Voigt Transformations in Retrospect: Missed Opportunities?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Mathematical Derivation of the General Relativistic Schwarzschild
A Mathematical Derivation of the General Relativistic Schwarzschild Metric An Honors thesis presented to the faculty of the Departments of Physics and Mathematics East Tennessee State University In partial fulfillment of the requirements for the Honors Scholar and Honors-in-Discipline Programs for a Bachelor of Science in Physics and Mathematics by David Simpson April 2007 Robert Gardner, Ph.D. Mark Giroux, Ph.D. Keywords: differential geometry, general relativity, Schwarzschild metric, black holes ABSTRACT The Mathematical Derivation of the General Relativistic Schwarzschild Metric by David Simpson We briefly discuss some underlying principles of special and general relativity with the focus on a more geometric interpretation. We outline Einstein’s Equations which describes the geometry of spacetime due to the influence of mass, and from there derive the Schwarzschild metric. The metric relies on the curvature of spacetime to provide a means of measuring invariant spacetime intervals around an isolated, static, and spherically symmetric mass M, which could represent a star or a black hole. In the derivation, we suggest a concise mathematical line of reasoning to evaluate the large number of cumbersome equations involved which was not found elsewhere in our survey of the literature. 2 CONTENTS ABSTRACT ................................. 2 1 Introduction to Relativity ...................... 4 1.1 Minkowski Space ....................... 6 1.2 What is a black hole? ..................... 11 1.3 Geodesics and Christoffel Symbols ............. 14 2 Einstein’s Field Equations and Requirements for a Solution .17 2.1 Einstein’s Field Equations .................. 20 3 Derivation of the Schwarzschild Metric .............. 21 3.1 Evaluation of the Christoffel Symbols .......... 25 3.2 Ricci Tensor Components ................. -
The Scientific Content of the Letters Is Remarkably Rich, Touching on The
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Reviews / Historia Mathematica 33 (2006) 491–508 497 The scientific content of the letters is remarkably rich, touching on the difference between Borel and Lebesgue measures, Baire’s classes of functions, the Borel–Lebesgue lemma, the Weierstrass approximation theorem, set theory and the axiom of choice, extensions of the Cauchy–Goursat theorem for complex functions, de Geöcze’s work on surface area, the Stieltjes integral, invariance of dimension, the Dirichlet problem, and Borel’s integration theory. The correspondence also discusses at length the genesis of Lebesgue’s volumes Leçons sur l’intégration et la recherche des fonctions primitives (1904) and Leçons sur les séries trigonométriques (1906), published in Borel’s Collection de monographies sur la théorie des fonctions. Choquet’s preface is a gem describing Lebesgue’s personality, research style, mistakes, creativity, and priority quarrel with Borel. This invaluable addition to Bru and Dugac’s original publication mitigates the regrets of not finding, in the present book, all 232 letters included in the original edition, and all the annotations (some of which have been shortened). The book contains few illustrations, some of which are surprising: the front and second page of a catalog of the editor Gauthier–Villars (pp. 53–54), and the front and second page of Marie Curie’s Ph.D. thesis (pp. 113–114)! Other images, including photographic portraits of Lebesgue and Borel, facsimiles of Lebesgue’s letters, and various important academic buildings in Paris, are more appropriate. -
Albert Einstein
