ, υ) + Mγ (Ψ, υ) σ n D +∑ j n k D k n MAIN MEETING Salt Lake City, UT Feb 27 - Mar 2 ................................................................................................................................................................................................................. Program Summary Thursday, 27 February 4:00 pm Registration opens 5:30 pm Welcome reception 6:20 pm Opening remarks 6:30 pm Session 1: Keynote Invited speaker: Thomas Jessell 7:30 pm Poster Session I Friday, 28 February 7:30 am Breakfast 8:30 am Session 2: Circuits I: From wiring to function Invited speaker: Thomas Mrsic-Flogel; 3 accepted talks 10:30 am Session 3: Circuits II: Population recording Invited speaker: Elad Schneidman; 3 accepted talks 12:00 pm Lunch break 2:00 pm Session 4: Circuits III: Network models 5 accepted talks 3:45 pm Session 5: Navigation: From phenomenon to mechanism Invited speakers: Nachum Ulanovsky, Jeffrey Magee; 1 accepted talk 5:30 pm Dinner break 7:30 pm Poster Session II Saturday, 1 March 7:30 am Breakfast 8:30 am Session 6: Behavior I: Dissecting innate movement Invited speaker: Hopi Hoekstra; 3 accepted talks 10:30 am Session 7: Behavior II: Motor learning Invited speaker: Rui Costa; 2 accepted talks 11:45 am Lunch break 2:00 pm Session 8: Behavior III: Motor performance Invited speaker: John Krakauer; 2 accepted talks 3:45 pm Session 9: Reward: Learning and prediction Invited speaker: Yael -
Symmetric Networks with Geometric Constraints As Models of Visual Illusions
S S symmetry Article Symmetric Networks with Geometric Constraints as Models of Visual Illusions Ian Stewart 1,*,† and Martin Golubitsky 2,† 1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK 2 Department of Mathematics, Ohio State University, Columbus, OH 43210, USA; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 17 May 2019; Accepted: 13 June 2019; Published: 16 June 2019 Abstract: Multistable illusions occur when the visual system interprets the same image in two different ways. We model illusions using dynamic systems based on Wilson networks, which detect combinations of levels of attributes of the image. In most examples presented here, the network has symmetry, which is vital to the analysis of the dynamics. We assume that the visual system has previously learned that certain combinations are geometrically consistent or inconsistent, and model this knowledge by adding suitable excitatory and inhibitory connections between attribute levels. We first discuss 4-node networks for the Necker cube and the rabbit/duck illusion. The main results analyze a more elaborate model for the Necker cube, a 16-node Wilson network whose nodes represent alternative orientations of specific segments of the image. Symmetric Hopf bifurcation is used to show that a small list of natural local geometric consistency conditions leads to alternation between two global percepts: cubes in two different orientations. The model also predicts brief transitional states in which the percept involves impossible rectangles analogous to the Penrose triangle. A tristable illusion generalizing the Necker cube is modelled in a similar manner. -
A Review and Selective Analysis of 3D Display Technologies for Anatomical Education
A REVIEW AND SELECTIVE ANALYSIS OF 3D DISPLAY TECHNOLOGIES FOR ANATOMICAL EDUCATION by: MATTHEW G. HACKETT BSE University of Central Florida 2007, MSE University of Florida 2009, MS University of Central Florida 2012 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Modeling and Simulation program in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Summer Term 2018 Major Professor: Michael Proctor ©2018 Matthew Hackett ii ABSTRACT The study of anatomy is complex and difficult for students in both graduate and undergraduate education. Researchers have attempted to improve anatomical education with the inclusion of three-dimensional visualization, with the prevailing finding that 3D is beneficial to students. However, there is limited research on the relative efficacy of different 3D modalities, including monoscopic, stereoscopic, and autostereoscopic displays. This study analyzes educational performance, confidence, cognitive load, visual-spatial ability, and technology acceptance in participants using autostereoscopic 3D visualization (holograms), monoscopic 3D visualization (3DPDFs), and a control visualization (2D printed images). Participants were randomized into three treatment groups: holograms (n=60), 3DPDFs (n=60), and printed images (n=59). Participants completed a pre-test followed by a self-study period using the treatment visualization. Immediately following the study period, participants completed the NASA TLX cognitive load instrument, a technology acceptance instrument, visual-spatial ability instruments, a confidence instrument, and a post-test. Post-test results showed the hologram treatment group (Mdn=80.0) performed significantly better than both 3DPDF (Mdn=66.7, p=.008) and printed images (Mdn=66.7, p=.007). -
Alumni Director Cover Page.Pub
