A Class of Strong Diamond Principles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tall, Strong, and Strongly Compact Cardinals ∗†
Tall, Strong, and Strongly Compact Cardinals ∗y Arthur W. Apter z Department of Mathematics Baruch College of CUNY New York, New York 10010 USA and The CUNY Graduate Center, Mathematics 365 Fifth Avenue New York, New York 10016 USA http://faculty.baruch.cuny.edu/aapter [email protected] August 12, 2017 Abstract We construct three models in which there are different relationships among the classes of strongly compact, strong, and non-strong tall cardinals. In the first two of these models, the strongly compact and strong cardinals coincide precisely, and every strongly compact/strong cardinal is a limit of non-strong tall cardinals. In the remaining model, the strongly compact cardinals are precisely characterized as the measurable limits of strong cardinals, and every strongly compact cardinal is a limit of non-strong tall cardinals. These results extend and generalize those of of [3] and [1]. 1 Introduction and Preliminaries We begin with some definitions. Suppose κ is a cardinal and λ ≥ κ is an arbitrary ordinal. κ is λ tall if there is an elementary embedding j : V ! M with critical point κ such that j(κ) > λ and M κ ⊆ M. κ is tall if κ is λ tall for every ordinal λ. Hamkins made a systematic study of tall cardinals in [10]. In particular, among many other results, he showed that every cardinal which is ∗2010 Mathematics Subject Classifications: 03E35, 03E55. yKeywords: Supercompact cardinal, strongly compact cardinal, strong cardinal, tall cardinal, non-reflecting stationary set of ordinals, indestructibility. zThe author wishes to thank Stamatis Dimopoulos for helpful email correspondence on the subject matter of this paper. -
Axiomatic Set Teory P.D.Welch
Axiomatic Set Teory P.D.Welch. August 16, 2020 Contents Page 1 Axioms and Formal Systems 1 1.1 Introduction 1 1.2 Preliminaries: axioms and formal systems. 3 1.2.1 The formal language of ZF set theory; terms 4 1.2.2 The Zermelo-Fraenkel Axioms 7 1.3 Transfinite Recursion 9 1.4 Relativisation of terms and formulae 11 2 Initial segments of the Universe 17 2.1 Singular ordinals: cofinality 17 2.1.1 Cofinality 17 2.1.2 Normal Functions and closed and unbounded classes 19 2.1.3 Stationary Sets 22 2.2 Some further cardinal arithmetic 24 2.3 Transitive Models 25 2.4 The H sets 27 2.4.1 H - the hereditarily finite sets 28 2.4.2 H - the hereditarily countable sets 29 2.5 The Montague-Levy Reflection theorem 30 2.5.1 Absoluteness 30 2.5.2 Reflection Theorems 32 2.6 Inaccessible Cardinals 34 2.6.1 Inaccessible cardinals 35 2.6.2 A menagerie of other large cardinals 36 3 Formalising semantics within ZF 39 3.1 Definite terms and formulae 39 3.1.1 The non-finite axiomatisability of ZF 44 3.2 Formalising syntax 45 3.3 Formalising the satisfaction relation 46 3.4 Formalising definability: the function Def. 47 3.5 More on correctness and consistency 48 ii iii 3.5.1 Incompleteness and Consistency Arguments 50 4 The Constructible Hierarchy 53 4.1 The L -hierarchy 53 4.2 The Axiom of Choice in L 56 4.3 The Axiom of Constructibility 57 4.4 The Generalised Continuum Hypothesis in L. -
Are Large Cardinal Axioms Restrictive?
