Erich Kretschmann As a Proto-Logical-Empiricist: Adventures and Misadventures of the Point-Coincidence Argument
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Reichenbach-Einstein Debate on the Geometrization of the Electromagnetic Field
‘. But I Still Can’t Get Rid of a Sense of Artificiality’: The Reichenbach-Einstein Debate on the Geometrization of the Electromagnetic Field Marco Giovanelli Contributing editor at the Einstein Paper Project at Caltech: Einstein Papers Project Caltech M/C 20-7 1200 East California Blvd. Pasadena, CA 91125, USA Universität Tübingen, Forum Scientiarum, Doblerstraße 33 72074 Tübingen, Germany Abstract This paper analyzes correspondence between Reichenbach and Einstein from the spring of 1926, concerning what it means to ‘geometrize’ a physical field. The content of a typewritten note that Reichenbach sent to Einstein on that occasion is reconstructed, showing that it was an early version of §49 of the untranslated Appendix to his Philosophie der Raum-Zeit-Lehre, on which Reichenbach was working at the time. This paper claims that the toy-geometrization of the electromagnetic field that Reichenbach presented in his note should not be regarded as merely a virtuoso mathematical exercise, but as an additional argument supporting the core philosophical message of his 1928 monograph. This paper concludes by suggesting that Reichenbach’s infamous ‘relativization of geometry’ was only a stepping stone on the way to his main concern—the question of the ‘geometrization of gravitation’. Aber ich kann auch da das Gefühl des Künstlichen nicht los werden Reichenbach to Einstein, March 16, 1926 Introduction In the late 1950s, Hans Reichenbach’s second wife Maria Reichenbach edited an English translation (Reichenbach, 1958) of his Philosophie der Raum-Zeit-Lehre (Reichenbach, 1928). This edition was missing a long Appendix entitled ‘Die Weylsche Erweiterung des Riemannschen Raumbegriffs und die geometrische Deutung der Elektrizität’ (‘Weyl’s Extension of Riemann’s Concept of Space and the Geometrical Interpretation of Electromagnetism’). -
A Selected Bibliography of Publications By, and About, Niels Bohr
A Selected Bibliography of Publications by, and about, Niels Bohr Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 09 June 2021 Version 1.308 Title word cross-reference + [VIR+08]. $1 [Duf46]. $1.00 [N.38, Bal39]. $105.95 [Dor79]. $11.95 [Bus20]. $12.00 [Kra07, Lan08]. $189 [Tan09]. $21.95 [Hub14]. $24.95 [RS07]. $29.95 [Gor17]. $32.00 [RS07]. $35.00 [Par06]. $47.50 [Kri91]. $6.95 [Sha67]. $61 [Kra16b]. $9 [Jam67]. − [VIR+08]. 238 [Tur46a, Tur46b]. ◦ [Fra55]. 2 [Som18]. β [Gau14]. c [Dar92d, Gam39]. G [Gam39]. h [Gam39]. q [Dar92d]. × [wB90]. -numbers [Dar92d]. /Hasse [KZN+88]. /Rath [GRE+01]. 0 [wB90, Hub14, Tur06]. 0-19-852049-2 [Ano93a, Red93, Seg93]. 0-19-853977-0 [Hub14]. 0-521-35366-1 [Kri91]. 0-674-01519-3 [Tur06]. 0-85224-458-4 [Hen86a]. 0-9672617-2-4 [Kra07, Lan08]. 1 2 1.5 [GRE+01]. 100-˚aret [BR+85]. 100th [BR+85, KRW05, Sch13, vM02]. 110th [Rub97a]. 121 [Boh87a]. 153 [MP97]. 16 [SE13]. 17 [Boh55a, KRBR62]. 175 [Bad83]. 18.11.1962 [Hei63a]. 1911 [Meh75]. 1915 [SE13]. 1915/16 [SE13, SE13]. 1918 [Boh21a]. 1920s [PP16]. 1922 [Boh22a]. 1923 [Ros18]. 1925 [Cla13, Bor13, Jan17, Sho13]. 1927 [Ano28]. 1929 [HEB+80, HvMW79, Pye81]. 1930 [Lin81, Whe81]. 1930/41 [Fer68, Fer71]. 1930s [Aas85b, Stu79]. 1933 [CCJ+34]. -
Observables and Hamilton-Jacobi Approaches to General Relativity. I
Observables and Hamilton-Jacobi approaches to general relativity. I. The Earlier History Donald Salisbury1,2 1Austin College, 900 North Grand Ave, Sherman, Texas 75090, USA 2Max Planck Institute for the History of Science, Boltzmannstrasse 22, 14195 Berlin, Germany Abstract The main focus is on the Hamilton-Jacobi techniques in classical general relativity that were pursued by Peter Bergmann and Arthur Komar in the 1960’s and 1970’s. They placed special emphasis on the ability to construct the factor group of canonical transformations, where the four-dimensional diffeomorphism phase space transformations were factored out. Equivalence classes were identified by a set of phase space functions that were invari- ant under the action of the four-dimensional diffeomorphism group. This is contrasted and compared with approaches of Paul Weiss, Julian Schwinger, Richard Arnowitt, Stanley Deser, Charles Misner, Karel Kuchar – and es- pecially the geometrodynamical program of John Wheeler and Bryce DeWitt where diffeomorphism symmetry is replaced by a notion of multifingered time. The origins of all of these approaches are traced to Elie Cartan’s invariant in- tegral formulation of classical dynamics. A related correspondence concerning the thin sandwich dispute is also documented. 