What Are Axioms of Set Theory?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Axiomatic Set Teory P.D.Welch
Axiomatic Set Teory P.D.Welch. August 16, 2020 Contents Page 1 Axioms and Formal Systems 1 1.1 Introduction 1 1.2 Preliminaries: axioms and formal systems. 3 1.2.1 The formal language of ZF set theory; terms 4 1.2.2 The Zermelo-Fraenkel Axioms 7 1.3 Transfinite Recursion 9 1.4 Relativisation of terms and formulae 11 2 Initial segments of the Universe 17 2.1 Singular ordinals: cofinality 17 2.1.1 Cofinality 17 2.1.2 Normal Functions and closed and unbounded classes 19 2.1.3 Stationary Sets 22 2.2 Some further cardinal arithmetic 24 2.3 Transitive Models 25 2.4 The H sets 27 2.4.1 H - the hereditarily finite sets 28 2.4.2 H - the hereditarily countable sets 29 2.5 The Montague-Levy Reflection theorem 30 2.5.1 Absoluteness 30 2.5.2 Reflection Theorems 32 2.6 Inaccessible Cardinals 34 2.6.1 Inaccessible cardinals 35 2.6.2 A menagerie of other large cardinals 36 3 Formalising semantics within ZF 39 3.1 Definite terms and formulae 39 3.1.1 The non-finite axiomatisability of ZF 44 3.2 Formalising syntax 45 3.3 Formalising the satisfaction relation 46 3.4 Formalising definability: the function Def. 47 3.5 More on correctness and consistency 48 ii iii 3.5.1 Incompleteness and Consistency Arguments 50 4 The Constructible Hierarchy 53 4.1 The L -hierarchy 53 4.2 The Axiom of Choice in L 56 4.3 The Axiom of Constructibility 57 4.4 The Generalised Continuum Hypothesis in L. -
Equivalents to the Axiom of Choice and Their Uses A
EQUIVALENTS TO THE AXIOM OF CHOICE AND THEIR USES A Thesis Presented to The Faculty of the Department of Mathematics California State University, Los Angeles In Partial Fulfillment of the Requirements for the Degree Master of Science in Mathematics By James Szufu Yang c 2015 James Szufu Yang ALL RIGHTS RESERVED ii The thesis of James Szufu Yang is approved. Mike Krebs, Ph.D. Kristin Webster, Ph.D. Michael Hoffman, Ph.D., Committee Chair Grant Fraser, Ph.D., Department Chair California State University, Los Angeles June 2015 iii ABSTRACT Equivalents to the Axiom of Choice and Their Uses By James Szufu Yang In set theory, the Axiom of Choice (AC) was formulated in 1904 by Ernst Zermelo. It is an addition to the older Zermelo-Fraenkel (ZF) set theory. We call it Zermelo-Fraenkel set theory with the Axiom of Choice and abbreviate it as ZFC. This paper starts with an introduction to the foundations of ZFC set the- ory, which includes the Zermelo-Fraenkel axioms, partially ordered sets (posets), the Cartesian product, the Axiom of Choice, and their related proofs. It then intro- duces several equivalent forms of the Axiom of Choice and proves that they are all equivalent. In the end, equivalents to the Axiom of Choice are used to prove a few fundamental theorems in set theory, linear analysis, and abstract algebra. This paper is concluded by a brief review of the work in it, followed by a few points of interest for further study in mathematics and/or set theory. iv ACKNOWLEDGMENTS Between the two department requirements to complete a master's degree in mathematics − the comprehensive exams and a thesis, I really wanted to experience doing a research and writing a serious academic paper. -
Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Boise State University, [email protected]
Boise State University ScholarWorks Mathematics Undergraduate Theses Department of Mathematics 5-2014 Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Boise State University, [email protected] Follow this and additional works at: http://scholarworks.boisestate.edu/ math_undergraduate_theses Part of the Set Theory Commons Recommended Citation Rahim, Farighon Abdul, "Axioms of Set Theory and Equivalents of Axiom of Choice" (2014). Mathematics Undergraduate Theses. Paper 1. Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Advisor: Samuel Coskey Boise State University May 2014 1 Introduction Sets are all around us. A bag of potato chips, for instance, is a set containing certain number of individual chip’s that are its elements. University is another example of a set with students as its elements. By elements, we mean members. But sets should not be confused as to what they really are. A daughter of a blacksmith is an element of a set that contains her mother, father, and her siblings. Then this set is an element of a set that contains all the other families that live in the nearby town. So a set itself can be an element of a bigger set. In mathematics, axiom is defined to be a rule or a statement that is accepted to be true regardless of having to prove it. In a sense, axioms are self evident. In set theory, we deal with sets. Each time we state an axiom, we will do so by considering sets. Example of the set containing the blacksmith family might make it seem as if sets are finite. -
