Mathematical Methods of Classical Mechanics-Arnold V.I..Djvu
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Research Statement
D. A. Williams II June 2021 Research Statement I am an algebraist with expertise in the areas of representation theory of Lie superalgebras, associative superalgebras, and algebraic objects related to mathematical physics. As a post- doctoral fellow, I have extended my research to include topics in enumerative and algebraic combinatorics. My research is collaborative, and I welcome collaboration in familiar areas and in newer undertakings. The referenced open problems here, their subproblems, and other ideas in mind are suitable for undergraduate projects and theses, doctoral proposals, or scholarly contributions to academic journals. In what follows, I provide a technical description of the motivation and history of my work in Lie superalgebras and super representation theory. This is then followed by a description of the work I am currently supervising and mentoring, in combinatorics, as I serve as the Postdoctoral Research Advisor for the Mathematical Sciences Research Institute's Undergraduate Program 2021. 1 Super Representation Theory 1.1 History 1.1.1 Superalgebras In 1941, Whitehead dened a product on the graded homotopy groups of a pointed topological space, the rst non-trivial example of a Lie superalgebra. Whitehead's work in algebraic topol- ogy [Whi41] was known to mathematicians who dened new graded geo-algebraic structures, such as -graded algebras, or superalgebras to physicists, and their modules. A Lie superalge- Z2 bra would come to be a -graded vector space, even (respectively, odd) elements g = g0 ⊕ g1 Z2 found in (respectively, ), with a parity-respecting bilinear multiplication termed the Lie g0 g1 superbracket inducing1 a symmetric intertwining map of -modules. -
Complex Analysis in Industrial Inverse Problems
Complex Analysis in Industrial Inverse Problems Bill Lionheart, University of Manchester October 30th , 2019. Isaac Newton Institute How does complex analysis arise in IP? We see complex analysis arise in two main ways: 1. Inverse Problems that are or can be reduced to two dimensional problems. Here we solve inverse problems for PDEs and integral equations using methods from complex analysis where the complex variable represents a spatial variable in the plane. This includes various kinds of tomographic methods involving weighted line integrals, and is used in medial imaging and non-destructive testing. In electromagnetic problems governed by some form of Maxwell’s equation complex analysis is typically used for a plane approximation to a two dimensional problem. 2. Frequency domain methods in which the complex variable is the Fourier-Laplace transform variable. The Hilbert transform is ubiquitous in signal processing (everyone has one implemented in their home!) due to the analytic representation of a signal. In inverse spectral problems analyticity with respect to a spectral parameter plays an important role. Industrial Electromagnetic Inverse Problems Many inverse problems involve imaging the inside from measuring on the outside. Here are some industrial applied inverse problems in electromagnetics I Ground penetrating radar, used for civil engineering eg finding burried pipes and cables. Similar also to microwave imaging (security, medicine) and radar. I Electrical resistivity/polarizability tomography. Used to locate underground pollution plumes, salt water ingress, buried structures, minerals. Also used for industrial process monitoring (pipes, mixing vessels etc). I Metal detecting and inductive imaging. Used to locate weapons on people, find land mines and unexploded ordnance, food safety, scrap metal sorting, locating reinforcing bars in concrete, non-destructive testing, archaeology, etc. -
Mathematical Foundations of Supersymmetry
MATHEMATICAL FOUNDATIONS OF SUPERSYMMETRY Lauren Caston and Rita Fioresi 1 Dipartimento di Matematica, Universit`adi Bologna Piazza di Porta S. Donato, 5 40126 Bologna, Italia e-mail: [email protected], fi[email protected] 1Investigation supported by the University of Bologna 1 Introduction Supersymmetry (SUSY) is the machinery mathematicians and physicists have developed to treat two types of elementary particles, bosons and fermions, on the same footing. Supergeometry is the geometric basis for supersymmetry; it was first discovered and studied by physicists Wess, Zumino [25], Salam and Strathde [20] (among others) in the early 1970’s. Today supergeometry plays an important role in high energy physics. The objects in super geometry generalize the concept of smooth manifolds and algebraic schemes to include anticommuting coordinates. As a result, we employ the techniques from algebraic geometry to study such objects, namely A. Grothendiek’s theory of schemes. Fermions include all of the material world; they are the building blocks of atoms. Fermions do not like each other. This is in essence the Pauli exclusion principle which states that two electrons cannot occupy the same quantum me- chanical state at the same time. Bosons, on the other hand, can occupy the same state at the same time. Instead of looking at equations which just describe either bosons or fermions separately, supersymmetry seeks out a description of both simultaneously. Tran- sitions between fermions and bosons require that we allow transformations be- tween the commuting and anticommuting coordinates. Such transitions are called supersymmetries. In classical Minkowski space, physicists classify elementary particles by their mass and spin. -