1 Introduction Given that the classical Hamilton-Jacobi theory played such a prominent role in the formulation of Schrødinger quantum wave mechanics, it is remarkable that gen- eral relativists did not make a serious effort in applying the technique until the early 1960’s. The origins of this attempt in flat spacetime field theory can be arXiv:2106.11894v1 [physics.hist-ph] 22 Jun 2021 traced to Dirac’s groundbreaking 1933 paper, The Lagrangian in quantum mechan- ics [Dirac, 1933], where he established the link, for systems with a finite number of degrees of freedom, between initial and final classical action configuration vari- ables, Hamilton principal functions, and quantum transition amplitudes. -
The Formative Years of Relativity: the History and Meaning of Einstein's
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. 1 INTRODUCTION The Meaning of Relativity, also known as Four Lectures on Relativity, is Einstein’s definitive exposition of his special and general theories of relativity. It was written in the early 1920s, a few years after he had elaborated his general theory of rel- ativity. Neither before nor afterward did he offer a similarly comprehensive exposition that included not only the theory’s technical apparatus but also detailed explanations making his achievement accessible to readers with a certain mathematical knowledge but no prior familiarity with relativity theory. In 1916, he published a review paper that provided the first condensed overview of the theory but still reflected many features of the tortured pathway by which he had arrived at his new theory of gravitation in late 1915. An edition of the manuscript of this paper with introductions and detailed commentar- ies on the discussion of its historical contexts can be found in The Road to Relativity.1 Immediately afterward, Einstein wrote a nontechnical popular account, Relativity— The Special and General Theory.2 Beginning with its first German edition, in 1917, it became a global bestseller and marked the first triumph of relativity theory as a broad cultural phenomenon. We have recently republished this book with extensive commentaries and historical contexts that document its global success. These early accounts, however, were able to present the theory only in its infancy. Immediately after its publication on 25 November 1915, Einstein’s theory of general relativity was taken up, elaborated, and controversially discussed by his colleagues, who included physicists, mathematicians, astronomers, and philosophers. -
The Hole Argument and Some Physical and Philosophical Implications
Living Rev. Relativity, 17,(2014),1 ,)6).' 2%6)%73 http://www.livingreviews.org/lrr-2014-1 doi:10.12942/lrr-2014-1 INRELATIVITY The Hole Argument and Some Physical and Philosophical Implications John Stachel Center for Einstein Studies, Boston University 745 Commonwealth Avenue Boston, MA 02215 U.S.A. email: [email protected] Accepted: 17 November 2013 Published: 6 February 2014 Abstract This is a historical-critical study of the hole argument, concentrating on the interface between historical, philosophical and physical issues. Although it includes a review of its history, its primary aim is a discussion of the contemporary implications of the hole argument for physical theories based on dynamical, background-independent space-time structures. The historical review includes Einstein’s formulations of the hole argument, Kretschmann’s critique, as well as Hilbert’s reformulation and Darmois’ formulation of the general-relativistic Cauchy problem. The 1970s saw a revival of interest in the hole argument, growing out of attempts to answer the question: Why