MATTERS of GRAVITY, a Newsletter for the Gravity Community, Number 3

Total Page:16

File Type:pdf, Size:1020Kb

MATTERS of GRAVITY, a Newsletter for the Gravity Community, Number 3 MATTERS OF GRAVITY Number 3 Spring 1994 Table of Contents Editorial ................................................... ................... 2 Correspondents ................................................... ............ 2 Gravity news: Open Letter to gravitational physicists, Beverly Berger ........................ 3 A Missouri relativist in King Gustav’s Court, Clifford Will .................... 6 Gary Horowitz wins the Xanthopoulos award, Abhay Ashtekar ................ 9 Research briefs: Gamma-ray bursts and their possible cosmological implications, Peter Meszaros 12 Current activity and results in laboratory gravity, Riley Newman ............. 15 Update on representations of quantum gravity, Donald Marolf ................ 19 Ligo project report: December 1993, Rochus E. Vogt ......................... 23 Dark matter or new gravity?, Richard Hammond ............................. 25 Conference Reports: Gravitational waves from coalescing compact binaries, Curt Cutler ........... 28 Mach’s principle: from Newton’s bucket to quantum gravity, Dieter Brill ..... 31 Cornelius Lanczos international centenary conference, David Brown .......... 33 Third Midwest relativity conference, David Garfinkle ......................... 36 arXiv:gr-qc/9402002v1 1 Feb 1994 Editor: Jorge Pullin Center for Gravitational Physics and Geometry The Pennsylvania State University University Park, PA 16802-6300 Fax: (814)863-9608 Phone (814)863-9597 Internet: [email protected] 1 Editorial Well, this newsletter is growing into its third year and third number with a lot of strength. In fact, maybe too much strength. Twelve articles and 37 (!) pages. In this number, apart from the ”traditional” research briefs and conference reports we also bring some news for the community, therefore starting to fulfill the original promise of bringing the gravity/relativity community closer together. As usual I am open to suggestions, criticisms and proposals for articles for the next issue, due September 1st. Many thanks to the authors and the correspondents who made this issue possible. If everything goes well this newsletter should be available in the gr-qc Los Alamos bul- letin board under number gr-qc/9402002. To retrieve it send email to [email protected] (or [email protected] in Europe) with Subject: get gr-qc/9402002 (issue 2 is available as gr-qc/9309003). Or email me. Have fun. Jorge Pullin Correspondents 1. John Friedman and Kip Thorne: Relativistic Astrophysics, 2. Jim Hartle: Quantum Cosmology and Related Topics 3. Gary Horowitz: Interface with Mathematical High Energy Physics, including String Theory 4. Richard Isaacson: News from NSF 5. Richard Matzner: Numerical Relativity 6. Abhay Ashtekar and Ted Newman: Mathematical Relativity 7. Bernie Schutz: News From Europe 8. Lee Smolin: Quantum Gravity 9. Cliff Will: Confrontation of Theory with Experiment 10. Peter Bender: Space Experiments 11. Riley Newman: Laboratory Experiments 12. Peter Michelson: Resonant Mass Gravitational Wave Detectors 13. Robbie Vogt: LIGO Project 2 Open letter to gravitational physicists Beverly Berger, Oakland University I believe the time has come to create a Topical Group (TG) in Gravitation within the American Physical Society (APS). Substructures of the APS include Divisions (e.g. Particles and Fields, Nuclear Physics, Astrophysics), TG’s (e.g. Metrology, Laser Science), and Fora (e.g. Physics and Society). The APS constitution states “If at least two hundred members wish to advance and diffuse the knowledge of a specific subject or subfield of physics, they may petition the Council [of the APS] to establish a Topical Group.” If the membership of the TG becomes sufficiently large, the TG can then become a Division. Although the existing divisions of Particles and Fields and Astrophysics have interests which include various aspects of gravitational physics, their primary concerns lie elsewhere. There are many reasons to develop a TG at this time. Such a group would allow us to define and promote our interests and enhance our visibility within the larger community of physicists. The construction of LIGO and the Grand Challenge Supercomputing Project on the two black hole problem are only two examples of the significant developments in our field