Post-Newtonian Description of Quantum Systems in Gravitational Fields
Post-Newtonian Description of Quantum Systems in Gravitational Fields Von der QUEST-Leibniz-Forschungsschule der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades Doktor der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation von M. A. St.Philip Klaus Schwartz, geboren am 12.07.1994 in Langenhagen. 2020 Mitglieder der Promotionskommission: Prof. Dr. Elmar Schrohe (Vorsitzender) Prof. Dr. Domenico Giulini (Betreuer) Prof. Dr. Klemens Hammerer Gutachter: Prof. Dr. Domenico Giulini Prof. Dr. Klemens Hammerer Prof. Dr. Claus Kiefer Tag der Promotion: 18. September 2020 This thesis was typeset with LATEX 2# and the KOMA-Script class scrbook. The main fonts are URW Palladio L and URW Classico by Hermann Zapf, and Pazo Math by Diego Puga. Abstract This thesis deals with the systematic treatment of quantum-mechanical systems situated in post-Newtonian gravitational fields. At first, we develop a framework of geometric background structures that define the notions of a post-Newtonian expansion and of weak gravitational fields. Next, we consider the description of single quantum particles under gravity, before continuing with a simple composite system. Starting from clearly spelled-out assumptions, our systematic approach allows to properly derive the post-Newtonian coupling of quantum-mechanical systems to gravity based on first principles. This sets it apart from other, more heuristic approaches that are commonly employed, for example, in the description of quantum-optical experiments under gravitational influence. Regarding single particles, we compare simple canonical quantisation of a free particle in curved spacetime to formal expansions of the minimally coupled Klein– Gordon equation, which may be motivated from the framework of quantum field theory in curved spacetimes. -
Renormalization and Effective Field Theory
Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society surv-170-costello-cov.indd 1 1/28/11 8:15 AM http://dx.doi.org/10.1090/surv/170 Renormalization and Effective Field Theory Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair MichaelA.Singer Eric M. Friedlander Benjamin Sudakov MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 81T13, 81T15, 81T17, 81T18, 81T20, 81T70. The author was partially supported by NSF grant 0706954 and an Alfred P. Sloan Fellowship. For additional information and updates on this book, visit www.ams.org/bookpages/surv-170 Library of Congress Cataloging-in-Publication Data Costello, Kevin. Renormalization and effective fieldtheory/KevinCostello. p. cm. — (Mathematical surveys and monographs ; v. 170) Includes bibliographical references. ISBN 978-0-8218-5288-0 (alk. paper) 1. Renormalization (Physics) 2. Quantum field theory. I. Title. QC174.17.R46C67 2011 530.143—dc22 2010047463 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. -
P.W. ANDERSON Stud
P.W. ANDERSON Stud. Hist. Phil. Mod. Phys., Vol. 32, No. 3, pp. 487–494, 2001 Printed in Great Britain ESSAY REVIEW Science: A ‘Dappled World’ or a ‘Seamless Web’? Philip W. Anderson* Nancy Cartwright, The Dappled World: Essays on the Perimeter of Science (Cambridge: Cambridge University Press, 1999), ISBN 0-521-64411-9, viii+247 pp. In their much discussed recent book, Alan Sokal and Jean Bricmont (1998) deride the French deconstructionists by quoting repeatedly from passages in which it is evident even to the non-specialist that the jargon of science is being outrageously misused and being given meanings to which it is not remotely relevant. Their task of ‘deconstructing the deconstructors’ is made far easier by the evident scientific illiteracy of their subjects. Nancy Cartwright is a tougher nut to crack. Her apparent competence with the actual process of science, and even with the terminology and some of the mathematical language, may lead some of her colleagues in the philosophy of science and even some scientists astray. Yet on a deeper level of real understanding it is clear that she just does not get it. Her thesis here is not quite the deconstruction of science, although she seems to quote with approval from some of the deconstructionist literature. She seems no longer to hold to the thesis of her earlier book (Cartwright, 1983) that ‘the laws of physics lie’. But I sense that the present book is almost equally subversive, in that it will be useful to the creationists and to many less extreme anti-science polemicists with agendas likely to benefit from her rather solipsistic views. -
Supersymmetric Methods in Quantum and Statistical Physics Series: Theoretical and Mathematical Physics