did three years elapse between Einstein’s adoption of the metric tensor to represent the gravitational field and his adoption of the Einstein field equations? The main part presents some modern mathematical versions of the hole argument, including both coordinate-dependent and coordinate-independent definitions of covariance and general covariance; and the fiber bundle formulation of both natural and gauge natural theories. By abstraction from continuity and di↵erentiability, these formulations can be extended from di↵erentiable manifolds to any set; and the concepts of permutability and general permutability applied to theories based on relations between the elements of a set, such as elementary particle theories. -
The Formative Years of Relativity in Which the Theory Essentially Received the Structure in Which It Later Became One of the Pillars of Modern Physics
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by MPG.PuRe 1 INTRODUCTION The Meaning of Relativity, also known as Four Lectures on Relativity, is Einstein’s definitive exposition of his special and general theories of relativity. It was written in the early 1920s, a few years after he had elaborated his general theory of rel- ativity. Neither before nor afterward did he offer a similarly comprehensive exposition that included not only the theory’s technical apparatus but also detailed explanations making his achievement accessible to readers with a certain mathematical knowledge but no prior familiarity with relativity theory. In 1916, he published a review paper that provided the first condensed overview of the theory but still reflected many features of the tortured pathway by which he had arrived at his new theory of gravitation in late 1915. An edition of the manuscript of this paper with introductions and detailed commentar- ies on the discussion of its historical contexts can be found in The Road to Relativity.1 Immediately afterward, Einstein wrote a nontechnical popular account, Relativity— The Special and General Theory.2 Beginning with its first German edition, in 1917, it became a global bestseller and marked the first triumph of relativity theory as a broad cultural phenomenon. We have recently republished this book with extensive commentaries and historical contexts that document its global success. -
The Universe of General Relativity, Springer 2005.Pdf
Einstein Studies Editors: Don Howard John Stachel Published under the sponsorship of the Center for Einstein Studies, Boston University Volume 1: Einstein and the History of General Relativity Don Howard and John Stachel, editors Volume 2: Conceptual Problems of Quantum Gravity Abhay Ashtekar and John Stachel, editors Volume 3: Studies in the History of General Relativity Jean Eisenstaedt and A.J. Kox, editors Volume 4: Recent Advances in General Relativity Allen I. Janis and John R. Porter, editors Volume 5: The Attraction of Gravitation: New Studies in the History of General Relativity John Earman, Michel Janssen and John D. Norton, editors Volume 6: Mach’s Principle: From Newton’s Bucket to Quantum Gravity Julian B. Barbour and Herbert Pfister, editors Volume 7: The Expanding Worlds of General Relativity Hubert Goenner, Jürgen Renn, Jim Ritter, and Tilman Sauer, editors Volume 8: Einstein: The Formative Years, 1879–1909 Don Howard and John Stachel, editors Volume 9: Einstein from ‘B’ to ‘Z’ John Stachel Volume 10: Einstein Studies in Russia Yuri Balashov and Vladimir Vizgin, editors Volume 11: The Universe of General Relativity A.J. Kox and Jean Eisenstaedt, editors A.J. Kox Jean Eisenstaedt Editors The Universe of General Relativity Birkhauser¨ Boston • Basel • Berlin A.J. Kox Jean Eisenstaedt Universiteit van Amsterdam Observatoire de Paris Instituut voor Theoretische Fysica SYRTE/UMR8630–CNRS Valckenierstraat 65 F-75014 Paris Cedex 1018 XE Amsterdam France The Netherlands AMS Subject Classification (2000): 01A60, 83-03, 83-06 Library of Congress Cataloging-in-Publication Data The universe of general relativity / A.J. Kox, editors, Jean Eisenstaedt. p. -
The Cambridge Companion to Einstein
