Emergence of Time in Loop Quantum Gravity∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Information Loss, Made Worse by Quantum Gravity?
ORIGINAL RESEARCH published: 20 May 2015 doi: 10.3389/fphy.2015.00033 Information loss, made worse by quantum gravity? Martin Bojowald * Department of Physics, Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA, USA Quantum gravity is often expected to solve both the singularity problem and the information-loss problem of black holes. This article presents an example from loop quantum gravity in which the singularity problem is solved in such a way that the information-loss problem is made worse. Quantum effects in this scenario, in contrast to previous non-singular models, do not eliminate the event horizon and introduce a new Cauchy horizon where determinism breaks down. Although infinities are avoided, for all practical purposes the core of the black hole plays the role of a naked singularity. Recent developments in loop quantum gravity indicate that this aggravated information loss problem is likely to be the generic outcome, putting strong conceptual pressure on the theory. Edited by: Keywords: signature change, loop quantum gravity, black holes, information loss, effective theory Martin Anthony Hendry, University of Glasgow, UK Reviewed by: 1. Introduction Davood Momeni, L.N. Gumilyov Eurasian National There is a widespread expectation that quantum gravity, once it is fully developed and understood, University, Kazakhstan will resolve several important conceptual problems in our current grasp of the universe. Among the Jerzy Lewandowski, most popular ones of these problems are the singularity problem and the problem of information Uniwersytet Warszawswski, Poland loss. Several proposals have been made to address these questions within the existing approaches *Correspondence: to quantum gravity, but it is difficult to see a general scenario emerge. -
Loop Quantum Cosmology, Modified Gravity and Extra Dimensions
universe Review Loop Quantum Cosmology, Modified Gravity and Extra Dimensions Xiangdong Zhang Department of Physics, South China University of Technology, Guangzhou 510641, China; [email protected] Academic Editor: Jaume Haro Received: 24 May 2016; Accepted: 2 August 2016; Published: 10 August 2016 Abstract: Loop quantum cosmology (LQC) is a framework of quantum cosmology based on the quantization of symmetry reduced models following the quantization techniques of loop quantum gravity (LQG). This paper is devoted to reviewing LQC as well as its various extensions including modified gravity and higher dimensions. For simplicity considerations, we mainly focus on the effective theory, which captures main quantum corrections at the cosmological level. We set up the basic structure of Brans–Dicke (BD) and higher dimensional LQC. The effective dynamical equations of these theories are also obtained, which lay a foundation for the future phenomenological investigations to probe possible quantum gravity effects in cosmology. Some outlooks and future extensions are also discussed. Keywords: loop quantum cosmology; singularity resolution; effective equation 1. Introduction Loop quantum gravity (LQG) is a quantum gravity scheme that tries to quantize general relativity (GR) with the nonperturbative techniques consistently [1–4]. Many issues of LQG have been carried out in the past thirty years. In particular, among these issues, loop quantum cosmology (LQC), which is the cosmological sector of LQG has received increasing interest and has become one of the most thriving and fruitful directions of LQG [5–9]. It is well known that GR suffers singularity problems and this, in turn, implies that our universe also has an infinitely dense singularity point that is highly unphysical. -
Quantum Vacuum Energy Density and Unifying Perspectives Between Gravity and Quantum Behaviour of Matter