THE COLLECTED PAPERS OF Albert Einstein VOLUME 15 THE BERLIN YEARS: WRITINGS & CORRESPONDENCE JUNE 1925–MAY 1927 Diana Kormos Buchwald, József Illy, A. J. Kox, Dennis Lehmkuhl, Ze’ev Rosenkranz, and Jennifer Nollar James EDITORS Anthony Duncan, Marco Giovanelli, Michel Janssen, Daniel J. Kennefick, and Issachar Unna ASSOCIATE & CONTRIBUTING EDITORS Emily de Araújo, Rudy Hirschmann, Nurit Lifshitz, and Barbara Wolff ASSISTANT EDITORS Princeton University Press 2018 Copyright © 2018 by The Hebrew University of Jerusalem Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA (Revised for volume 15) Einstein, Albert, 1879–1955. The collected papers of Albert Einstein. German, English, and French. Includes bibliographies and indexes. Contents: v. 1. The early years, 1879–1902 / John Stachel, editor — v. 2. The Swiss years, writings, 1900–1909 — — v. 15. The Berlin years, writings and correspondence, June 1925–May 1927 / Diana Kormos Buchwald... [et al.], editors. QC16.E5A2 1987 530 86-43132 ISBN 0-691-08407-6 (v.1) ISBN 978-0-691-17881-3 (v. 15) This book has been composed in Times. The publisher would like to acknowledge the editors of this volume for providing the camera-ready copy from which this book was printed. Princeton University Press books are printed on acid-free paper and meet the guidelines for permanence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources. Printed in the United States of America 13579108642 INTRODUCTION TO VOLUME 15 The present volume covers a thrilling two-year period in twentieth-century physics, for during this time matrix mechanics—developed by Werner Heisenberg, Max Born, and Pascual Jordan—and wave mechanics, developed by Erwin Schrödinger, supplanted the earlier quantum theory. -
Hypercomplex Algebras and Their Application to the Mathematical
Hypercomplex Algebras and their application to the mathematical formulation of Quantum Theory Torsten Hertig I1, Philip H¨ohmann II2, Ralf Otte I3 I tecData AG Bahnhofsstrasse 114, CH-9240 Uzwil, Schweiz 1 [email protected] 3 [email protected] II info-key GmbH & Co. KG Heinz-Fangman-Straße 2, DE-42287 Wuppertal, Deutschland 2 [email protected] March 31, 2014 Abstract Quantum theory (QT) which is one of the basic theories of physics, namely in terms of ERWIN SCHRODINGER¨ ’s 1926 wave functions in general requires the field C of the complex numbers to be formulated. However, even the complex-valued description soon turned out to be insufficient. Incorporating EINSTEIN’s theory of Special Relativity (SR) (SCHRODINGER¨ , OSKAR KLEIN, WALTER GORDON, 1926, PAUL DIRAC 1928) leads to an equation which requires some coefficients which can neither be real nor complex but rather must be hypercomplex. It is conventional to write down the DIRAC equation using pairwise anti-commuting matrices. However, a unitary ring of square matrices is a hypercomplex algebra by definition, namely an associative one. However, it is the algebraic properties of the elements and their relations to one another, rather than their precise form as matrices which is important. This encourages us to replace the matrix formulation by a more symbolic one of the single elements as linear combinations of some basis elements. In the case of the DIRAC equation, these elements are called biquaternions, also known as quaternions over the complex numbers. As an algebra over R, the biquaternions are eight-dimensional; as subalgebras, this algebra contains the division ring H of the quaternions at one hand and the algebra C ⊗ C of the bicomplex numbers at the other, the latter being commutative in contrast to H. -
Cracking the Einstein Code: Relativity and the Birth of Black Hole Physics, with an Afterword by Roy Kerr / Fulvio Melia
CRA C K I N G T H E E INSTEIN CODE @SZObWdWbgO\RbVS0W`bV]T0ZOQY6]ZS>VgaWQa eWbVO\/TbS`e]`RPg@]gS`` fulvio melia The University of Chicago Press chicago and london fulvio melia is a professor in the departments of physics and astronomy at the University of Arizona. He is the author of The Galactic Supermassive Black Hole; The Black Hole at the Center of Our Galaxy; The Edge of Infinity; and Electrodynamics, and he is series editor of the book series Theoretical Astrophysics published by the University of Chicago Press. The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London © 2009 by The University of Chicago All rights reserved. Published 2009 Printed in the United States of America 18 17 16 15 14 13 12 11 10 09 1 2 3 4 5 isbn-13: 978-0-226-51951-7 (cloth) isbn-10: 0-226-51951-1 (cloth) Library of Congress Cataloging-in-Publication Data Melia, Fulvio. Cracking the Einstein code: relativity and the birth of black hole physics, with an afterword by Roy Kerr / Fulvio Melia. p. cm. Includes bibliographical references and index. isbn-13: 978-0-226-51951-7 (cloth: alk. paper) isbn-10: 0-226-51951-1 (cloth: alk. paper) 1. Einstein field equations. 