that render such advocacy essential. There are several other advantages to the formation of the TG. As a subgroup of APS, we would have access to APS public relations activities (e.g. press releases, lobbying) that might be marshaled for our benefit. Some of our local meetings and workshops (e.g. the Pacific Coast or Midwest Meetings) could become TG meetings with access to APS publicity and possibly support. Members of the TG could organize sessions at APS general meetings. The TG would be a distinct entity through which to support the positions and activities of the International GRG Society. (Many countries already have separate national general relativity societies.) Finally, members of the TG can nominate candidates to become APS Fellows. The procedures to form the TG are the following: As quoted above, a petition signed by 200 APS members requesting formation of the TG must be received by the Executive Council of the APS. (The signed petitions must be actual hard-copy rather than electronic mail.) The council, in consultation with existing APS divisions and TG’s may either accept or reject the petition. If the signatures are obtained and the petition is accepted, an organizational structure including TG officers and bylaws must be put into place. At that point, the TG comes into existence. Any APS member may join the TG for an additional $5 per year. 3 The APS is open to physicists of any nationality for an annual dues of approximately $80 per year (less for students, postdocs, and retirees). One benefit of APS membership is the opportunity to subscribe to some journals at a reduced rate. The list includes Physical Review, Physical Review Letters, Journal of Mathematical Physics, and Classical and Quantum Gravity among others. If you agree with the need to form a TG in gravitation and are an APS member please print out the attached petition, sign it, urge your colleagues who are APS members to sign it, and mail the completed petition to me. I also invite 10-20 public spirited theoretical and experimental relativists who are APS members to act as an ad hoc organizing committee. The function of this committee would be to generate the bylaws of the organizational structure required for the TG and to serve as an initial nominating committee for TG officers. I welcome your comments and questions. Sincerely, Beverly K. Berger Physics Department Oakland University Rochester, MI 48309 (810)370-3422, (313)971-0345 [email protected] 4 PETITION TO THE COUNCIL OF THE AMERICAN PHYSICAL SOCIETY We, the undersigned members of the American Physical Society, petition the Council of the American Physical Society to establish a Topical Group in Gravitation. Areas of interest to the proposed Topical Group include, but are not limited to, experiments and observations related to the detection and interpretation of gravitational waves, experimental tests of gravitational theories, computational general relativity, relativistic astrophysics, solutions to Einstein’s equations and their properties, alternative theories of gravity, classical and quantum cosmology, and quantum gravity. The purpose of the Topical Group is to provide a unified forum for these areas of current research which now span several Divisions of the Society. Signature Name(Printed) Affiliation Return to: Beverly K. Berger Physics Department Oakland University Rochester, MI 48309 5 A Missouri Relativist in King Gustav’s Court Clifford Will, Washington University, St. Louis The award of the 1993 Nobel Prize in Physics to Joseph Taylor and Russell Hulse of Princeton University for their discovery of the binary pulsar PSR 1913+16 puts a welcome seal of approval on general relativity. It was a long time coming. Einstein’s general theory has revolutionized our view of space and time and the universe. Yet the Nobel prize has never, until now, been awarded for work so directly related to general relativity. Even Einstein’s Nobel in 1921 was for his work on the photoelectric effect, not for relativity. Part of the problem is that theory is difficult to test, and the Nobel committees historically prefer to reward work that has had experimental confirmation. Until 1974, the solar system provided the principal testing ground for GR. However, the discovery of the binary pulsar in the summer 1974 [1] showed that certain kinds of distant astronomical systems may also provide precision laboratories for testing general relativity. The