Annales de la Fondation Louis de Broglie, Volume 42, numéro 2, 2017 251 Quantum vacuum energy density and unifying perspectives between gravity and quantum behaviour of matter Davide Fiscalettia, Amrit Sorlib aSpaceLife Institute, S. Lorenzo in Campo (PU), Italy corresponding author, email: [email protected] bSpaceLife Institute, S. Lorenzo in Campo (PU), Italy Foundations of Physics Institute, Idrija, Slovenia email: [email protected] ABSTRACT. A model of a three-dimensional quantum vacuum based on Planck energy density as a universal property of a granular space is suggested. This model introduces the possibility to interpret gravity and the quantum behaviour of matter as two different aspects of the same origin. The change of the quantum vacuum energy density can be considered as the fundamental medium which determines a bridge between gravity and the quantum behaviour, leading to new interest- ing perspectives about the problem of unifying gravity with quantum theory. PACS numbers: 04. ; 04.20-q ; 04.50.Kd ; 04.60.-m. Key words: general relativity, three-dimensional space, quantum vac- uum energy density, quantum mechanics, generalized Klein-Gordon equation for the quantum vacuum energy density, generalized Dirac equation for the quantum vacuum energy density. 1 Introduction The standard interpretation of phenomena in gravitational fields is in terms of a fundamentally curved space-time. However, this approach leads to well known problems if one aims to find a unifying picture which takes into account some basic aspects of the quantum theory. For this reason, several authors advocated different ways in order to treat gravitational interaction, in which the space-time manifold can be considered as an emergence of the deepest processes situated at the fundamental level of quantum gravity. -
Aspects of Loop Quantum Gravity
Aspects of loop quantum gravity Alexander Nagen 23 September 2020 Submitted in partial fulfilment of the requirements for the degree of Master of Science of Imperial College London 1 Contents 1 Introduction 4 2 Classical theory 12 2.1 The ADM / initial-value formulation of GR . 12 2.2 Hamiltonian GR . 14 2.3 Ashtekar variables . 18 2.4 Reality conditions . 22 3 Quantisation 23 3.1 Holonomies . 23 3.2 The connection representation . 25 3.3 The loop representation . 25 3.4 Constraints and Hilbert spaces in canonical quantisation . 27 3.4.1 The kinematical Hilbert space . 27 3.4.2 Imposing the Gauss constraint . 29 3.4.3 Imposing the diffeomorphism constraint . 29 3.4.4 Imposing the Hamiltonian constraint . 31 3.4.5 The master constraint . 32 4 Aspects of canonical loop quantum gravity 35 4.1 Properties of spin networks . 35 4.2 The area operator . 36 4.3 The volume operator . 43 2 4.4 Geometry in loop quantum gravity . 46 5 Spin foams 48 5.1 The nature and origin of spin foams . 48 5.2 Spin foam models . 49 5.3 The BF model . 50 5.4 The Barrett-Crane model . 53 5.5 The EPRL model . 57 5.6 The spin foam - GFT correspondence . 59 6 Applications to black holes 61 6.1 Black hole entropy . 61 6.2 Hawking radiation . 65 7 Current topics 69 7.1 Fractal horizons . 69 7.2 Quantum-corrected black hole . 70 7.3 A model for Hawking radiation . 73 7.4 Effective spin-foam models . -
Covariant Phase Space for Gravity with Boundaries: Metric Vs Tetrad Formulations
Covariant phase space for gravity with boundaries: metric vs tetrad formulations J. Fernando Barbero G.c,d Juan Margalef-Bentabola,c Valle Varob,c Eduardo J.S. Villaseñorb,c aInstitute for Gravitation and the Cosmos and Physics Department. Penn State University. PA 16802, USA. bDepartamento de Matemáticas, Universidad Carlos III de Madrid. Avda. de la Universidad 30, 28911 Leganés, Spain. cGrupo de Teorías de Campos y Física Estadística. Instituto Gregorio Millán (UC3M). Unidad Asociada al Instituto de Estructura de la Materia, CSIC, Madrid, Spain. dInstituto de Estructura de la Materia, CSIC, Serrano 123, 28006, Madrid, Spain E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: We use covariant phase space methods to study the metric and tetrad formula- tions of General Relativity in a manifold with boundary and compare the results obtained in both approaches. Proving their equivalence has been a long-lasting problem that we solve here by using the cohomological approach provided by the relative bicomplex framework. This setting provides a clean and ambiguity-free way to describe the solution spaces and associated symplectic structures. We also compute several relevant charges in both schemes and show that they are equivalent, as expected. arXiv:2103.06362v2 [gr-qc] 14 Jun 2021 Contents I Introduction1 II The geometric arena2 II.1 M as a space-time2 II.2 From M-vector fields to F-vector fields3 II.3 CPS-Algorithm4 IIIGeneral Relativity in terms of metrics5 IV General relativity in terms of tetrads8 V Metric vs Tetrad formulation 13 V.1 Space of solutions 13 V.2 Presymplectic structures 14 VI Conclusions 15 A Ancillary material 16 A.1 Mathematical background 16 A.2 Some computations in the metric case 19 A.3 Some tetrad computations 21 Bibliography 22 I Introduction Space-time boundaries play a prominent role in classical and quantum General Relativity (GR). -