springer.com Georg Junker Supersymmetric Methods in Quantum and Statistical Physics Series: Theoretical and Mathematical Physics The idea of supersymmetry was originally introduced in relativistic quantum field theories as a generalization of Poincare symmetry. In 1976 Nicolai sug• gested an analogous generalization for non-relativistic quantum mechanics. With the one-dimensional model introduced by Witten in 1981, supersym• metry became a major tool in quantum mechanics and mathematical, sta• tistical, and condensed-IIll;l. tter physics. Supersymmetry is also a successful concept in nuclear and atomic physics. An underlying supersymmetry of a given quantum-mechanical system can be utilized to analyze the properties of the system in an elegant and effective way. It is even possible to obtain exact results thanks to supersymmetry. The purpose of this book is to give an introduction to supersymmet• ric quantum mechanics and review some of the Softcover reprint of the original 1st ed. recent developments of vari• ous supersymmetric methods in quantum and statistical physics. 1996, XIII, 172 p. Thereby we will touch upon some topics related to mathematical and condensed-matter physics. A discussion of supersymmetry in atomic and nuclear physics is omit• ted. However, Printed book the reader will find some references in Chap. 9. Similarly, super• symmetric field theories and Softcover supergravity are not considered in this book. In fact, there exist already many excellent 89,99 € | £79.99 | $109.99 textbooks and monographs on these topics. A list may be found in Chap. 9. Yet, it is hoped that [1]96,29 € (D) | 98,99 € (A) | CHF this book may be useful in preparing a footing for a study of supersymmetric theories in 106,50 atomic, nuclear, and particle physics. -
Hep-Th/9911055V4 29 Feb 2000 AS0.0+;9.0C I92-F;UBF-7;OU-TAP UAB-FT-476; NI99022-SFU; 98.80.Cq PACS:04.50.+H; Increpnst H Edfrfo H Oio Fe Gravi After Horizon Brane
Gravity in the Randall-Sundrum Brane World. Jaume Garriga1,2 and Takahiro Tanaka1,2,3 1IFAE, Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona), Spain; 2Isaac Newton Institute, University of Cambridge 20 Clarkson Rd., Cambridge, CB3 0EH, UK; 3Department of Earth and Space Science, Graduate School of Science Osaka University, Toyonaka 560-0043, Japan. We discuss the weak gravitational field created by isolated matter sources in the Randall-Sundrum brane-world. In the case of two branes of opposite tension, linearized Brans-Dicke (BD) gravity is recovered on either wall, with different BD parameters. On the wall with positive tension the BD parameter is larger than 3000 provided that the separation between walls is larger than 4 times the AdS radius. For the wall of negative tension the BD parameter is always negative. In either case, shadow matter from the other wall gravitates upon us. For equal Newtonian mass, light deflection from shadow matter is 25 % weaker than from ordinary matter. For the case of a single wall of posi- tive tension, Einstein gravity is recovered on the wall to leading order, and if the source is stationary the field stays localized near the wall. We calculate the leading Kaluza-Klein corrections to the linearized gravitational field of a non-relativistic spherical object and find that the metric is different from the Schwarzschild solution at large distances. We believe that our linearized solu- tion corresponds to the field far from the horizon after gravitational collapse of matter on the brane. PACS:04.50.+h; 98.80.Cq NI99022-SFU; UAB-FT-476; OU-TAP106 arXiv:hep-th/9911055v4 29 Feb 2000 It has recently been shown [1] that something very similar to four dimensional Einstein gravity exists on a domain wall (or 3-brane) of positive tension which is embedded in a five dimensional anti-de Sitter space (AdS). -
Arxiv:2012.09211V1 [Math-Ph] 16 Dec 2020
Supersymmetry and Representation Theory in Low Dimensions Mathew Calkins1a;b, S. James Gates, Jr.2c;d, and Caroline Klivans3c;e;f aGoogle Search, 111 8th Ave, New York, NY 10011, USA, bCourant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA cBrown Theoretical Physics Center, Box S, 340 Brook Street, Barus Hall, Providence, RI 02912, USA dDepartment of Physics, Brown University, Box 1843, 182 Hope Street, Barus & Holley, Providence, RI 02912, USA eDivision of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02906, USA and f Institute for Computational & Experimental Research in Mathematics, Brown University, 121 South Main Street Providence, RI 02903, USA ABSTRACT Beginning from a discussion of the known most fundamental dynamical structures of the Standard Model of physics, extended into the realms of math- ematics and theory by the concept of \supersymmetry" or \SUSY," an introduc- tion to efforts to develop a complete representation theory is given. Techniques drawing from graph theory, coding theory, Coxeter Groups, Riemann surfaces, arXiv:2012.09211v1 [math-ph] 16 Dec 2020 and computational approaches to the study of algebraic varieties are briefly highlighted as pathways for future exploration and progress. PACS: 11.30.Pb, 12.60.Jv Keywords: algorithms, off-shell, optimization, supermultiplets, supersymmetry 1 [email protected] 2 sylvester−[email protected] 3 Caroline−[email protected] 1 Supersymmetry and the Standard Model As far as experiments in elementary particle physics reveal, the basic constituents of matter and interactions (i.e. forces excluding gravity) in our universe can be summarized in the list of particles shown in the table indicated in Fig. -