system consists of a 59 ms period pulsar in an eight-hour orbit with a companion that has not been seen directly, but that is generally believed to be a “dead” neutron star. The unexpected stability of the pulsar “clock” and the cleanliness of the orbit allowed Hulse and Taylor and later co-workers to determine the parameters of the system to extraordinary 3 accuracy. Furthermore, the system is highly relativistic (vorbit/c ≈ 10− ). Observation of o o 1 the relativistic periastron advance (4 .22663 ± 0 .00002 yr− ), and of equivalence-principle effects on pulse arrival times (gravitational redshift, time dilation – 0.07% accuracy) can be used, assuming that general relativity is correct, to determine the pulsar and companion masses, with the result mp = 1.4411 ± 0.0007M and mc = 1.3873 ± 0.0007M . The measurement of the rate of decrease of the orbital⊙ period in 1979 [2] gave the
Recommended publications
  • Quantum Topology and Categorification Seminar, Spring 2017
    QUANTUM TOPOLOGY AND CATEGORIFICATION SEMINAR, SPRING 2017 ARUN DEBRAY APRIL 25, 2017 These notes were taken in a learning seminar in Spring 2017. I live-TEXed them using vim, and as such there may be typos; please send questions, comments, complaints, and corrections to [email protected]. Thanks to Michael Ball for finding and fixing a typo. CONTENTS Part 1. Quantum topology: Chern-Simons theory and the Jones polynomial 1 1. The Jones Polynomial: 1/24/171 2. Introduction to quantum field theory: 1/31/174 3. Canonical quantization and Chern-Simons theory: 2/7/177 4. Chern-Simons theory and the Wess-Zumino-Witten model: 2/14/179 5. The Jones polynomial from Chern-Simons theory: 2/21/17 13 6. TQFTs and the Kauffman bracket: 2/28/17 15 7. TQFTs and the Kauffman bracket, II: 3/7/17 17 Part 2. Categorification: Khovanov homology 18 8. Khovanov homology and computations: 3/21/17 18 9. Khovanov homology and low-dimensional topology: 3/28/17 21 10. Khovanov homology for tangles and Frobenius algebras: 4/4/17 23 11. TQFT for tangles: 4/11/17 24 12. The long exact sequence, functoriality, and torsion: 4/18/17 26 13. A transverse link invariant from Khovanov homology: 4/25/17 28 References 30 Part 1. Quantum topology: Chern-Simons theory and the Jones polynomial 1. THE JONES POLYNOMIAL: 1/24/17 Today, Hannah talked about the Jones polynomial, including how she sees it and why she cares about it as a topologist. 1.1. Introduction to knot theory.
    [Show full text]
  • Covariant Phase Space for Gravity with Boundaries: Metric Vs Tetrad Formulations
    Covariant phase space for gravity with boundaries: metric vs tetrad formulations J. Fernando Barbero G.c,d Juan Margalef-Bentabola,c Valle Varob,c Eduardo J.S. Villaseñorb,c aInstitute for Gravitation and the Cosmos and Physics Department. Penn State University. PA 16802, USA. bDepartamento de Matemáticas, Universidad Carlos III de Madrid. Avda. de la Universidad 30, 28911 Leganés, Spain. cGrupo de Teorías de Campos y Física Estadística. Instituto Gregorio Millán (UC3M). Unidad Asociada al Instituto de Estructura de la Materia, CSIC, Madrid, Spain. dInstituto de Estructura de la Materia, CSIC, Serrano 123, 28006, Madrid, Spain E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: We use covariant phase space methods to study the metric and tetrad formula- tions of General Relativity in a manifold with boundary and compare the results obtained in both approaches. Proving their equivalence has been a long-lasting problem that we solve here by using the cohomological approach provided by the relative bicomplex framework. This setting provides a clean and ambiguity-free way to describe the solution spaces and associated symplectic structures. We also compute several relevant charges in both schemes and show that they are equivalent, as expected. arXiv:2103.06362v2 [gr-qc] 14 Jun 2021 Contents I Introduction1 II The geometric arena2 II.1 M as a space-time2 II.2 From M-vector fields to F-vector fields3 II.3 CPS-Algorithm4 IIIGeneral Relativity in terms of metrics5 IV General relativity in terms of tetrads8 V Metric vs Tetrad formulation 13 V.1 Space of solutions 13 V.2 Presymplectic structures 14 VI Conclusions 15 A Ancillary material 16 A.1 Mathematical background 16 A.2 Some computations in the metric case 19 A.3 Some tetrad computations 21 Bibliography 22 I Introduction Space-time boundaries play a prominent role in classical and quantum General Relativity (GR).