Are Large Cardinal Axioms Restrictive? Neil Barton∗ 24 June 2020y Abstract The independence phenomenon in set theory, while perva- sive, can be partially addressed through the use of large cardinal axioms. A commonly assumed idea is that large cardinal axioms are species of maximality principles. In this paper, I argue that whether or not large cardinal axioms count as maximality prin- ciples depends on prior commitments concerning the richness of the subset forming operation. In particular I argue that there is a conception of maximality through absoluteness, on which large cardinal axioms are restrictive. I argue, however, that large cardi- nals are still important axioms of set theory and can play many of their usual foundational roles. Introduction Large cardinal axioms are widely viewed as some of the best candi- dates for new axioms of set theory. They are (apparently) linearly ordered by consistency strength, have substantial mathematical con- sequences for questions independent from ZFC (such as consistency statements and Projective Determinacy1), and appear natural to the ∗Fachbereich Philosophie, University of Konstanz. E-mail: neil.barton@uni- konstanz.de. yI would like to thank David Aspero,´ David Fernandez-Bret´ on,´ Monroe Eskew, Sy-David Friedman, Victoria Gitman, Luca Incurvati, Michael Potter, Chris Scam- bler, Giorgio Venturi, Matteo Viale, Kameryn Williams and audiences in Cambridge, New York, Konstanz, and Sao˜ Paulo for helpful discussion. Two anonymous ref- erees also provided helpful comments, and I am grateful for their input. I am also very grateful for the generous support of the FWF (Austrian Science Fund) through Project P 28420 (The Hyperuniverse Programme) and the VolkswagenStiftung through the project Forcing: Conceptual Change in the Foundations of Mathematics. -
Stably Measurable Cardinals
Stably measurable cardinals P.D. Welch School of Mathematics, University of Bristol, Bristol, BS ÕTW, England Dec. óß’th óþÕ Abstract We dene a weak iterability notion that is sucient for a number of arguments concerning Σ-denability at uncountable regular cardinals. In particular we give its exact consistency strength rstly in terms of the second uniform indiscernible for bounded subsets of : u( ), and secondly to give the consistency strength of a property of Lucke’s.¨ eorem: e following are equiconsistent: (i) ere exists which is stably measurable ; (ii) for some cardinal , u( ) = ( ); (iii) e Σ-club property holds at a cardinal . M H + H Here ( ) is the height of the smallest ăΣ ( ) containing + and all of ( ). Let R R Φ( ) be the assertion: @X Ď @r P [X is Σ( , r)-denable ←→ X P Σ(r)]. eorem: Assume is stably measurable. en Φ(). And a form of converse: eorem: Suppose there is no sharp for an inner model with a strong cardinal. en in the core model K we have: “DΦ()” is (set)-generically absolute ←→ ere are arbitrarily large stably measurable cardinals. When u( ) < ( ) we give some results on inner model reection. Õ Õ Introduction ere are a number of properties in the literature that fall in the region of being weaker than measur- ability, but stronger than j, and thus inconsistent with the universe being that of the constructible sets. Actual cardinals of this nature have been well known and are usually of ancient pedigree: Ramsey cardinals, Rowbottom cardinals, Erdos˝ cardinals, and the like (cf. for example, [ß]). -
Arxiv:1608.00592V3 [Math.LO] 3 Mar 2018 Ria Eso.Mlie Ute Rvdi 1]Ta H Olcino S of Furthe Collection Space
THE HALPERN-LAUCHLI¨ THEOREM AT A MEASURABLE CARDINAL NATASHA DOBRINEN AND DAN HATHAWAY Abstract. Several variants of the Halpern-L¨auchli Theorem for trees of un- countable height are investigated. For κ weakly compact, we prove that the various statements are all equivalent. We show that the strong tree version holds for one tree on any infinite cardinal. For any finite d ≥ 2, we prove the consistency of the Halpern-L¨auchli Theorem on d many normal κ-trees at a measurable cardinal κ, given the consistency of a κ + d-strong cardinal. This follows from a more general consistency result at measurable κ, which includes the possibility of infinitely many trees, assuming partition relations which hold in models of AD. 1. Introduction Halpern and L¨auchli