Post-Newtonian Approximations and Applications
Monash University MTH3000 Research Project Coming out of the woodwork: Post-Newtonian approximations and applications Author: Supervisor: Justin Forlano Dr. Todd Oliynyk March 25, 2015 Contents 1 Introduction 2 2 The post-Newtonian Approximation 5 2.1 The Relaxed Einstein Field Equations . 5 2.2 Solution Method . 7 2.3 Zones of Integration . 13 2.4 Multi-pole Expansions . 15 2.5 The first post-Newtonian potentials . 17 2.6 Alternate Integration Methods . 24 3 Equations of Motion and the Precession of Mercury 28 3.1 Deriving equations of motion . 28 3.2 Application to precession of Mercury . 33 4 Gravitational Waves and the Hulse-Taylor Binary 38 4.1 Transverse-traceless potentials and polarisations . 38 4.2 Particular gravitational wave fields . 42 4.3 Effect of gravitational waves on space-time . 46 4.4 Quadrupole formula . 48 4.5 Application to Hulse-Taylor binary . 52 4.6 Beyond the Quadrupole formula . 56 5 Concluding Remarks 58 A Appendix 63 A.1 Solving the Wave Equation . 63 A.2 Angular STF Tensors and Spherical Averages . 64 A.3 Evaluation of a 1PN surface integral . 65 A.4 Details of Quadrupole formula derivation . 66 1 Chapter 1 Introduction Einstein's General theory of relativity [1] was a bold departure from the widely successful Newtonian theory. Unlike the Newtonian theory written in terms of fields, gravitation is a geometric phenomena, with space and time forming a space-time manifold that is deformed by the presence of matter and energy. The deformation of this differentiable manifold is characterised by a symmetric metric, and freely falling (not acted on by exter- nal forces) particles will move along geodesics of this manifold as determined by the metric. -
Two Problems in the Theory of Differential Equations
TWO PROBLEMS IN THE THEORY OF DIFFERENTIAL EQUATIONS D. LEITES Abstract. 1) The differential equation considered in terms of exterior differential forms, as E.Cartan´ did, singles out a differential ideal in the supercommutative superalgebra of differential forms, hence an affine supervariety. In view of this observation, it is evident that every differential equation has a supersymmetry (perhaps trivial). Superymmetries of which (systems of) classical differential equations are missed yet? 2) Why criteria of formal integrability of differential equations are never used in practice? To the memory of Ludvig Dmitrievich Faddeev 1. Introduction While the Large Hadron Collider is busy testing (among other things) the existence of supersymmetry in the high energy physics (more correctly, supersymmetry’s applicability to the models), the existence of supersymmetry in the solid body theory (more correctly, its usefulness for describing the models) is proved beyond any doubt, see the excitatory book [Ef], and later works by K. Efetov. Nonholonomic nature of our space-time, suggested in models due to Kaluza–Klein (and seldom remembered Mandel) was usually considered seperately from its super nature. In this note I give examples where the supersymmetry and non-holonomicity manifest themselves in various, sometimes unexpected, instances. In the models of super space-time, and super strings, as well as in the problems spoken about in this note, these notions appear together and interact. L.D. Faddeev would have liked these topics, each of them being related to what used to be of interest to him. Many examples will be only mentioned in passing. 1.1. History: Faddeev–Popov ghosts as analogs of momenta in “odd” mechanics. -
Hal-03319394
Modal decompositions and point scatterer approximations near the Minnaert resonance frequencies F Feppon, H Ammari To cite this version: F Feppon, H Ammari. Modal decompositions and point scatterer approximations near the Minnaert resonance frequencies. 2021. hal-03319394 HAL Id: hal-03319394 https://hal.archives-ouvertes.fr/hal-03319394 Preprint submitted on 12 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MODAL DECOMPOSITIONS AND POINT SCATTERER APPROXIMATIONS NEAR THE MINNAERT RESONANCE FREQUENCIES F. FEPPON1;∗, H. AMMARI1 1 Department of Mathematics, ETH Z¨urich,Switzerland. Abstract. As a continuation of the previous works [13,4, 15], this paper provides several contributions to the mathematical analysis of subwavelength resonances in a high-contrast medium containing N acoustic obstacles. Our approach is based on an exact decomposition formula which reduces the solution of the sound scattering problem to that of a N dimensional linear system, and characterizes resonant frequencies as the solutions to a N-dimensional nonlinear eigenvalue problem. Under a simplicity assumptions on the eigenvalues of the capacitance matrix, we prove the analyticity of the scattering resonances with respect to the square root of the contrast parameter, and we provide a deterministic algorithm allowing to compute all terms of the corresponding Puiseux series.