    [Show full text]
  • Classical Topology and Quantum States∗
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server SU-4240-716 February 2000 Classical Topology and Quantum States∗ A.P. Balachandran Department of Physics, Syracuse University, Syracuse, NY 13244-1130, USA Abstract Any two infinite-dimensional (separable) Hilbert spaces are unitarily isomorphic. The sets of all their self-adjoint operators are also therefore unitarily equivalent. Thus if all self-adjoint operators can be observed, and if there is no further major axiom in quantum physics than those formulated for example in Dirac’s ‘Quantum Mechanics’, then a quantum physicist would not be able to tell a torus from a hole in the ground. We argue that there are indeed such axioms involving observables with smooth time evolution: they contain commutative subalgebras from which the spatial slice of spacetime with its topology (and with further refinements of the axiom, its CK− and C∞− structures) can be reconstructed using Gel’fand - Naimark theory and its extensions. Classical topology is an attribute of only certain quantum observables for these axioms, the spatial slice emergent from quantum physics getting progressively less differentiable with increasingly higher excitations of energy and eventually altogether ceasing to exist. After formulating these axioms, we apply them to show the possibility of topology change and to discuss quantized fuzzy topologies. Fundamental issues concerning the role of time in quantum physics are also addressed. ∗Talk presented at the Winter Institute on Foundations of Quantum Theory and Quantum Op- tics,S.N.Bose National Centre for Basic Sciences,Calcutta,January 1-13,2000.
    [Show full text]
  • Pos(Rio De Janeiro 2012)002 † ∗ [email protected] Speaker
    Loop Quantum Gravity and the Very Early Universe PoS(Rio de Janeiro 2012)002 Abhay Ashtekar∗† Institute for Gravitational Physics and Geometry, Physics Department, Penn State, University Park, PA 16802, U.S.A. E-mail: [email protected] This brief overview is addressed to beginning researchers. It begins with a discussion of the distinguishing features of loop quantum gravity, then illustrates the type of issues that must be faced by any quantum gravity theory, and concludes with a brief summary of the status of these issues in loop quantum gravity. For concreteness the emphasis is on cosmology. Since several introductory as well as detailed reviews of loop quantum gravity are already available in the literature, the focus is on explaining the overall viewpoint and providing a short bibliography to introduce the interested reader to literature. 7th Conference Mathematical Methods in Physics - Londrina 2012, 16 to 20 April 2012 Rio de Janeiro, Brazil ∗Speaker. †A footnote may follow. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Loop Quantum Gravity Abhay Ashtekar Loop quantum gravity (LQG) is a non-perturbative approach aimed at unifying general rela- tivity and quantum physics. Its distinguishing features are: i) Background independence, and, ii) Underlying unity of the mathematical framework used to describe gravity and the other three basic forces of nature. It is background independent in the sense that there are no background fields, not even a space-time metric. All fields —whether they represent matter constituents, or gauge fields that mediate fundamental forces between them, or space- time geometry itself— are treated on the same footing.