2. Kerr, R. P. (Roy P.). 3. Kerr black holes—Mathematical models. 4. Black holes (Astronomy)—Mathematical models. I. Title. qc173.6.m434 2009 530.11—dc22 2008044006 To natalina panaia and cesare melia, in loving memory CONTENTS preface ix 1 Einstein’s Code 1 2 Space and Time 5 3 Gravity 15 4 Four Pillars and a Prayer 24 5 An Unbreakable Code 39 6 Roy Kerr 54 7 The Kerr Solution 69 8 Black Hole 82 9 The Tower 100 10 New Zealand 105 11 Kerr in the Cosmos 111 12 Future Breakthrough 121 afterword 125 references 129 index 133 PREFACE Something quite remarkable arrived in my mail during the summer of 2004. -
Einstein and Physics Hundred Years Ago∗
Vol. 37 (2006) ACTA PHYSICA POLONICA B No 1 EINSTEIN AND PHYSICS HUNDRED YEARS AGO∗ Andrzej K. Wróblewski Physics Department, Warsaw University Hoża 69, 00-681 Warszawa, Poland [email protected] (Received November 15, 2005) In 1905 Albert Einstein published four papers which revolutionized physics. Einstein’s ideas concerning energy quanta and electrodynamics of moving bodies were received with scepticism which only very slowly went away in spite of their solid experimental confirmation. PACS numbers: 01.65.+g 1. Physics around 1900 At the turn of the XX century most scientists regarded physics as an almost completed science which was able to explain all known physical phe- nomena. It appeared to be a magnificent structure supported by the three mighty pillars: Newton’s mechanics, Maxwell’s electrodynamics, and ther- modynamics. For the celebrated French chemist Marcellin Berthelot there were no major unsolved problems left in science and the world was without mystery. Le monde est aujourd’hui sans mystère— he confidently wrote in 1885 [1]. Albert A. Michelson was of the opinion that “The more important fundamen- tal laws and facts of physical science have all been discovered, and these are now so firmly established that the possibility of their ever being supplanted in consequence of new discoveries is exceedingly remote . Our future dis- coveries must be looked for in the sixth place of decimals” [2]. Physics was not only effective but also perfect and beautiful. Henri Poincaré maintained that “The theory of light based on the works of Fresnel and his successors is the most perfect of all the theories of physics” [3]. -
Physics 325: General Relativity Spring 2019 Problem Set 2
Physics 325: General Relativity Spring 2019 Problem Set 2 Due: Fri 8 Feb 2019. Reading: Please skim Chapter 3 in Hartle. Much of this should be review, but probably not all of it|be sure to read Box 3.2 on Mach's principle. Then start on Chapter 6. Problems: 1. Spacetime interval. Hartle Problem 4.13. 2. Four-vectors. Hartle Problem 5.1. 3. Lorentz transformations and hyperbolic geometry. In class, we saw that a Lorentz α0 α β transformation in 2D can be written as a = L β(#)a , that is, 0 ! ! ! a0 cosh # − sinh # a0 = ; (1) a10 − sinh # cosh # a1 where a is spacetime vector. Here, the rapidity # is given by tanh # = β; cosh # = γ; sinh # = γβ; (2) where v = βc is the velocity of frame S0 relative to frame S. (a) Show that two successive Lorentz boosts of rapidity #1 and #2 are equivalent to a single α γ α Lorentz boost of rapidity #1 +#2. In other words, check that L γ(#1)L(#2) β = L β(#1 +#2), α where L β(#) is the matrix in Eq. (1). You will need the following hyperbolic trigonometry identities: cosh(#1 + #2) = cosh #1 cosh #2 + sinh #1 sinh #2; (3) sinh(#1 + #2) = sinh #1 cosh #2 + cosh #1 sinh #2: (b) From Eq. (3), deduce the formula for tanh(#1 + #2) in terms of tanh #1 and tanh #2. For the appropriate choice of #1 and #2, use this formula to derive the special relativistic velocity tranformation rule V − v V 0 = : (4) 1 − vV=c2 Physics 325, Spring 2019: Problem Set 2 p. -
Is It Time for a New Paradigm in Physics?
