Hermann Minkowski Et La Mathématisation De La Théorie De La Relativité Restreinte 1905-1915

Total Page:16

File Type:pdf, Size:1020Kb

Hermann Minkowski Et La Mathématisation De La Théorie De La Relativité Restreinte 1905-1915 THÈSE présentée à L’UNIVERSITÉ DE PARIS VII pour obtenir le grade de DOCTEUR Spécialité : Épistémologie et Histoire des Sciences par Scott A. WALTER HERMANN MINKOWSKI ET LA MATHÉMATISATION DE LA THÉORIE DE LA RELATIVITÉ RESTREINTE 1905-1915 Thèse dirigée par M. Christian Houzel et soutenue le 20 décembre 1996 devant la Commission d’Examen composée de : Examinateur : M. Christian Houzel Professeur à l’Université de Paris VII Examinateur : M. Arthur I. Miller Professeur à UniversityCollege London Rapporteur : M. Michel Paty Directeur de recherche, CNRS Rapporteur : M. Jim Ritter Maître de conférences à l’Univ. de Paris VIII S. Walter LA MATHÉMATISATION DE LA RELATIVITÉ RESTREINTE i Résumé Au début du vingtième siècle émergeait l’un des produits les plus remarquables de la physique théorique : la théorie de la relativité. Prise dans son contexte à la fois intellectuel et institution- nel, elle est l’objet central de la dissertation. Toutefois, seul un aspect de cette histoire est abordé de façon continue, à savoir le rôle des mathématiciens dans sa découverte, sa diffusion, sa ré- ception et son développement. Les contributions d’un mathématicien en particulier, Hermann Minkowski, sont étudiées de près, car c’est lui qui trouva la forme mathématique permettant les développements les plus importants, du point de vue des théoriciens de l’époque. Le sujet de la thèse est abordé selon deux axes; l’un se fonde sur l’analyse comparative des documents, l’autre sur l’étude bibliométrique. De cette façon, les conclusions de la première démarche se trouvent encadrées par les résultats de l’analyse globale des données bibliographiques. Les trois premiers chapitres portent chacun sur un aspect différent du travail de Minkow- ski. Le premier chapitre aborde la redescription des origines du principe de relativité annoncée lors de la conférence faite par Minkowski à Cologne en 1908. Cette redescription se comprend comme une expansion des frontières disciplinaires des mathématiques; nous la mettons en rap- port avec l’augmentation fulgurante du nombre d’articles consacrés à la théorie de la relativité à partir de 1909. Une conséquence de la redescription minkowskienne des origines du prin- cipe de relativité a été de fixer l’attention des théoriciens sur le rôle des mathématiques dans la construction des théories physiques. La réussite de sa théorie de l’espace-temps n’était pas due uniquement à la redescription du principe de relativité et aux revendications de priorité par rapport aux théories de Lorentz et d’Einstein ; certains éléments de la théorie minkowskienne plaisaient aussi bien aux physiciens qu’aux mathématiciens. L’acceptation chez les physiciens théoriciens de la théorie de l’espace-temps a été aidée surtout par Arnold Sommerfeld, qui en publia une forme vectorielle. Le deuxième chapitre concerne ce que nous regardons comme une spécialisation mathé- matique dans le domaine des recherches relativistes, à savoir l’application de la géométrie non euclidienne à la relativité minkowskienne. Nous en examinons quelques exemples dans la pé- riode qui va de 1907, lorsque la théorie minkowskienne vit le jour, à 1912, quand Einstein reconnut que la géométrie d’un disque en rotation uniforme n’était pas euclidienne. L’étude des manuscrits de Minkowski jette une lumière nouvelle sur la chronologie de sa découverte de la structure de l’espace-temps et ses rapports avec les lois de l’électrodynamique et de la méca- nique relativiste. Nous montrons, par exemple, que la notion fondamentale de ligne d’Univers a été ignorée de Minkowski jusqu’au mois de novembre 1907. Sa découverte de la géométrie non euclidienne des vecteurs de vitesse est mise en relation avec le développement ultérieur de l’analyse vectorielle à quatre dimensions, qui a gagné la confiance des plus habiles des