Introduction to Loop Quantum Gravity
Introduction to Loop Quantum Gravity Abhay Ashtekar Institute for Gravitation and the Cosmos, Penn State A broad perspective on the challenges, structure and successes of loop quantum gravity. Addressed to Young Researchers: From Beginning Students to Senior Post-docs. Organization: 1. Historical & Conceptual Setting 2. Structure of Loop Quantum Gravity 3. Outlook: Challenges and Opportunities – p. 1. Historical and Conceptual Setting Einstein’s resistance to accept quantum mechanics as a fundamental theory is well known. However, he had a deep respect for quantum mechanics and was the first to raise the problem of unifying general relativity with quantum theory. “Nevertheless, due to the inner-atomic movement of electrons, atoms would have to radiate not only electro-magnetic but also gravitational energy, if only in tiny amounts. As this is hardly true in Nature, it appears that quantum theory would have to modify not only Maxwellian electrodynamics, but also the new theory of gravitation.” (Albert Einstein, Preussische Akademie Sitzungsberichte, 1916) – p. • Physics has advanced tremendously in the last 90 years but the the problem of unification of general relativity and quantum physics still open. Why? ⋆ No experimental data with direct ramifications on the quantum nature of Gravity. – p. • Physics has advanced tremendously in the last nine decades but the the problem of unification of general relativity and quantum physics is still open. Why? ⋆ No experimental data with direct ramifications on the quantum nature of Gravity. ⋆ But then this should be a theorist’s haven! Why isn’t there a plethora of theories? – p. ⋆ No experimental data with direct ramifications on quantum Gravity. -
Pos(Rio De Janeiro 2012)002 † ∗ [email protected] Speaker
Loop Quantum Gravity and the Very Early Universe PoS(Rio de Janeiro 2012)002 Abhay Ashtekar∗† Institute for Gravitational Physics and Geometry, Physics Department, Penn State, University Park, PA 16802, U.S.A. E-mail: [email protected] This brief overview is addressed to beginning researchers. It begins with a discussion of the distinguishing features of loop quantum gravity, then illustrates the type of issues that must be faced by any quantum gravity theory, and concludes with a brief summary of the status of these issues in loop quantum gravity. For concreteness the emphasis is on cosmology. Since several introductory as well as detailed reviews of loop quantum gravity are already available in the literature, the focus is on explaining the overall viewpoint and providing a short bibliography to introduce the interested reader to literature. 7th Conference Mathematical Methods in Physics - Londrina 2012, 16 to 20 April 2012 Rio de Janeiro, Brazil ∗Speaker. †A footnote may follow. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Loop Quantum Gravity Abhay Ashtekar Loop quantum gravity (LQG) is a non-perturbative approach aimed at unifying general rela- tivity and quantum physics. Its distinguishing features are: i) Background independence, and, ii) Underlying unity of the mathematical framework used to describe gravity and the other three basic forces of nature. It is background independent in the sense that there are no background fields, not even a space-time metric. All fields —whether they represent matter constituents, or gauge fields that mediate fundamental forces between them, or space- time geometry itself— are treated on the same footing. -
BEYOND SPACE and TIME the Secret Network of the Universe: How Quantum Geometry Might Complete Einstein’S Dream