Harvard University Program in Neuroscience History of Enrollment in The Program in Neuroscience July 2018 Updated each July Nicholas Spitzer, M.D./Ph.D. B.A., Harvard College Entered 1966 * Defended May 14, 1969 Advisor: David Poer A Physiological and Histological Invesgaon of the Intercellular Transfer of Small Molecules _____________ Professor of Neurobiology University of California at San Diego Eric Frank, Ph.D. B.A., Reed College Entered 1967 * Defended January 17, 1972 Advisor: Edwin J. Furshpan The Control of Facilitaon at the Neuromuscular Juncon of the Lobster _______________ Professor Emeritus of Physiology Tus University School of Medicine Albert Hudspeth, M.D./Ph.D. B.A., Harvard College Entered 1967 * Defended April 30, 1973 Advisor: David Poer Intercellular Juncons in Epithelia _______________ Professor of Neuroscience The Rockefeller University David Van Essen, Ph.D. B.S., California Instute of Technology Entered 1967 * Defended October 22, 1971 Advisor: John Nicholls Effects of an Electronic Pump on Signaling by Leech Sensory Neurons ______________ Professor of Anatomy and Neurobiology Washington University David Van Essen, Eric Frank, and Albert Hudspeth At the 50th Anniversary celebraon for the creaon of the Harvard Department of Neurobiology October 7, 2016 Richard Mains, Ph.D. Sc.B., M.S., Brown University Entered 1968 * Defended April 24, 1973 Advisor: David Poer Tissue Culture of Dissociated Primary Rat Sympathec Neurons: Studies of Growth, Neurotransmier Metabolism, and Maturaon _______________ Professor of Neuroscience University of Conneccut Health Center Peter MacLeish, Ph.D. B.E.Sc., University of Western Ontario Entered 1969 * Defended December 29, 1976 Advisor: David Poer Synapse Formaon in Cultures of Dissociated Rat Sympathec Neurons Grown on Dissociated Rat Heart Cells _______________ Professor and Director of the Neuroscience Instute Morehouse School of Medicine Peter Sargent, Ph.D. -
The Macaque Face Patch System: a Window Into Object Representation
Downloaded from symposium.cshlp.org on August 3, 2015 - Published by Cold Spring Harbor Laboratory Press The Macaque Face Patch System: A Window into Object Representation DORIS TSAO Division of Biology and Biological Engineering and Computation and Neural Systems, California Institute of Technology, Pasadena, California 91125 Correspondence: [email protected] The macaque brain contains a set of regions that show stronger fMRI activation to faces than other classes of object. This “face patch system” has provided a unique opportunity to gain insight into the organizing principles of IT cortex and to dissect the neural mechanisms underlying form perception, because the system is specialized to process one class of complex forms, and because its computational components are spatially segregated. Over the past 5 years, we have set out to exploit this system to clarify the nature of object representation in the brain through a multilevel approach combining electrophysiology, anatomy, and behavior. These experiments reveal (1) a remarkably precise connectivity of face patches to each other, (2) a functional hierarchy for representation of view-invariant identity comprising at least three distinct stages along the face patch system, and (3) the computational mechanisms used by cells in face patches to detect and recognize faces, including measurement of diagnostic local contrast features for detection and measurement of face feature values for recognition. How does the brain represent objects? This question nature of these steps remains a mystery. One major trans- had its beginnings in philosophy. Our fundamental intu- formation appears to be segmentation (i.e., organizing ition of the physical world consists of a space containing visual information into discrete pieces corresponding to objects, and philosophers starting from Plato wondered different objects) (Zhou et al. -
Hemifield-Specific Rotational Biases During the Observation Of
S S symmetry Article Hemifield-Specific Rotational Biases during the Observation of Ambiguous Human Silhouettes Chiara Lucafò *,† , Daniele Marzoli *,†, Caterina Padulo , Stefano Troiano, Lucia Pelosi Zazzerini, Gianluca Malatesta , Ilaria Amodeo and Luca Tommasi Department of Psychological Sciences, Health and Territory, University of Chieti, Via dei Vestini 29, I-66013 Chieti, Italy; [email protected] (C.P.); [email protected] (S.T.); [email protected] (L.P.Z.); [email protected] (G.M.); [email protected] (I.A.); [email protected] (L.T.) * Correspondence: [email protected] (C.L.); [email protected] (D.M.) † These authors equally contributed to this work. Abstract: Both static and dynamic ambiguous stimuli representing human bodies that perform unimanual or unipedal movements are usually interpreted as right-limbed rather than left-limbed, suggesting that human observers attend to the right side of others more than the left one. Moreover, such a bias is stronger when static human silhouettes are presented in the RVF (right visual field) than in the LVF (left visual field), which might represent a particular instance of embodiment. On the other hand, hemispheric-specific rotational biases, combined with the well-known bias to perceive forward-facing figures, could represent a confounding factor when accounting for such findings. Therefore, we investigated whether the lateralized presentation of an ambiguous rotating human body would affect its perceived handedness/footedness (implying a role of motor representations), Citation: Lucafò, C.; Marzoli, D.; its perceived spinning direction (implying a role of visual representations), or both. To this aim, we Padulo, C.; Troiano, S.; required participants to indicate the perceived spinning direction (which also unveils the perceived Pelosi Zazzerini, L.; Malatesta, G.; handedness/footedness) of ambiguous stimuli depicting humans with an arm or a leg outstretched. -