théori- ciens. Enfin, nous montrons un exemple de la puissance de la démarche minkowskienne chez le mathématicien Theodor Kaluza. Publié en 1910, le travail de Kaluza porta sur le problème du disque tournant dans l’espace-temps à trois dimensions; nous voyons comment il arrivait à quelques-uns des aperçus fondamentaux de la théorie de la relativité générale (cinq ans avant la découverte des équations du champ de gravitation), sans référence aux forces de gravitation ou au principe d’équivalence. À partir de la fréquence à laquelle la géométrie non euclidienne se rencontrait dans les recherches relativistes, nous suggérons que si Einstein basa sa théorie de la relativité générale sur un tenseur métrique riemannien il le fit en réponse–au moins en partie–aux problèmes rencontrés lors de l’élaboration de la notion de mouvement rigide dans l’espace-temps. Dans le troisième chapitre, nous regardons un autre aspect du même sujet, à savoir l’in- fluence de la philosophie de la géométrie de Henri Poincaré sur la réception de la relativité S. Walter LA MATHÉMATISATION DE LA RELATIVITÉ RESTREINTE ii minkowskienne. Nous montrons que cette doctrine philosophique n’a pas convaincu quelques- uns des géomètre les plus éminents au début du XXe siècle. Les sources sociales possibles de ce rejet sont examinées brièvement. En ce qui concerne la théorie de l’espace-temps, le fait que certains savants y voyaient une confirmation des vues de Helmholtz a pu favoriser sa réception. La doctrine conventionnaliste a pu la gêner, comme on le voit dans deux cas. D’une façon gé- nérale, les découvertes des théories de la relativité d’Einstein (1905) et de Minkowski (1908) n’ont pu donner qu’une confirmation supplémentaire aux opinions sur le fondement physique de la géométrie tenues depuis longtemps par plusieurs géomètres. Le quatrième chapitre présente une étude bibliométrique des publications sur la théorie de la relativité restreinte sorties entre 1905 et 1915. Les références de sept cents articles et plus de cent livres sont classées selon la discipline de l’auteur et son lieu de travail. Sont également pris en compte le type de journal et le pays de publication. L’étude concerne l’ensemble des revues publiées dans les langues de l’Europe occidentale. L’analyse des données montre qu’en général, le nombre de contributions par discipline était comparable entre les mathématiques, la physique théorique, et la physique non théorique. Déjà en 1911, l’engagement des mathé- maticiens universitaires dans les recherches relativistes en Allemagne égalait celui de leurs collègues physiciens non théoriciens, alors que l’engagement des physiciens théoriciens dé- passait largement celui de ces deux groupes. Deux ans plus tard, davantage de mathématiciens écrivaient des articles sur la relativité restreinte que de physiciens théoriciens ou de physiciens non théoriciens. A la suite du quatrième chapitre se trouvent quelques observations sur le rôle de Minkowski et des mathématiciens de son époque dans l’histoire de la théorie de la relativité. Abstract The first decade of the twentieth century saw the emergence of what is generally viewed to be one of its crowning theoretical artifacts: the special theory of relativity. This theory, embedded in a web of intellectual and institutional history, constitutes the locus of my research. One aspect of this history forms the central theme of the thesis: the role of mathematicians in the discovery, scientific reception and development of the theory of relativity. The work of one mathematician in particular, Hermann Minkowski, is examined in detail, since it was the form provided by his space-time theory that led to the most important developments of the theory of relativity, as viewed by contemporary theorists. The approach to the subject is bilateral, combining textual analysis with a bibliometric study, such that the conclusions drawn from case studies are placed in the context of a global analysis of publication data. In the first three chapters of the thesis, separate topics relating to Minkowski’s