The Cambridge Companion to EINSTEIN This volume is the first systematic presentation of the work of Albert Einstein, comprised of fourteen essays by leading histori- ans and philosophers of science that introduce readers to his work. Following an introduction that places Einstein’s work in the con- text of his life and times, the book opens with essays on the papers of Einstein’s “miracle year,” 1905, covering Brownian motion, light quanta, and special relativity, as well as his contributions to early quantum theory and the opposition to his light quantum hypoth- esis. Further essays relate Einstein’s path to the general theory of relativity (1915) and the beginnings of two fields it spawned, rel- ativistic cosmology and gravitational waves. Essays on Einstein’s later years examine his unified field theory program and his cri- tique of quantum mechanics. The closing essays explore the rela- tion between Einstein’s work and twentieth-century philosophy, as well as his political writings. Michel Janssen is a professor in the Program in the History of Science, Technology, and Medicine at the University of Minnesota. Before coming to Minnesota, he was a member of the editorial team of the Einstein Papers Project, then at Boston University. He has published extensively on the relativity and quantum revolutions of the early twentieth century. Christoph Lehner is a research scholar at the Max Planck Institute for the History of Science and the coordinator of its project on the History and Foundations of Quantum Mechanics. He has been an editor at the Einstein Papers Project at Boston University and at the California Institute of Technology, as well as a scientific advi- sor for the 2005 exhibit “Einstein, Chief Engineer of the Universe” in Berlin. -
General Relativity Conflict and Rivalries
General Relativity Conflict and Rivalries General Relativity Conflict and Rivalries: Einstein's Polemics with Physicists By Galina Weinstein General Relativity Conflict and Rivalries: Einstein's Polemics with Physicists By Galina Weinstein This book first published 2015 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2015 by Galina Weinstein All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-4438-8362-X ISBN (13): 978-1-4438-8362-7 “When I accompanied him [Einstein] home the first day we met, he told me something that I heard from him many times later: ‘In Princeton they regard me as an old fool.’ (‘Hier in Princeton betrachten sie mich als einen alten Trottel’.) […] Before he was thirty-five, Einstein had made the four great discoveries of his life. In order of increasing importance they are: the theory of Brownian motion; the theory of the photoelectric effect; the special theory of relativity; the general theory of relativity. Very few people in the history of science have done half as much. […] For years he looked for a theory which would embrace gravitational, electromagnetic, and quantum phenomena. […] Einstein pursued it relentlessly through ideas which he changed repeatedly and down avenues that led nowhere. The very distinguished professors in Princeton did not understand that Einstein’s mistakes were more important than their correct results. -
Black Holes in Loop Quantum Gravity Alejandro Perez
Black Holes in Loop Quantum Gravity Alejandro Perez To cite this version: Alejandro Perez. Black Holes in Loop Quantum Gravity. Rept.Prog.Phys., 2017, 80 (12), pp.126901. 10.1088/1361-6633/aa7e14. hal-01645217 HAL Id: hal-01645217 https://hal.archives-ouvertes.fr/hal-01645217 Submitted on 17 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Black Holes in Loop Quantum Gravity Alejandro Perez1 1 Centre de Physique Th´eorique,Aix Marseille Universit, Universit de Toulon, CNRS, UMR 7332, 13288 Marseille, France. This is a review of the results on black hole physics in the framework of loop quantum gravity. The key feature underlying the results is the discreteness of geometric quantities at the Planck scale predicted by this approach to quantum gravity. Quantum discreteness follows directly from the canonical quantization prescription when applied to the action of general relativity that is suitable for the coupling of gravity with gauge fields and specially with fermions. Planckian discreteness and causal considerations provide the basic structure for the understanding of the thermal properties of black holes close to equilibrium. Discreteness also provides a fresh new look at more (at the mo- ment) speculative issues such as those concerning the fate of information in black hole evaporation. -