50 Optical Illusions Free
FREE 50 OPTICAL ILLUSIONS PDF Sam Taplin | none | 30 Oct 2009 | Usborne Publishing Ltd | 9781409507796 | English | London, United Kingdom “50 optical illusions” in Usborne Quicklinks Optical illusions are presentations of objects 50 Optical Illusions well as situations in such a 50 Optical Illusions, that it confuses your vision, and projects double meaning of the same image to you simultaneously. Optical illusions are really fun to see, as they confuse 50 Optical Illusions about what the picture really is, and play with our minds. So, for you to enjoy seeing some optical illusions and have your mind really confused, here is a list of some superb and mind-blowing optical illusions that will surely leave you confused and wondering, figuring out the real situation in the images. This article is also categorized into 50 Optical Illusions sections — Photographic Illusions, consisting of 50 Optical Illusions illusions in a taken photo of any situation, and Graphical Illusions, containing computer generated or hand-drawn illusions. Very Interesting Object. Pyramid Block. Realistic Dice Illusion. Green Pouch. Chess Illusion. Intersecting Buildings. Courtyard or Terrace? Half here, Half there. Bathroom Mirror Illusion. Which one is Cut: Wood or the Metal. Pressed In or Out? Truck Painting Illusion. Oh No! The Rug is Sinking! That Sinking Feeling. Crazy Car Optical Illusion. Are the Blue Lines horizontal? Impossible Arch. Move for You. Wooden Box Illusion. Moving Circles Illusion. Colourful Object Illusion. See beyond the Skull Illusion. Corner House Illusion. Moving Waves. Moving Bicycle Wheels. Two Faces or Two People? Staring at the Dot makes Grey Disappear. Old Man Illusion. -
Functional Neuroanatomy of Intuitive Physical Inference
Functional neuroanatomy of intuitive physical inference Jason Fischera,b,c,d,1, John G. Mikhaela,b,c,e, Joshua B. Tenenbauma,b,c, and Nancy Kanwishera,b,c,1 aDepartment of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; bMcGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139; cThe Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, MA 02139; dDepartment of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21202; and eHarvard Medical School, Boston, MA 02115 Contributed by Nancy Kanwisher, June 29, 2016 (sent for review May 24, 2016; reviewed by Susan J. Hespos and Doris Tsao) To engage with the world—to understand the scene in front of us, region or family of regions essentially engaged in physical in- plan actions, and predict what will happen next—we must have an ferences and recruited more for physical inference than for intuitive grasp of the world’s physical structure and dynamics. other similarly difficult prediction or perception tasks? How do the objects in front of us rest on and support each other, Although some studies have explored the neural representation how much force would be required to move them, and how will of objects’ surface and material properties (2–4) and weights (5–7) they behave when they fall, roll, or collide? Despite the centrality or investigated the brain areas involved in explicit, textbook-style of physical inferences in daily life, little is known about the brain physical reasoning (8, 9), little is known about the cortical ma- mechanisms recruited to interpret the physical structure of a scene chinery that supports the more implicit perceptual judgments about and predict how physical events will unfold. -
Book XVII License and the Law Editor: Ramon F
8 88 8 8nd 8 8888on.com 8888 Basic Photography in 180 Days Book XVII License and the Law Editor: Ramon F. aeroramon.com Contents 1 Day 1 1 1.1 Photography and the law ....................................... 1 1.1.1 United Kingdom ....................................... 2 1.1.2 United States ......................................... 6 1.1.3 Hong Kong .......................................... 8 1.1.4 Hungary ............................................ 8 1.1.5 Macau ............................................. 8 1.1.6 South Africa ......................................... 8 1.1.7 Sudan and South Sudan .................................... 9 1.1.8 India .............................................. 10 1.1.9 Iceland ............................................ 10 1.1.10 Spain ............................................. 10 1.1.11 Mexico ............................................ 10 1.1.12 See also ............................................ 10 1.1.13 Notes ............................................. 10 1.1.14 References .......................................... 10 1.1.15 External links ......................................... 12 2 Day 2 13 2.1 Observation .............................................. 13 2.1.1 Observation in science .................................... 14 2.1.2 Observational paradoxes ................................... 14 2.1.3 Biases ............................................. 15 2.1.4 Observations in philosophy .................................. 16 2.1.5 See also ...........................................