work on the theory of relativity are addressed. In the first chapter, the vociferous disciplinary advo- cacy of Hermann Minkowski’s famous lecture on space and time is discussed, and correlated to the rapid increase in publications on the theory of relativity. We show in particular how Minkowski’s lecture effectively expanded the disciplinary frontier of mathematics to include the principle of relativity, thereby paving the way for mathematical engagement with the theory of relativity. An important consequence of this view was the heightened sense among physicists and mathematicians of the role of mathematics in the construction of physical theories. The transdisciplinary success of the space-time theory, it is argued, can not be attributed solely to Minkowski’s redescription of the origins of the principle of relativity and his claim for the tech- nical superiority of his view over those of Lorentz and Einstein. Some features of Minkowskian relativity, for example, the “absolute” nature of space-time, appealed to physicists as well as to S. Walter LA MATHÉMATISATION DE LA RELATIVITÉ RESTREINTE iii mathematicians. Acceptance by physicists of formal elements of Minkowskian relativity was further enhanced by their recasting in vectorial form by Arnold Sommerfeld and others. Interpretations of the theory of relativity are found to be particularly well correlated with discipline in applications invoking non-Euclidean geometry, as I show in the second chapter. This field is studied in detail for the period from 1907, when Minkowskian relativity appeared, until 1912, when Einstein recognized that the geometry of a disk in uniform rotation was not Euclidean. A close study of Minkowski’s manuscripts and published work throws new light on the chronology of his discovery of the structure of space-time and its relation to the laws of electrodynamics and mechanics. One surprising result of this analysis is that the basic notion of a worldline in spacetime was unknown to Minkowski before November, 1907. The con- sequences of Minkowski’s recognition of the non-Euclidean geometry of velocity vectors are investigated, and related to the subsequent developments of four-dimensional vector analysis, which won the favor of leading theorists.
Recommended publications
  • Einstein and Physics Hundred Years Ago∗
    Vol. 37 (2006) ACTA PHYSICA POLONICA B No 1 EINSTEIN AND PHYSICS HUNDRED YEARS AGO∗ Andrzej K. Wróblewski Physics Department, Warsaw University Hoża 69, 00-681 Warszawa, Poland [email protected] (Received November 15, 2005) In 1905 Albert Einstein published four papers which revolutionized physics. Einstein’s ideas concerning energy quanta and electrodynamics of moving bodies were received with scepticism which only very slowly went away in spite of their solid experimental confirmation. PACS numbers: 01.65.+g 1. Physics around 1900 At the turn of the XX century most scientists regarded physics as an almost completed science which was able to explain all known physical phe- nomena. It appeared to be a magnificent structure supported by the three mighty pillars: Newton’s mechanics, Maxwell’s electrodynamics, and ther- modynamics. For the celebrated French chemist Marcellin Berthelot there were no major unsolved problems left in science and the world was without mystery. Le monde est aujourd’hui sans mystère— he confidently wrote in 1885 [1]. Albert A. Michelson was of the opinion that “The more important fundamen- tal laws and facts of physical science have all been discovered, and these are now so firmly established that the possibility of their ever being supplanted in consequence of new discoveries is exceedingly remote . Our future dis- coveries must be looked for in the sixth place of decimals” [2]. Physics was not only effective but also perfect and beautiful. Henri Poincaré maintained that “The theory of light based on the works of Fresnel and his successors is the most perfect of all the theories of physics” [3].
    [Show full text]
  • Voigt Transformations in Retrospect: Missed Opportunities?