Vigier IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1251 (2019) 012024 doi:10.1088/1742-6596/1251/1/012024 Is it time for a new paradigm in physics? Shukri Klinaku University of Prishtina Sheshi Nëna Terezë, Prishtina, Kosovo [email protected] Abstract. The fact that the two main pillars of modern Physics are incompatible with each other; the fact that some unsolved problems have accumulated in Physics; and, in particular, the fact that Physics has been invaded by weird concepts (as if we were in the Middle Ages); these facts are quite sufficient to confirm the need for a new paradigm in Physics. But the conclusion that a new paradigm is needed is not sufficient, without an answer to the question: is there sufficient sources and resources to construct a new paradigm in Physics? I consider that the answer to this question is also yes. Today, Physics has sufficient material in experimental facts, theoretical achievements and human and technological potential. So, there is the need and opportunity for a new paradigm in Physics. The core of the new paradigm of Physics would be the nature of matter. According to this new paradigm, Physics should give up on wave-particle dualism, should redefine waves, and should end the mystery about light and its privilege in Physics. The consequences of this would make Physics more understandable, and - more importantly - would make it capable of solving current problems and opening up new perspectives in exploring nature and the universe. 1. Introduction Quantum Physics and the theory of relativity are the ‘two main pillars’ of modern Physics. -
JOHN EARMAN* and CLARK GL YMUURT the GRAVITATIONAL RED SHIFT AS a TEST of GENERAL RELATIVITY: HISTORY and ANALYSIS
JOHN EARMAN* and CLARK GL YMUURT THE GRAVITATIONAL RED SHIFT AS A TEST OF GENERAL RELATIVITY: HISTORY AND ANALYSIS CHARLES St. John, who was in 1921 the most widely respected student of the Fraunhofer lines in the solar spectra, began his contribution to a symposium in Nncure on Einstein’s theories of relativity with the following statement: The agreement of the observed advance of Mercury’s perihelion and of the eclipse results of the British expeditions of 1919 with the deductions from the Einstein law of gravitation gives an increased importance to the observations on the displacements of the absorption lines in the solar spectrum relative to terrestrial sources, as the evidence on this deduction from the Einstein theory is at present contradictory. Particular interest, moreover, attaches to such observations, inasmuch as the mathematical physicists are not in agreement as to the validity of this deduction, and solar observations must eventually furnish the criterion.’ St. John’s statement touches on some of the reasons why the history of the red shift provides such a fascinating case study for those interested in the scientific reception of Einstein’s general theory of relativity. In contrast to the other two ‘classical tests’, the weight of the early observations was not in favor of Einstein’s red shift formula, and the reaction of the scientific community to the threat of disconfirmation reveals much more about the contemporary scientific views of Einstein’s theory. The last sentence of St. John’s statement points to another factor that both complicates and heightens the interest of the situation: in contrast to Einstein’s deductions of the advance of Mercury’s perihelion and of the bending of light, considerable doubt existed as to whether or not the general theory did entail a red shift for the solar spectrum. -
Geodesic Motion in Bogoslovsky-Finsler Spacetimes
