PHYSICS BEFORE and AFTER EINSTEIN This Page Intentionally Left Blank Physics Before and After Einstein
Total Page:16
File Type:pdf, Size:1020Kb
PHYSICS BEFORE AND AFTER EINSTEIN This page intentionally left blank Physics Before and After Einstein Edited by Marco Mamone Capria University of Perugia, Department of Mathematics and Informatics, Perugia, Italy Amsterdam • Berlin • Oxford • Tokyo • Washington, DC © 2005, The authors. All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without prior written permission from the publisher. ISBN 1-58603-462-6 Library of Congress Control Number: 2005923350 Publisher IOS Press Nieuwe Hemweg 6B 1013 BG Amsterdam Netherlands fax: +31 20 687 0019 e-mail: [email protected] Distributor in the UK and Ireland Distributor in the USA and Canada IOS Press/Lavis Marketing IOS Press, Inc. 73 Lime Walk 4502 Rachael Manor Drive Headington Fairfax, VA 22032 Oxford OX3 7AD USA England fax: +1 703 323 3668 fax: +44 1865 750079 e-mail: [email protected] LEGAL NOTICE The publisher is not responsible for the use which might be made of the following information. PRINTED IN THE NETHERLANDS Physics Before and After Einstein v M. Mamone Capria (Ed.) IOS Press, 2005 © 2005 The authors Preface It is a century since one of the icons of modern physics submitted some of the most influential scientific papers of all times in a few months; and it is fifty years since he died. There is no question that Albert Einstein with his work on relativity and quantum theory has marked the development of physics indelibly. To reappraise his lifework forces one to rethink the whole of physics, before and after him. The aim of the present book is to contribute to this daunting task. Though not an encyclopedic work, it tries to provide a perspective on the history of physics from the late 19th century to today, by taking the series of groundbreaking and sometimes provoca- tive contributions by Einstein as the demarcation line between the “old” and the “new” physics. The treatment is not meant as celebratory, but to provide accurate information (both historical and conceptual) and critical appraisal. Since it is clearly impossible to deal within a relatively small compass with all the topics which would have been suitable for special treatment, a choice – sometimes a painful one – had to be made. It would be wanton to assume that all readers should find the selection presented here as ideal; however the editor is confident that it is neither so arbitrary nor so conventional as to seriously detract from the interest of the whole. Although this book has been inspired by an historical occasion (a double one, in fact), it is not an occasional one. The authors have a long record of working on themes related to Einstein or Einstein’s work and its consequences. What they have to say should be of interest to a wide range of scholars and students in physics, history of science, and epistemology. However, this is not a book for specialists only. An effort has been made to make the bulk of the book understandable to lay persons with some knowledge of undergraduate mathematics and physics. Most parts of physics can surrender a considerable part of their cultural import to any non-specialist seriously intentioned to grasp the main concepts. The authors have tried to avoid unnecessary technical jargon and to paraphrase in words the main formulas, though some sections or chapters may turn out to be more hard going than others. However, it is a fact that Einstein’s work has been instrumental in introducing a previously unheard-of degree of mathematical sophistication into theoretical physics. Ninety years after the event it would be a deceptive simplicity that achieved at the cost of concealing this crucial aspect. In closing this preface, the editor is very pleased to thank Dr. Einar H. Fredriksson, of IOS Press, for his constant interest and encouragement, and to acknowledge the care and forbearance of Anne Marie de Rover and the other staff of IOS Press. Marco Mamone Capria [email protected] March 2005 This page intentionally left blank Physics Before and After Einstein vii M. Mamone Capria (Ed.) IOS Press, 2005 © 2005 The authors Contents Preface v Marco Mamone Capria Chapter 1: Albert Einstein: A Portrait 1 Marco Mamone Capria Chapter 2: Mechanics and Electromagnetism in the Late Nineteenth Century: The Dynamics of Maxwell’s Ether 21 Roberto de Andrade Martins Chapter 3: Mechanistic Science, Thermodynamics, and Industry at the End of the Nineteenth Century 49 Angelo Baracca Chapter 4: The Origins and Concepts of Special Relativity 71 Seiya Abiko Chapter 5: General Relativity: Gravitation as Geometry and the Machian 93 Programme Marco Mamone Capria Chapter 6: The Rebirth of Cosmology: From the Static to the Expanding Universe 129 Marco Mamone Capria Chapter 7: Testing Relativity 163 Klaus Hentschel Chapter 8: Einstein and Quantum Theory 183 Seiya Abiko Chapter 9: The Quantum Debate: From Einstein to Bell and Beyond 205 Jenner Barretto Bastos Filho Chapter 10: Special Relativity and the Development of High-Energy Particle Physics 233 Yogendra Srivastava Chapter 11: Quantum Theory and Gravitation 253 Allan Widom, David Drosdoff and Yogendra N. Srivastava Chapter 12: Superluminal Waves and Objects: Theory and Experiments. 