    Voigt transformations in retrospect: missed opportunities? Olga Chashchina Ecole´ Polytechnique, Palaiseau, France∗ Natalya Dudisheva Novosibirsk State University, 630 090, Novosibirsk, Russia† Zurab K. Silagadze Novosibirsk State University and Budker Institute of Nuclear Physics, 630 090, Novosibirsk, Russia.‡ The teaching of modern physics often uses the history of physics as a didactic tool. However, as in this process the history of physics is not something studied but used, there is a danger that the history itself will be distorted in, as Butterfield calls it, a “Whiggish” way, when the present becomes the measure of the past. It is not surprising that reading today a paper written more than a hundred years ago, we can extract much more of it than was actually thought or dreamed by the author himself. We demonstrate this Whiggish approach on the example of Woldemar Voigt’s 1887 paper. From the modern perspective, it may appear that this paper opens a way to both the special relativity and to its anisotropic Finslerian generalization which came into the focus only recently, in relation with the Cohen and Glashow’s very special relativity proposal. With a little imagination, one can connect Voigt’s paper to the notorious Einstein-Poincar´epri- ority dispute, which we believe is a Whiggish late time artifact. We use the related historical circumstances to give a broader view on special relativity, than it is usually anticipated. PACS numbers: 03.30.+p; 1.65.+g Keywords: Special relativity, Very special relativity, Voigt transformations, Einstein-Poincar´epriority dispute I. INTRODUCTION Sometimes Woldemar Voigt, a German physicist, is considered as “Relativity’s forgotten figure” [1].
    [Show full text]
  • Ether and Electrons in Relativity Theory (1900-1911) Scott Walter
    Ether and electrons in relativity theory (1900-1911) Scott Walter To cite this version: Scott Walter. Ether and electrons in relativity theory (1900-1911). Jaume Navarro. Ether and Moder- nity: The Recalcitrance of an Epistemic Object in the Early Twentieth Century, Oxford University Press, 2018, 9780198797258. hal-01879022 HAL Id: hal-01879022 https://hal.archives-ouvertes.fr/hal-01879022 Submitted on 21 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ether and electrons in relativity theory (1900–1911) Scott A. Walter∗ To appear in J. Navarro, ed, Ether and Modernity, 67–87. Oxford: Oxford University Press, 2018 Abstract This chapter discusses the roles of ether and electrons in relativity the- ory. One of the most radical moves made by Albert Einstein was to dismiss the ether from electrodynamics. His fellow physicists felt challenged by Einstein’s view, and they came up with a variety of responses, ranging from enthusiastic approval, to dismissive rejection. Among the naysayers were the electron theorists, who were unanimous in their affirmation of the ether, even if they agreed with other aspects of Einstein’s theory of relativity. The eventual success of the latter theory (circa 1911) owed much to Hermann Minkowski’s idea of four-dimensional spacetime, which was portrayed as a conceptual substitute of sorts for the ether.
    [Show full text]
  • Beyond Einstein Perspectives on Geometry, Gravitation, and Cosmology in the Twentieth Century Editors David E
    David E. Rowe • Tilman Sauer • Scott A. Walter Editors Beyond Einstein Perspectives on Geometry, Gravitation, and Cosmology in the Twentieth Century Editors David E. Rowe Tilman Sauer Institut für Mathematik Institut für Mathematik Johannes Gutenberg-Universität Johannes Gutenberg-Universität Mainz, Germany Mainz, Germany Scott A. Walter Centre François Viète Université de Nantes Nantes Cedex, France ISSN 2381-5833 ISSN 2381-5841 (electronic) Einstein Studies ISBN 978-1-4939-7706-2 ISBN 978-1-4939-7708-6 (eBook) https://doi.org/10.1007/978-1-4939-7708-6 Library of Congress Control Number: 2018944372 Mathematics Subject Classification (2010): 01A60, 81T20, 83C47, 83D05 © Springer Science+Business Media, LLC, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • Figures of Light in the Early History of Relativity (1905–1914)
    Figures of Light in the Early History of Relativity (1905{1914) Scott A. Walter To appear in D. Rowe, T. Sauer, and S. A. Walter, eds, Beyond Einstein: Perspectives on Geometry, Gravitation, and Cosmology in the Twentieth Century (Einstein Studies 14), New York: Springer Abstract Albert Einstein's bold assertion of the form-invariance of the equa- tion of a spherical light wave with respect to inertial frames of reference (1905) became, in the space of six years, the preferred foundation of his theory of relativity. Early on, however, Einstein's universal light- sphere invariance was challenged on epistemological grounds by Henri Poincar´e,who promoted an alternative demonstration of the founda- tions of relativity theory based on the notion of a light ellipsoid. A third figure of light, Hermann Minkowski's lightcone also provided a new means of envisioning the foundations of relativity. Drawing in part on archival sources, this paper shows how an informal, interna- tional group of physicists, mathematicians, and engineers, including Einstein, Paul Langevin, Poincar´e, Hermann Minkowski, Ebenezer Cunningham, Harry Bateman, Otto Berg, Max Planck, Max Laue, A. A. Robb, and Ludwig Silberstein, employed figures of light during the formative years of relativity theory in their discovery of the salient features of the relativistic worldview. 1 Introduction When Albert Einstein first presented his theory of the electrodynamics of moving bodies (1905), he began by explaining how his kinematic assumptions led to a certain coordinate transformation, soon to be known as the \Lorentz" transformation. Along the way, the young Einstein affirmed the form-invariance of the equation of a spherical 1 light-wave (or light-sphere covariance, for short) with respect to in- ertial frames of reference.