    [Show full text]
  • BEYOND SPACE and TIME the Secret Network of the Universe: How Quantum Geometry Might Complete Einstein’S Dream
    BEYOND SPACE AND TIME The secret network of the universe: How quantum geometry might complete Einstein’s dream By Rüdiger Vaas With the help of a few innocuous - albeit subtle and potent - equations, Abhay Ashtekar can escape the realm of ordinary space and time. The mathematics developed specifically for this purpose makes it possible to look behind the scenes of the apparent stage of all events - or better yet: to shed light on the very foundation of reality. What sounds like black magic, is actually incredibly hard physics. Were Albert Einstein alive today, it would have given him great pleasure. For the goal is to fulfil the big dream of a unified theory of gravity and the quantum world. With the new branch of science of quantum geometry, also called loop quantum gravity, Ashtekar has come close to fulfilling this dream - and tries thereby, in addition, to answer the ultimate questions of physics: the mysteries of the big bang and black holes. "On the Planck scale there is a precise, rich, and discrete structure,” says Ashtekar, professor of physics and Director of the Center for Gravitational Physics and Geometry at Pennsylvania State University. The Planck scale is the smallest possible length scale with units of the order of 10-33 centimeters. That is 20 orders of magnitude smaller than what the world’s best particle accelerators can detect. At this scale, Einstein’s theory of general relativity fails. Its subject is the connection between space, time, matter and energy. But on the Planck scale it gives unreasonable values - absurd infinities and singularities.
    [Show full text]
  • The Rebirth of Cosmology: from the Static to the Expanding Universe
    Physics Before and After Einstein 129 M. Mamone Capria (Ed.) IOS Press, 2005 © 2005 The authors Chapter 6 The Rebirth of Cosmology: From the Static to the Expanding Universe Marco Mamone Capria Among the reasons for the entrance of Einstein’s relativity into the scientific folklore of his and our age one of the most important has been his fresh and bold approach to the cosmological problem, and the mysterious, if not paradoxical concept of the universe as a three-dimensional sphere. Einstein is often credited with having led cosmology from philosophy to science: according to this view, he made it possible to discuss in the pro- gressive way typical of science what had been up to his time not less “a field of endless struggles” than metaphysics in Kant’s phrase. It is interesting to remember in this connection that the German philosopher, in his Critique of Pure Reason, had famously argued that cosmology was beyond the scope of science (in the widest sense), being fraught with unsolvable contradictions, inherent in the very way our reason functions. Of course not everybody had been impressed by this argument, and several nineteenth-century scientists had tried to work out a viable image of the universe and its ultimate destiny, using Newtonian mechanics and the principles of thermodynamics. However, this approach did not give unambiguous answers either; for instance, the first principle of thermodynamics was invoked to deny that the universe could have been born at a certain moment in the past, and the second principle to deny that its past could be infinite.
    [Show full text]
  • 1 Clifford Algebraic Computational Fluid Dynamics
    Clifford Algebraic Computational Fluid Dynamics: A New Class of Experiments. Dr. William Michael Kallfelz 1 Lecturer, Department of Philosophy & Religion, Mississippi State University The Philosophy of Scientific Experimentation: A Challenge to Philosophy of Science-Center for Philosophy of Science, University of Pittsburgh October 15-16, 2010. October 24, 2010 Abstract Though some influentially critical objections have been raised during the ‘classical’ pre- computational simulation philosophy of science (PCSPS) tradition, suggesting a more nuanced methodological category for experiments 2, it safe to say such critical objections have greatly proliferated in philosophical studies dedicated to the role played by computational simulations in science. For instance, Eric Winsberg (1999-2003) suggests that computer simulations are methodologically unique in the development of a theory’s models 3 suggesting new epistemic notions of application. This is also echoed in Jeffrey Ramsey’s (1995) notions of “transformation reduction,”—i.e., a notion of reduction of a more highly constructive variety. 4 Computer simulations create a broadly continuous arena spanned by normative and descriptive aspects of theory-articulation, as entailed by the notion of transformation reductions occupying a continuous region demarcated by Ernest Nagel’s (1974) logical-explanatory “domain-combining reduction” on the one hand, and Thomas Nickels’ (1973) heuristic “domain- preserving reduction,” on the other. I extend Winsberg’s and Ramsey’s points here, by arguing that in the field of computational fluid dynamics (CFD) as well as in other branches of applied physics, the computer plays a constitutively experimental role—supplanting in many cases the more traditional experimental methods such as flow- visualization, etc. In this case, however CFD algorithms act as substitutes, not supplements (as the notions “simulation” suggests) when it comes to experimental practices.