267 A Panoramic Introduction Erasmo Recami Chapter 13: Standard Cosmology and Other Possible Universes 285 Aubert Daigneault This page intentionally left blank Physics Before and After Einstein 1 M. Mamone Capria (Ed.) IOS Press, 2005 © 2005 The authors Chapter 1 Albert Einstein: A Portrait Marco Mamone Capria Only a free individual can make a discovery. A. Einstein Whatever one thinks of the common belief that the personality of a scientist has little to do with the creation and success of his theories, it is a prudent guess that there may be at least some exceptions to it. Albert Einstein is arguably one of the best candidates to be such an exception. But there are also other reasons for being interested in his life and opinions. His career departs in many ways from common ideas on how a young person grows to become a great scientist, indeed one of the symbols of the depth and power of his science. He was also one of the few great scientists to devote a considerable number of his thoughts, writings and actions to social and political issues, often going against the current (mis)conceptions of his and our time. Although pictures of his face have been reproduced millions of times, his physics is not the only thing about him that is not as widely known as it deserves to be. This chapter is divided into three parts. The first gives a chronological outline of Einstein’s life; the second sketches his personality; and the third one presents, mainly using his own words, some of his opinions on a wide range of topics. I The life of the most famous scientist of the twentieth century began in Ulm on March 14, 1879, as a son of cultivated, “entirely irreligious” Jewish parents. As a child he was a late speaker (he started at about 2½). Up to the age of seven, he used to repeat to himself (softly) all the phrases he uttered. At about the age of five he had his first violin lesson. He showed an early liking for arithmetical problems, though he was not particularly precise in his computations. His first geometry book made an exhilarating impression on him, which he vividly described in his “Autobiographical Notes” of 1949 [28, pp. 8–11]. He taught himself calculus between the ages of 12 and 16. Einstein’s relationship with school was far from smooth. At 9 he entered the Luitpold Gymnasium in Munich, but there he found an authoritarian atmosphere which made him feel uneasy. Although his marks were generally good, his relationship with his professor of Greek was strained. At one time, this teacher unwittingly earned himself posthumous fame by angrily telling Albert that nothing would ever become of him. Eventually Albert presented a certificate from his family doctor to the school’s principal, left school without 2 Chapter 1 finishing it, and in 1895 went to live with his parents, who had moved to Pavia (Italy) the previous year. In 1895 he failed his entrance examination to the Federal Institute of Technology (Ei- degenössische Technische Hochschule, ETH) in Zürich, because of low marks in French, chemistry and biology (but not in mathematics and physics). He was advised to attend the cantonal school at Aarau for one year, and then try again to get into the Federal In- stitute of Technology, which he did, getting very good marks except in geography and drawing (both artistic and technical). In finding this interim solution for the brilliant sixteen-year-old, student the ETH physics professor, Heinrich Weber, was helpful. In 1897 he finally entered the ETH, where Marcel Grossmann, who was to become a lifelong friend and a valuable collaborator at a crucial stage of Einstein’s development, was a fellow student; as was Mileva Maric,ˇ a Serbian, his elder by four years, who was to become his wife in 1903. Around that year he also met Michele Angelo Besso, an engineering student, who played a decisive role in his life, first by introducing him to Mach’s criticism of Newtonian mechanics. Another acquaintance was a physics student, Friedrich Adler, son of Victor, the leader of the Austrian Social Democrats. Albert was rather remiss in attending classes (he by far preferred to work in the labo- ratory, and, especially, studying by himself the works of Kirchhoff, Helmholtz, Hertz and others), but he could rely on the careful notes taken by Grossmann – and on Grossmann’s generosity in sharing them.