proved their celebrated theorem regarding Ramsey theory on products of trees in [12] as a necessary step for their construction in [13] of a model of ZF in which the Boolean Prime Ideal Theorem holds but the Axiom of Choice fails. Since then, many variations have been established and applied. One of the earliest of these is due to Milliken, who extended the Halpern-L¨auchli Theorem to colorings of finite products of strong trees in [16]. As the two versions are equivalent, this version is often used synonymously with Halpern and L¨auchli’s orginal version. Milliken further proved in [17] that the collection of strong trees forms, in modern terminology, a topological Ramsey space. Further variations and applications include ω many perfect trees in [15]; partitions of products in [2]; the density version in [5]; the dual version in [21]; canonical equivalence relations on finite strong trees in [22]; and applications to colorings of subsets of the rationals in [1] and [23], and to finite Ramsey degrees of the Rado graph in [18] which in turn was applied to show the Rado graph has the rainbow Ramsey property in [4], to name just a few. -
Diamonds on Large Cardinals
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto Diamonds on large cardinals Alex Hellsten Academic dissertation To be presented, with the permission of the Faculty of Science of the University of Helsinki, for public criticism in Auditorium III, Porthania, on December 13th, 2003, at 10 o’clock a.m. Department of Mathematics Faculty of Science University of Helsinki ISBN 952-91-6680-X (paperback) ISBN 952-10-1502-0 (PDF) Yliopistopaino Helsinki 2003 Acknowledgements I want to express my sincere gratitude to my supervisor Professor Jouko V¨a¨an¨anen for supporting me during all these years of getting acquainted with the intriguing field of set theory. I am also grateful to all other members of the Helsinki Logic Group for interesting discussions and guidance. Especially I wish to thank Do- cent Tapani Hyttinen who patiently has worked with all graduate students regardless of whether they study under his supervision or not. Professor Saharon Shelah deserve special thanks for all collaboration and sharing of his insight in the subject. The officially appointed readers Professor Boban Veliˇckovi´cand Docent Kerkko Luosto have done a careful and minute job in reading the thesis. In effect they have served as referees for the second paper and provided many valuable comments. Finally I direct my warmest gratitude and love to my family to whom I also wish to dedicate this work. My wife Carmela and my daughters Jolanda and Vendela have patiently endured the process and have always stood me by. -
Weak Prediction Principles
WEAK PREDICTION PRINCIPLES OMER BEN-NERIA, SHIMON GARTI, AND YAIR HAYUT Abstract. We prove the consistency of the failure of the weak diamond Φλ at strongly inaccessible cardinals. On the other hand we show that <λ λ the very weak diamond Ψλ is equivalent to the statement 2 < 2 and hence holds at every strongly inaccessible cardinal. 2010 Mathematics Subject Classification. 03E05. Key words and phrases. Weak diamond, very weak diamond, Radin forcing. 1 2 OMER BEN-NERIA, SHIMON GARTI, AND YAIR HAYUT 0. Introduction The prediction principle ♦λ (diamond on λ) was discovered by Jensen, [6], who proved that it holds over any regular cardinal λ in the constructible universe. This principle says that there exists a sequence hAα : α < λi of sets, Aα ⊆ α for every α < λ, such that for every A ⊆ λ the set fα < λ : A \ α = Aαg is stationary. Jensen introduced the diamond in 1972, and the main focus was the case of @0 @0 λ = @1. It is immediate that ♦@1 ) 2 = @1, but consistent that 2 = @1 along with :♦@1 . Motivated by algebraic constructions, Devlin and Shelah [2] introduced a weak form of the diamond principle which follows from the continuum hypothesis: Definition 0.1 (The Devlin-Shelah weak diamond). Let λ be a regular uncountable cardinal. The weak diamond on λ (denoted by Φλ) is the following principle: For every function c : <λ2 ! 2 there exists a function g 2 λ2 such that λ fα 2 λ : c(f α) = g(α)g is a stationary subset of λ whenever f 2 2. -
Parametrized ♢ Principles