BEYOND SPACE AND TIME The secret network of the universe: How quantum geometry might complete Einstein’s dream By Rüdiger Vaas With the help of a few innocuous - albeit subtle and potent - equations, Abhay Ashtekar can escape the realm of ordinary space and time. The mathematics developed specifically for this purpose makes it possible to look behind the scenes of the apparent stage of all events - or better yet: to shed light on the very foundation of reality. What sounds like black magic, is actually incredibly hard physics. Were Albert Einstein alive today, it would have given him great pleasure. For the goal is to fulfil the big dream of a unified theory of gravity and the quantum world. With the new branch of science of quantum geometry, also called loop quantum gravity, Ashtekar has come close to fulfilling this dream - and tries thereby, in addition, to answer the ultimate questions of physics: the mysteries of the big bang and black holes. "On the Planck scale there is a precise, rich, and discrete structure,” says Ashtekar, professor of physics and Director of the Center for Gravitational Physics and Geometry at Pennsylvania State University. The Planck scale is the smallest possible length scale with units of the order of 10-33 centimeters. That is 20 orders of magnitude smaller than what the world’s best particle accelerators can detect. At this scale, Einstein’s theory of general relativity fails. Its subject is the connection between space, time, matter and energy. But on the Planck scale it gives unreasonable values - absurd infinities and singularities. -
Loop Quantum Gravity Alejandro Perez, Centre De Physique Théorique and Université Aix-Marseille II • Campus De Luminy, Case 907 • 13288 Marseille • France
features Loop quantum gravity Alejandro Perez, Centre de Physique Théorique and Université Aix-Marseille II • Campus de Luminy, case 907 • 13288 Marseille • France. he revolution brought by Einstein’s theory of gravity lies more the notion of particle, Fourier modes, vacuum, Poincaré invariance Tin the discovery of the principle of general covariance than in are essential tools that can only be constructed on a given space- the form of the dynamical equations of general relativity. General time geometry.This is a strong limitation when it comes to quantum covariance brings the relational character of nature into our descrip- gravity since the very notion of space-time geometry is most likely tion of physics as an essential ingredient for the understanding of not defined in the deep quantum regime. Secondly, quantum field the gravitational force. In general relativity the gravitational field is theory is plagued by singularities too (UV divergences) coming encoded in the dynamical geometry of space-time, implying a from the contribution of arbitrary high energy quantum processes. strong form of universality that precludes the existence of any non- This limitation of standard QFT’s is expected to disappear once the dynamical reference system—or non-dynamical background—on quantum fluctuations of the gravitational field, involving the dynam- top of which things occur. This leaves no room for the old view ical treatment of spacetime geometry, are appropriately taken into where fields evolve on a rigid preestablished space-time geometry account. But because of its intrinsically background dependent (e.g. Minkowski space-time): to understand gravity one must definition, standard QFT cannot be used to shed light on this issue. -
Laudatio for Professor Abhay Ashtekar
Laudatio for Professor Abhay Ashtekar Professor Ashtekar is a remarkable ¯gure in the ¯eld of Ein- stein's gravity. This being the Einstein Year and, moreover, the World Year of Physics, one can hardly think of anyone more ¯tting to be honoured for his research and his achievements { achievements that have influenced the most varied aspects of gravitational theory in a profound way. Prof. Ashtekar is the Eberly Professor of Physics and the Di- rector of the Institute for Gravitational Physics and Geometry at Penn State University in the United States. His research in gravitational theory is notable for its breadth, covering quantum gravity and generalizations of quantum mechanics, but also clas- sical general relativity, the mathematical theory of black holes and gravitational waves. Our view of the world has undergone many revisions in the past, two of which, arguably the most revolutionary, were ini- tiated by Einstein in his annus mirabilis, 1905. For one thing, the theory of special relativity turned our notion of space and time on its ear for speeds approaching that of light. At the same time, Einstein's explanation of the photoelectric e®ect heralded the coming of quantum theory. Many of the best minds in theo- retical physics, including Einstein himself, have been trying for years to ¯nd a uni¯ed theory of relativity and quantum theory. Such a theory, often called quantum gravity, could, for example, provide an explanation for the initial moments of our universe just after the big bang. Especially noteworthy is Prof. Ashtekar's work on the canon- ical quantization of gravitation, which is based upon a reformu- lation of Einstein's ¯eld equations that Ashtekar presented 1986. -
