Advances in Mathematics 346 (2019) 305–328 Contents lists available at ScienceDirect Advances in Mathematics www.elsevier.com/locate/aim L(R) with determinacy satisfies the Suslin hypothesis William Chan ∗,1, Stephen Jackson 1 Department of Mathematics, University of North Texas, Denton, TX 76203, USA a r t i c l e i n f o a b s t r a c t Article history: The Suslin hypothesis states that there are no nonseparable Received 21 March 2018 complete dense linear orderings without endpoints which have Received in revised form 31 January the countable chain condition. ZF + AD+ + V = L(P(R)) 2019 proves the Suslin hypothesis. In particular, if L(R) |= AD, Accepted 2 February 2019 then L(R)satisfiesthe Suslin hypothesis, which answers a Available online 12 February 2019 Communicated by Hugh Woodin question of Foreman. © 2019 Elsevier Inc. All rights reserved. MSC: 03E05 03E15 03E45 03E60 Keywords: Determinacy Suslin lines Vopenka forcing 1. Introduction Cantor had shown that R with its usual ordering is the unique complete dense sep- arable linear ordering without endpoints up to isomorphism. A linear ordering has the * Corresponding author. E-mail addresses:
[email protected] (W. Chan),
[email protected] (S. Jackson). 1 The first author was supported by NSF grant DMS-1703708. The second author was supported by NSF grant DMS-1800323. https://doi.org/10.1016/j.aim.2019.02.012 0001-8708/© 2019 Elsevier Inc. All rights reserved. 306 W. Chan, S. Jackson / Advances in Mathematics 346 (2019) 305–328 countable chain condition if there are no uncountable sets of disjoint nonempty open in- tervals.