2004.02751v4 [gr-qc] Geodesic motion in Bogoslovsky-Finsler Spacetimes M. Elbistan1∗, P. M. Zhang1y, N. Dimakis2z, G. W. Gibbons3x, P. A. Horvathy4{ 1 School of Physics and Astronomy, Sun Yat-sen University, Zhuhai, China 2 Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610065, China 3D.A.M.T.P., Cambridge University, Wilberforce Road, Cambridge CB3 0WA, United Kingdom 4Institut Denis Poisson, Tours University { Orl´eansUniversity, UMR 7013 (France) (Dated: July 6, 2020) arXiv:2004.02751v4 [gr-qc] 3 Jul 2020 ∗ email:[email protected]. y corresponding author. email:[email protected] z email:[email protected] x email:[email protected] { email:[email protected] 1 Abstract We study the free motion of a massive particle moving in the background of a Finslerian defor- mation of a plane gravitational wave in Einstein's general relativity. The deformation is a curved version of a one-parameter family of relativistic Finsler structures introduced by Bogoslovsky, which are invariant under a certain deformation of Cohen and Glashow's very special relativity group ISIM(2). The partially broken Carroll symmetry we derive using Baldwin-Jeffery-Rosen coordinates allows us to integrate the geodesics equations. The transverse coordinates of timelike Finsler-geodesics are identical to those of the underlying plane gravitational wave for any value of the Bogoslovsky-Finsler parameter b. We then replace the underlying plane gravitational wave with a homogenous pp-wave solution of the Einstein-Maxwell equations. We conclude by extending the theory to the Finsler-Friedmann-Lemaitre model. -
Hermann Minkowski Et La Mathématisation De La Théorie De La Relativité Restreinte 1905-1915
THÈSE présentée à L’UNIVERSITÉ DE PARIS VII pour obtenir le grade de DOCTEUR Spécialité : Épistémologie et Histoire des Sciences par Scott A. WALTER HERMANN MINKOWSKI ET LA MATHÉMATISATION DE LA THÉORIE DE LA RELATIVITÉ RESTREINTE 1905-1915 Thèse dirigée par M. Christian Houzel et soutenue le 20 décembre 1996 devant la Commission d’Examen composée de : Examinateur : M. Christian Houzel Professeur à l’Université de Paris VII Examinateur : M. Arthur I. Miller Professeur à UniversityCollege London Rapporteur : M. Michel Paty Directeur de recherche, CNRS Rapporteur : M. Jim Ritter Maître de conférences à l’Univ. de Paris VIII S. Walter LA MATHÉMATISATION DE LA RELATIVITÉ RESTREINTE i Résumé Au début du vingtième siècle émergeait l’un des produits les plus remarquables de la physique théorique : la théorie de la relativité. Prise dans son contexte à la fois intellectuel et institution- nel, elle est l’objet central de la dissertation. Toutefois, seul un aspect de cette histoire est abordé de façon continue, à savoir le rôle des mathématiciens dans sa découverte, sa diffusion, sa ré- ception et son développement. Les contributions d’un mathématicien en particulier, Hermann Minkowski, sont étudiées de près, car c’est lui qui trouva la forme mathématique permettant les développements les plus importants, du point de vue des théoriciens de l’époque. Le sujet de la thèse est abordé selon deux axes; l’un se fonde sur l’analyse comparative des documents, l’autre sur l’étude bibliométrique. De cette façon, les conclusions de la première démarche se trouvent encadrées par les résultats de l’analyse globale des données bibliographiques. -
Sacred Rhetorical Invention in the String Theory Movement
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Communication Studies Theses, Dissertations, and Student Research Communication Studies, Department of Spring 4-12-2011 Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement Brent Yergensen University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/commstuddiss Part of the Speech and Rhetorical Studies Commons Yergensen, Brent, "Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement" (2011). Communication Studies Theses, Dissertations, and Student Research. 6. https://digitalcommons.unl.edu/commstuddiss/6 This Article is brought to you for free and open access by the Communication Studies, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Communication Studies Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT by Brent Yergensen A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Communication Studies Under the Supervision of Dr. Ronald Lee Lincoln, Nebraska April, 2011 ii SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT Brent Yergensen, Ph.D. University of Nebraska, 2011 Advisor: Ronald Lee String theory is argued by its proponents to be the Theory of Everything. It achieves this status in physics because it provides unification for contradictory laws of physics, namely quantum mechanics and general relativity. While based on advanced theoretical mathematics, its public discourse is growing in prevalence and its rhetorical power is leading to a scientific revolution, even among the public.