MATTERS of GRAVITY, a Newsletter for the Gravity Community, Number 3
MATTERS OF GRAVITY Number 3 Spring 1994 Table of Contents Editorial ................................................... ................... 2 Correspondents ................................................... ............ 2 Gravity news: Open Letter to gravitational physicists, Beverly Berger ........................ 3 A Missouri relativist in King Gustav’s Court, Clifford Will .................... 6 Gary Horowitz wins the Xanthopoulos award, Abhay Ashtekar ................ 9 Research briefs: Gamma-ray bursts and their possible cosmological implications, Peter Meszaros 12 Current activity and results in laboratory gravity, Riley Newman ............. 15 Update on representations of quantum gravity, Donald Marolf ................ 19 Ligo project report: December 1993, Rochus E. Vogt ......................... 23 Dark matter or new gravity?, Richard Hammond ............................. 25 Conference Reports: Gravitational waves from coalescing compact binaries, Curt Cutler ........... 28 Mach’s principle: from Newton’s bucket to quantum gravity, Dieter Brill ..... 31 Cornelius Lanczos international centenary conference, David Brown .......... 33 Third Midwest relativity conference, David Garfinkle ......................... 36 arXiv:gr-qc/9402002v1 1 Feb 1994 Editor: Jorge Pullin Center for Gravitational Physics and Geometry The Pennsylvania State University University Park, PA 16802-6300 Fax: (814)863-9608 Phone (814)863-9597 Internet: [email protected] 1 Editorial Well, this newsletter is growing into its third year and third number with a lot of strength. In fact, maybe too much strength. Twelve articles and 37 (!) pages. In this number, apart from the ”traditional” research briefs and conference reports we also bring some news for the community, therefore starting to fulfill the original promise of bringing the gravity/relativity community closer together. As usual I am open to suggestions, criticisms and proposals for articles for the next issue, due September 1st. Many thanks to the authors and the correspondents who made this issue possible. -
Quantum Theory of Geometry I: Area Operators
The Erwin Schrodinger International Boltzmanngasse ESI Institute for Mathematical Physics A Wien Austria Quantum Theory of Geometry I Area Op erators Abhay Ashtekar Jerzy Lewandowski Vienna Preprint ESI August Supp orted by Federal Ministry of Science and Research Austria Available via httpwwwesiacat Quantum Theory of Geometry I Area Op erators Abhay Ashtekar and Jerzy Lewandowski August Center for Gravitational Physics and Geometry Physics Department Penn State University Park PA USA Institute of Theoretical Physics Warsaw University ul Hoza Warsaw Poland Max Planck Institut fur Gravitationphysik Schlaatzweg Potsdam Germany Abstract A new functional calculus develop ed recently for a fully nonp erturbative treatment of quantum gravity is used to b egin a systematic construction of a quantum theory of geometry Regulated op erators corresp onding to areas of surfaces are intro duced and shown to b e selfadjoint on the underlying kinematical Hilb ert space of states It is shown that their sp ectra are purely discrete indicating that the underlying quantum geometry is far from what the continuum picture might suggest Indeed the fundamental excitations of quantum geometry are dimensional rather like p olymers and the dimensional continuum geometry emerges only on coarse graining The full Hilb ert space admits an orthonormal decomp osition into nite dimensional subspaces which can b e interpreted as the spaces of states of spin systems Using this prop erty the complete sp ectrum of the area op erators is evaluated The