General Relativity - Wikipedia, the Free Encyclopedia Page 1 of 37
General relativity - Wikipedia, the free encyclopedia Page 1 of 37 General relativity From Wikipedia, the free encyclopedia General relativity or the general theory of relativity is the geometric General relativity [1] theory of gravitation published by Albert Einstein in 1916. It is the Introduction current description of gravitation in modern physics. General relativity Mathematical formulation generalises special relativity and Newton's law of universal gravitation, Resources providing a unified description of gravity as a geometric property of Fundamental concepts Special relativity Equivalence principle World line · Riemannian geometry Phenomena Kepler problem · Lenses · Waves Frame-dragging · Geodetic effect Event horizon · Singularity Black hole Equations Linearized Gravity Post-Newtonian formalism Einstein field equations Friedmann equations ADM formalism BSSN formalism Advanced theories Kaluza–Klein Quantum gravity Solutions Schwarzschild Reissner-Nordström · Gödel Kerr · Kerr-Newman Kasner · Taub-NUT · Milne · Robertson-Walker pp-wave Scientists Einstein · Minkowski · Eddington Lemaître · Schwarzschild http://en.wikipedia.org/wiki/General_relativity 5/23/2011 General relativity - Wikipedia, the free encyclopedia Page 2 of 37 Robertson · Kerr · Friedman Chandrasekhar · Hawking · others space and time, or spacetime. In particular, the curvature of spacetime is directly related to the four- momentum (mass-energy and linear momentum) of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of partial differential equations. Many predictions of general relativity differ significantly from those of classical physics, especially concerning the passage of time, the geometry of space, the motion of bodies in free fall, and the propagation of light. Examples of such differences include gravitational time dilation, the gravitational redshift of light, and the gravitational time delay. -
Arxiv:1909.05412V2 [Physics.Hist-Ph] 24 Dec 2020 Toward a Quantum Theory of Gravity: Syracuse 1949-1962
Toward a quantum theory of gravity: Syracuse 1949-1962 Donald Salisbury1,2 1Austin College, 900 North Grand Ave, Sherman, Texas 75090, USA 2Max Planck Institute for the History of Science, Boltzmannstrasse 22, 14195 Berlin, Germany December 25, 2020 Abstract Peter Bergmann and his students embarked in 1949 on a mainly canonical quantization program whose aim was to take into account the underlying four- dimensional diffeomorphism symmetry in the transition from a Lagrangian to a Hamiltonian formulation of Einstein’s theory. Along the way they devel- oped techniques for dealing in phase space with the arbitrariness that arises in classical solutions given data at a given coordinate time. They argued that even though one seemed to destroy the full covariance through the focus on a temporal foliation of spacetime, this loss was illusory. In work undertaken with Anderson and I. Goldberg in the early 1950’s they constructed explicit expressions for both the generator of transformations between solutions which could be physically distinct, i.e., did not necessarily correspond to changes in spacetime coordinates, and invariant transformations that did correspond to four-dimensional diffeomorphisms. They argued that the resulting factor al- gebra represented diffeomorphism invariants that were the correct candidates for promotion to quantum operators. Early on they convinced themselves that only the corresponding construction of classical invariants could ade- quately reflect the fully relativistic absence of physical meaning of spacetime coordinates. Efforts were made by Bergmann students Newman and Janis to construct these classical invariants. Then in the late 1950’s Bergmann and Komar proposed a comprehensive program in which classical invariants could arXiv:1909.05412v2 [physics.hist-ph] 24 Dec 2020 be constructed using the spacetime geometry itself to fix intrinsic spacetime landmarks.