    [Show full text]
  • Science & ROGER PENROSE
    Science & ROGER PENROSE Live Webinar - hosted by the Center for Consciousness Studies August 3 – 6, 2021 9:00 am – 12:30 pm (MST-Arizona) each day 4 Online Live Sessions DAY 1 Tuesday August 3, 2021 9:00 am to 12:30 pm MST-Arizona Overview / Black Holes SIR ROGER PENROSE (Nobel Laureate) Oxford University, UK Tuesday August 3, 2021 9:00 am – 10:30 am MST-Arizona Roger Penrose was born, August 8, 1931 in Colchester Essex UK. He earned a 1st class mathematics degree at University College London; a PhD at Cambridge UK, and became assistant lecturer, Bedford College London, Research Fellow St John’s College, Cambridge (now Honorary Fellow), a post-doc at King’s College London, NATO Fellow at Princeton, Syracuse, and Cornell Universities, USA. He also served a 1-year appointment at University of Texas, became a Reader then full Professor at Birkbeck College, London, and Rouse Ball Professor of Mathematics, Oxford University (during which he served several 1/2-year periods as Mathematics Professor at Rice University, Houston, Texas). He is now Emeritus Rouse Ball Professor, Fellow, Wadham College, Oxford (now Emeritus Fellow). He has received many awards and honorary degrees, including knighthood, Fellow of the Royal Society and of the US National Academy of Sciences, the De Morgan Medal of London Mathematical Society, the Copley Medal of the Royal Society, the Wolf Prize in mathematics (shared with Stephen Hawking), the Pomeranchuk Prize (Moscow), and one half of the 2020 Nobel Prize in Physics, the other half shared by Reinhard Genzel and Andrea Ghez.
    [Show full text]
  • Laudatio for Professor Abhay Ashtekar
    Laudatio for Professor Abhay Ashtekar Professor Ashtekar is a remarkable ¯gure in the ¯eld of Ein- stein's gravity. This being the Einstein Year and, moreover, the World Year of Physics, one can hardly think of anyone more ¯tting to be honoured for his research and his achievements { achievements that have influenced the most varied aspects of gravitational theory in a profound way. Prof. Ashtekar is the Eberly Professor of Physics and the Di- rector of the Institute for Gravitational Physics and Geometry at Penn State University in the United States. His research in gravitational theory is notable for its breadth, covering quantum gravity and generalizations of quantum mechanics, but also clas- sical general relativity, the mathematical theory of black holes and gravitational waves. Our view of the world has undergone many revisions in the past, two of which, arguably the most revolutionary, were ini- tiated by Einstein in his annus mirabilis, 1905. For one thing, the theory of special relativity turned our notion of space and time on its ear for speeds approaching that of light. At the same time, Einstein's explanation of the photoelectric e®ect heralded the coming of quantum theory. Many of the best minds in theo- retical physics, including Einstein himself, have been trying for years to ¯nd a uni¯ed theory of relativity and quantum theory. Such a theory, often called quantum gravity, could, for example, provide an explanation for the initial moments of our universe just after the big bang. Especially noteworthy is Prof. Ashtekar's work on the canon- ical quantization of gravitation, which is based upon a reformu- lation of Einstein's ¯eld equations that Ashtekar presented 1986.