    [Show full text]
  • Like Thermodynamics Before Boltzmann. on the Emergence of Einstein’S Distinction Between Constructive and Principle Theories
    Like Thermodynamics before Boltzmann. On the Emergence of Einstein’s Distinction between Constructive and Principle Theories Marco Giovanelli Forum Scientiarum — Universität Tübingen, Doblerstrasse 33 72074 Tübingen, Germany [email protected] How must the laws of nature be constructed in order to rule out the possibility of bringing about perpetual motion? Einstein to Solovine, undated In a 1919 article for the Times of London, Einstein declared the relativity theory to be a ‘principle theory,’ like thermodynamics, rather than a ‘constructive theory,’ like the kinetic theory of gases. The present paper attempts to trace back the prehistory of this famous distinction through a systematic overview of Einstein’s repeated use of the relativity theory/thermodynamics analysis after 1905. Einstein initially used the comparison to address a specic objection. In his 1905 relativity paper he had determined the velocity-dependence of the electron’s mass by adapting Newton’s particle dynamics to the relativity principle. However, according to many, this result was not admissible without making some assumption about the structure of the electron. Einstein replied that the relativity theory is similar to thermodynamics. Unlike the usual physical theories, it does not directly try to construct models of specic physical systems; it provides empirically motivated and mathematically formulated criteria for the acceptability of such theories. New theories can be obtained by modifying existing theories valid in limiting case so that they comply with such criteria. Einstein progressively transformed this line of the defense into a positive heuristics. Instead of directly searching for new theories, it is often more eective to search for conditions which constraint the number of possible theories.
    [Show full text]
  • Like Thermodynamics Before Boltzmann. on the Emergence of Einstein’S Distinction Between Constructive and Principle Theories
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Philsci-Archive Like Thermodynamics before Boltzmann. On the Emergence of Einstein’s Distinction between Constructive and Principle Theories Marco Giovanelli Forum Scientiarum — Universität Tübingen, Doblerstrasse 33 72074 Tübingen, Germany [email protected] How must the laws of nature be constructed in order to rule out the possibility of bringing about perpetual motion? Einstein to Solovine, undated In a 1919 article for the Times of London, Einstein declared the relativity theory to be a ‘principle theory,’ like thermodynamics, rather than a ‘constructive theory,’ like the kinetic theory of gases. The present paper attempts to trace back the prehistory of this famous distinction through a systematic overview of Einstein’s repeated use of the relativity theory/thermodynamics analysis after 1905. Einstein initially used the comparison to address a specic objection. In his 1905 relativity paper he had determined the velocity-dependence of the electron’s mass by adapting Newton’s particle dynamics to the relativity principle. However, according to many, this result was not admissible without making some assumption about the structure of the electron. Einstein replied that the relativity theory is similar to thermodynamics. Unlike the usual physical theories, it does not directly try to construct models of specic physical systems; it provides empirically motivated and mathematically formulated criteria for the acceptability of such theories. New theories can be obtained by modifying existing theories valid in limiting case so that they comply with such criteria. Einstein progressively transformed this line of the defense into a positive heuristics.