Parametrized ♦ principles Justin Tatch Moore, Michael Hruˇs´ak, Mirna Dˇzamonja ∗† September 2, 2003 Abstract We will present a collection of guessing principles which have a similar relationship to ♦ as cardinal invariants of the continuum have to CH. The purpose is to provide a means for systematically analyzing ♦ and its consequences. It also provides for a unified approach for understanding the status of a number of consequences of CH and ♦ in models such as those of Laver, Miller, and Sacks. 1 Introduction Very early on in the course of modern set theory, Jensen isolated the following combinatorial principle known as ♦: ♦ There is a sequence Aα (α < ω1) such that for all α < ω1, Aα ⊆ α and if X is a subset of ω1 then set {α < ω1 : X ∩ α = Aα} is stationary. ∗The first and third authors received support from EPSRC grant GR/M71121 for the research of this paper. The research of the second author was supported in part by the Netherlands Organization for Scientific Research (NWO) – Grant 613.007.039, and in part by the Grant Agency of the Czech Republic – Grant GACRˇ 201/00/1466. †2000 Mathematics Subject Classification. Primary 03E17, 03E65. Key words: Dia- mond, weak diamond, cardinal invariant, guessing principle. 1 Jensen used this principle to construct a Suslin tree [17] and later many other constructions were carried out using ♦ as an assumption — see [9]. The purpose of this paper is to provide a broad framework for analyzing the consequences of Jensen’s ♦ principle. Our intent is to present an array of ♦-principles which have the same relation to ♦ as the cardinal invariants of the continuum (see e.g. -
The Virtual Large Cardinal Hierarchy
The Virtual Large Cardinal Hierarchy Stamatis Dimopoulos, Victoria Gitman and Dan Saattrup Nielsen September 10, 2020 Abstract. We continue the study of the virtual large cardinal hierarchy, initi- ated in [GS18], by analysing virtual versions of superstrong, Woodin, Vopěnka, and Berkeley cardinals. Gitman and Schindler showed that virtualizations of strong and supercompact cardinals yield the same large cardinal notion [GS18]. We show the same result for a (weak) virtualization of Woodin and a virtual- ization of Vopěnka cardinals. We also show that there is a virtually Berkeley cardinal if and only if the virtual Vopěnka principle holds, but On is not Mahlo. Contents 1 Introduction 1 2 Preliminaries 3 3 Virtually supercompact cardinals 4 4 Virtual Woodin and Vopěnka cardinals 12 5 Virtual Berkeley cardinals 18 6 Questions 24 A Chart of virtual large cardinals 25 1 Introduction The study of generic large cardinals, being cardinals that are critical points of elementary embeddings existing in generic extensions, goes back to the 1970’s. At that time, the primary interest was the existence of precipitous and saturated ideals on small cardinals like !1 and !2. Research in this area later moved to the study of more general generic embeddings, both defined on V , but also on rank-initial segments of V — these were investigated by e.g. [DL89] and [FG10]. 1 The move to virtual large cardinals happened when [Sch00] introduced the remarkable cardinals, which it turned out later were precisely a virtualization of supercompactness. Various other virtual large cardinals were first investi- gated in [GS18]. The key difference between virtual large cardinals and generic versions of large cardinals studied earlier is that in the virtual case we require the embedding to be between sets with the target model being a subset of the ground model. -
SET THEORY 1. the Suslin Problem 1.1. the Suslin Hypothesis. Recall
SET THEORY MOSHE KAMENSKY Abstract. Notes on set theory, mainly forcing. The first four sections closely follow the lecture notes Williams [8] and the book Kunen [4]. The last section covers topics from various sources, as indicated there. Hopefully, all errors are mine. 1. The Suslin problem 1.1. The Suslin hypothesis. Recall that R is the unique dense, complete and separable order without endpoints (up to isomorphism). It follows from the sepa- rability that any collection of pairwise disjoint open intervals is countable. Definition 1.1.1. A linear order satisfies the countable chain condition (ccc) if any collection of pairwise disjoint open intervals is countable. Hypothesis 1.1.2 (The Suslin