    [Show full text]
  • Recent Observations of Gravitational Waves by LIGO and Virgo Detectors
    universe Review Recent Observations of Gravitational Waves by LIGO and Virgo Detectors Andrzej Królak 1,2,* and Paritosh Verma 2 1 Institute of Mathematics, Polish Academy of Sciences, 00-656 Warsaw, Poland 2 National Centre for Nuclear Research, 05-400 Otwock, Poland; [email protected] * Correspondence: [email protected] Abstract: In this paper we present the most recent observations of gravitational waves (GWs) by LIGO and Virgo detectors. We also discuss contributions of the recent Nobel prize winner, Sir Roger Penrose to understanding gravitational radiation and black holes (BHs). We make a short introduction to GW phenomenon in general relativity (GR) and we present main sources of detectable GW signals. We describe the laser interferometric detectors that made the first observations of GWs. We briefly discuss the first direct detection of GW signal that originated from a merger of two BHs and the first detection of GW signal form merger of two neutron stars (NSs). Finally we present in more detail the observations of GW signals made during the first half of the most recent observing run of the LIGO and Virgo projects. Finally we present prospects for future GW observations. Keywords: gravitational waves; black holes; neutron stars; laser interferometers 1. Introduction The first terrestrial direct detection of GWs on 14 September 2015, was a milestone Citation: Kro´lak, A.; Verma, P. discovery, and it opened up an entirely new window to explore the universe. The combined Recent Observations of Gravitational effort of various scientists and engineers worldwide working on the theoretical, experi- Waves by LIGO and Virgo Detectors.
    [Show full text]
  • Quantum Aspects of Life / Editors, Derek Abbott, Paul C.W
    Quantum Aspectsof Life P581tp.indd 1 8/18/08 8:42:58 AM This page intentionally left blank foreword by SIR ROGER PENROSE editors Derek Abbott (University of Adelaide, Australia) Paul C. W. Davies (Arizona State University, USAU Arun K. Pati (Institute of Physics, Orissa, India) Imperial College Press ICP P581tp.indd 2 8/18/08 8:42:58 AM Published by Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE Distributed by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Quantum aspects of life / editors, Derek Abbott, Paul C.W. Davies, Arun K. Pati ; foreword by Sir Roger Penrose. p. ; cm. Includes bibliographical references and index. ISBN-13: 978-1-84816-253-2 (hardcover : alk. paper) ISBN-10: 1-84816-253-7 (hardcover : alk. paper) ISBN-13: 978-1-84816-267-9 (pbk. : alk. paper) ISBN-10: 1-84816-267-7 (pbk. : alk. paper) 1. Quantum biochemistry. I. Abbott, Derek, 1960– II. Davies, P. C. W. III. Pati, Arun K. [DNLM: 1. Biogenesis. 2. Quantum Theory. 3. Evolution, Molecular. QH 325 Q15 2008] QP517.Q34.Q36 2008 576.8'3--dc22 2008029345 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Photo credit: Abigail P. Abbott for the photo on cover and title page. Copyright © 2008 by Imperial College Press All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.
    [Show full text]
  • 150 Abhay Ashtekar
    ICTS PUBLIC LECTURE BIG BANG, BLACK HOLES AND GRAVITATIONAL WAVES Illustrations of Paradigm Shifts in Fundamental Science Big Bang, Black Holes and Gravitational Waves now appear as compelling – even obvious – consequences of general relativity. Therefore, it may seem surprising that none of these ideas were readily accepted. Not only was there considerable debate, but in fact leading figures were often arguing on what turned out to be the “wrong side” of history. These developments provide excellent lessons for younger researchers on how science un-folds. Paradigm shifts in science occur when younger researchers have the courage not to accept ideas merely because they are mainstream; patience to systematically develop novel avenues they deeply believe in; and maturity to accept that a variety of factors – not all logical or even science related – can drive or slow down scientific progress. ABHAY ASHTEKAR Pennsylvania State University Abhay Ashtekar is the Eberly Professor of Physics and the Director of the Institute for Gravitational Physics and Geometry at Pennsylvania State University. His research interests span different aspects of General Relativity, Quantum Gravity and Black Holes. The recipient of the Einstein Prize and the Senior Research Prize of the Humboldt Foundation, his work is widely recognized. He is an elected member of the US National Academy of Sciences, Elected Fellow of the American Association for Advancement of Science, American Physical Society and Honorary Fellow of the Indian Academy of Sciences, and has served as the president of International Society for General Relativity and Gravitation. 4 pm, 21 August, 2019 ICTS, Bengaluru Register online https://bit.ly/AbhayAshtekar BG Image – Frame from a simulation of the merger of two black holes and the resulting emission of gravitational radiation (colored fields).
    [Show full text]