    [Show full text]
  • On the Relativistic Responses to the Kaufmannn Experiments$
    Heuristics versus Norms: On the Relativistic Responses to the Kaufmannn ExperimentsI Jan Potters1 Centre for Philosophical Psychology, Department of Philosophy, University of Antwerp, Grote Kauwenberg 18, 2000 Antwerpen, Belgium Abstract The aim of this article is to provide a historical response to Michel Janssen's (2009) claim that the special theory of relativity establishes that relativistic phenomena are purely kinematical in nature, and that the relativistic study of such phenomena is completely independent of the dynamics of the systems displaying such behavior. This response will be formulated through a histori- cal discussion of one of Janssen's cases, the experiments carried out by Walter Kaufmann on the velocity-dependence of the electron's mass. Through a dis- cussion of the different responses formulated by early adherents of the princi- ple of relativity (Albert Einstein, Max Planck, Hermann Minkowski and Max von Laue) to these experiments, it will be argued that the historical devel- opment of the special theory of relativity argues against Janssen's historical IThe author would like to thank Richard Staley, Hasok Chang, Marco Giovanelli, Har- vey Brown, Dennis Lehmkuhl, Thomas Ryckman, and the audiences at the Fifth Young Researchers Day in Logic, History and Philosophy of Science 2016 (Brussels), the Forum Scientiarium Summerschools of 2017 and 2018 (T¨ubingen),and the EPSA 2017 confer- ence (Exeter). This article was partially written during a stay as a visiting student at the Department of History and Philosophy of Science at the University of Cambridge (UK). Email address: [email protected] (Jan Potters) 1Corresponding Author, Research Funded by the FWO (Research Foundation { Flan- ders) Preprint submitted to Studies in History and Philosophy of Modern PhysicsFebruary 12, 2019 presentation of the case, and that this raises questions about his general philosophical claim.
    [Show full text]
  • Michael Eckert Science, Life and Turbulent Times –
    Michael Eckert Arnold Sommerfeld Science, Life and Turbulent Times – Michael Eckert Arnold Sommerfeld. Science, Life and Turbulent Times Michael Eckert translated by Tom Artin Arnold Sommerfeld Science, Life and Turbulent Times 1868–1951 Michael Eckert Deutsches Museum Munich , Germany Translation of Arnold Sommerfeld: Atomphysiker und Kulturbote 1868–1951, originally published in German by Wallstein Verlag, Göttingen ISBN ---- ISBN ---- (eBook) DOI ./---- Springer New York Heidelberg Dordrecht London Library of Congress Control Number: © Springer Science+Business Media New York Th is work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. Th e use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Science Studies Reader
    The Science Studies Reader EDITED BY MARIO BIAGIOLI IN CONSULTATION WITH PETER GALISON · DONNA J. HARAWAY EMILY MARTIN · EVERETT MENDELSOHN SHARON TRAWEEK Routledge NEW YORK AND LONDON IJ6 ARNOLD I, DAVIDSON 25. Ibid., 39. 26. Ibid., 48 (my emphasis). 27. Ibid., 50. 28. T~omas Nagel, "Sexual Perversion," Journal of Philosophy(16 January 1969): 15, 29. Ibid., 16. 30. Nagel, Mortal Q}testions,50-51. 31. Ia~ Hacking, ."Proof and Eternal Truths: Descartes and Leibniz," in S. Geukroger, ed., Descartes:Philosophy, IO Mathematicsand Physics,(New York: Barnes and Noble, 1980), 169. 32. See n. 12, 33, A. C. Crombie, "Philosophical Presuppositions and Shifting Interpretations of Galileo " in J Hinfikk D. Gruedn_er, and E. Agazzi, eds., TheoryChange (Dorohecht: Reidel, 1981), 283, ' · a, 34· M1c?el Foucault, HerculineBarbin, Being the RecentlyDiscovered Memoirs of a Nineteenth-CenturyFrench TradingZone Hermaphrodite(New York: Pantheon, 1980), vii-viii. · 35. Ibid., viii. 36. Ibid., 127-28 (my emphasis). CoordinatingAction and Belief 37. Ibid., 135-36. ~8. I_bid.,123. Tardieu'~ boo){ was publi~hed in 1874. Parts of it had previously appeared in the Anna/es d'hygiene publ1q11em 1872. A fuller d1scuss1onof quest10ns of sexual identity would have to consider this document in detail PETER GALISON 39, H~velock Ellis, "Sexo-Aesthetic Inversion," Alienist and Neurologist34 (1913):156-6 7, · 40. Ibid., 156. 41. Ibid., 159. 42. Ibid., 158, n. 7. 43, Am_ericanPsy~hi~tric Ass?ci.ation, Diagnosticand StatisticalManual of Mental Disorders,3d ed. (Washington, D. C.: Amen can Psych1atnc Assoc1at10n,1980), 261. 44· D. 11:'1·Ro~ier, Des habit111ess_ecretes 011 des maladiesproduites par l'onanismechez /esfemmes (Paris: Audin, PART I: INTERCALATION 1830).