hypothesis). (R; <) is the unique complete dense linear order without endpoints that satisfies the countable chain condition. We will not prove the Suslin hypothesis (this is a theorem). Instead, we will reformulate it in various ways. First, we have the following apparent generalisation of the Suslin hypothesis. Theorem 1.1.3. The following are equivalent: (1) The Suslin hypothesis (2) Any ccc linear order is separable Proof. Let (X; <) be a ccc linear order that is not separable. Assume first that it is dense. Then we may assume it has no end points (by dropping them). The completion again has the ccc, so by the Suslin hypothesis is isomorphic to R. Hence we may assume that X ⊆ R, but then X is separable. It remains to produce a dense counterexample from a general one. Define x ∼ y if both (x; y) and (y; x) are separable. This is clearly a convex equivalence relation, so the quotient Y is again a linear order satisfying the ccc. -
Large Cardinals and the Iterative Conception of Set
Large cardinals and the iterative conception of set Neil Barton∗ 4 December 2017y Abstract The independence phenomenon in set theory, while pervasive, can be par- tially addressed through the use of large cardinal axioms. One idea sometimes alluded to is that maximality considerations speak in favour of large cardinal ax- ioms consistent with ZFC, since it appears to be ‘possible’ (in some sense) to continue the hierarchy far enough to generate the relevant transfinite number. In this paper, we argue against this idea based on a priority of subset formation under the iterative conception. In particular, we argue that there are several con- ceptions of maximality that justify the consistency but falsity of large cardinal axioms. We argue that the arguments we provide are illuminating for the debate concerning the justification of new axioms in iteratively-founded set theory. Introduction Large cardinal axioms (discussed in detail below) are widely viewed as some of the best candidates for new axioms of set theory. They are (apparently) linearly ordered by consistency strength, have substantial mathematical consequences for indepen- dence results (both as a tool for generating new models and for consequences within the models in which they reside), and often appear natural to the working set theo- rist, providing fine-grained information about different properties of transfinite sets. They are considered mathematically interesting and central for the study of set the- ory and its philosophy. In this paper, we do not deny any of the above views. We will, however, argue that the status of large cardinal axioms as maximality principles is questionable. -
What Are Axioms of Set Theory?
What are Axioms of Set Theory? Set-theorists use the term Axiom (of Set Theory) quite freely. What do they mean by it? Examples Axioms of ZFC: Axiom of Extensionality Pairing Axiom Separation Axiom Union Axiom Powerset Axiom Axiom of Innity Replacement Axiom Axiom of Foundation Axiom of Choice What are Axioms of Set Theory? Beyond ZFC: Axiom of Constructibility Axiom of Determinacy Large Cardinal Axioms Reinhardt's Axiom Cardinal Characteristic Axioms Martin's Axiom Axiom A Proper Forcing Axiom Open Colouring Axiom What are Axioms of Set Theory? Hypotheses: Continuum Hypothesis Suslin Hypothesis Kurepa Hypothesis Singular Cardinal Hypothesis Principles: Diamond Principle Square Principle Vopenka's Principle Reection Principles What are Axioms of Set Theory? When does a statement achieve the status of axiom, hypothesis or principle? It is worth examining this question in three specic cases: A. The Pairing Axiom B. Large Cardinal Axioms C. The Axiom of Choice What are Axioms of Set Theory? A. The Pairing Axiom If x; y are sets then there is a set whose elements are precisely x and y Such an assertion is basic to the way sets are regarded in mathematics. Moreover if the term set is used in a way that violates this assertion we would have to regard this use as based upon a dierent concept altogether. Thus, as Feferman has observed, the Pairing Axiom qualies as an axiom in the ideal sense of the Oxford English Dictionary: A self-evident proposition requiring no formal demonstration to prove its truth, but received and assented to as soon as mentioned.