    [Show full text]
  • Einstein Meaning of Relativity Pdf
    Einstein meaning of relativity pdf Continue Project Gutenberg 63.455 ebook Free 7 by Albert Einstein Albert Einstein was born on 14 March 1879 in Ulm. He spent his boyfriem in Munich where his family owned a small car shop. At the age of twelve years, Einstein taught himself Euclidean Geometry. His family moved to Milan, where he stayed for a year, and used it as an excuse to deposit him outside the school, which bore him. He finished high school in Aarau, Switzerland and entered the Swiss Federal Institute of Technology in Zurich. Einstein graduated in 1900, not studying the scores of a comrade since he didn't go to his classes out of borety, yet. His teachers did not like him and would not recommend him for a position at the University. For two years, Einstein worked as a standby professor at Bern. In 1905, he received his doctorate from the University of Zurich for a theoretical speech about the dimension of molecules. Einstein also published three theoretical papers of central importance to the development of 20th Century Physics. The first was Brownian's motion right, and second photoelectric effort, which was a revolutionary way of thinking and contradiction tradition. No one accepted the proposals in the first two papers. Then was the third one published in 1905 and named on the Electrodynamics body. Einstein's words became what is known today as the special theory of relativity and said that the physics laws are the same in all uneral reference systems and that the speed of light in a vacuum is a universal constant.
    [Show full text]
  • Electromagnetic Models of the Electron and the Transition from Classical to Relativistic Mechanics*
    Electromagnetic Models of the Electron and the Transition from Classical to Relativistic Mechanics* Michel Janssen and Matthew Mecklenburg 1. Introduction “Special relativity killed the classical dream of using the energy-momentum-velocity relations as a means of probing the dynamical origins of [the mass of the electron]. The relations are purely kinematical” (Pais 1982, 159). This perceptive comment comes from a section on the pre-relativistic notion of electromagnetic mass in ‘Subtle is the Lord …’, Abraham Pais’ highly acclaimed biography of Albert Einstein. By ‘kinematical’ Pais meant something like ‘completely independent of the details of the dynamics’. In this paper we examine the classical dream referred to by Pais from the vantage point of relativistic continuum mechanics. There were actually two such dreams in the years surrounding the advent of special relativity. Like Einstein’s theory, both dreams originated in the electrodynamics of moving bodies developed in the 1890s by the Dutch physicist Hendrik Antoon Lorentz. Both took the form of concrete models of the electron. Even these models were similar. Yet they were part of fundamentally different programs competing with one another in the years around 1905. One model, due to the German theoretician Max Abraham (1902a), was part of a revolutionary effort to substitute the laws of electrodynamics for those of Newtonian mechanics as the fundamental laws of physics. The other model, adapted from Abraham’s by Lorentz (1904b) and fixed up by the French mathematician Henri Poincaré (1906), was part of the attempt to provide a general explanation for the absence of any signs of ether drift, the elusive 19th-century medium thought to carry light waves and electromagnetic fields.
    [Show full text]