A Class of Strong Diamond Principles
A class of strong diamond principles Joel David Hamkins Georgia State University & The City University of New York∗ Abstract. In the context of large cardinals, the classical diamond principle 3κ is easily strengthened in natural ways. When κ is a measurable cardinal, for example, one might ask that a 3κ sequence anticipate every subset of κ not merely on a stationary set, but on a set of normal measure one. This . is equivalent to the existence of a function ` . κ → Vκ such that for any A ∈ H(κ+) there is an embedding j : V → M having critical point κ with j(`)(κ) = A. This and the similar principles formulated for many other large cardinal notions, including weakly compact, indescribable, unfoldable, Ram- sey, strongly unfoldable and strongly compact cardinals, are best conceived as an expression of the Laver function concept from supercompact cardi- nals for these weaker large cardinal notions. The resulting Laver diamond ? principles \ κ can hold or fail in a variety of interesting ways. The classical diamond principle 3κ, for an infinite cardinal κ, is a gem of modern infinite combinatorics; its reflections have illuminated the path of in- numerable combinatorial constructions and unify an infinite amount of com- binatorial information into a single, transparent statement. When κ exhibits any of a variety of large cardinal properties, however, the principle can be easily strengthened in natural ways, and in this article I introduce and survey the resulting class of strengthened principles, which I call the Laver diamond principles. MSC Subject Codes: 03E55, 03E35, 03E05. Keywords: Large cardinals, Laver dia- mond, Laver function, fast function, diamond sequence. -
Diamonds on Large Cardinals
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto Diamonds on large cardinals Alex Hellsten Academic dissertation To be presented, with the permission of the Faculty of Science of the University of Helsinki, for public criticism in Auditorium III, Porthania, on December 13th, 2003, at 10 o’clock a.m. Department of Mathematics Faculty of Science University of Helsinki ISBN 952-91-6680-X (paperback) ISBN 952-10-1502-0 (PDF) Yliopistopaino Helsinki 2003 Acknowledgements I want to express my sincere gratitude to my supervisor Professor Jouko V¨a¨an¨anen for supporting me during all these years of getting acquainted with the intriguing field of set theory. I am also grateful to all other members of the Helsinki Logic Group for interesting discussions and guidance. Especially I wish to thank Do- cent Tapani Hyttinen who patiently has worked with all graduate students regardless of whether they study under his supervision or not. Professor Saharon Shelah deserve special thanks for all collaboration and sharing of his insight in the subject. The officially appointed readers Professor Boban Veliˇckovi´cand Docent Kerkko Luosto have done a careful and minute job in reading the thesis. In effect they have served as referees for the second paper and provided many valuable comments. Finally I direct my warmest gratitude and love to my family to whom I also wish to dedicate this work. My wife Carmela and my daughters Jolanda and Vendela have patiently endured the process and have always stood me by. -
Weak Prediction Principles
WEAK PREDICTION PRINCIPLES OMER BEN-NERIA, SHIMON GARTI, AND YAIR HAYUT Abstract. We prove the consistency of the failure of the weak diamond Φλ at strongly inaccessible cardinals. On the other hand we show that <λ λ the very weak diamond Ψλ is equivalent to the statement 2 < 2 and hence holds at every strongly inaccessible cardinal. 2010 Mathematics Subject Classification. 03E05. Key words and phrases. Weak diamond, very weak diamond, Radin forcing. 1 2 OMER BEN-NERIA, SHIMON GARTI, AND YAIR HAYUT 0. Introduction The prediction principle ♦λ (diamond on λ) was discovered by Jensen, [6], who proved that it holds over any regular cardinal λ in the constructible universe. This principle says that there exists a sequence hAα : α < λi of sets, Aα ⊆ α for every α < λ, such that for every A ⊆ λ the set fα < λ : A \ α = Aαg is stationary. Jensen introduced the diamond in 1972, and the main focus was the case of @0 @0 λ = @1. It is immediate that ♦@1 ) 2 = @1, but consistent that 2 = @1 along with :♦@1 . Motivated by algebraic constructions, Devlin and Shelah [2] introduced a weak form of the diamond principle which follows from the continuum hypothesis: Definition 0.1 (The Devlin-Shelah weak diamond). Let λ be a regular uncountable cardinal. The weak diamond on λ (denoted by Φλ) is the following principle: For every function c : <λ2 ! 2 there exists a function g 2 λ2 such that λ fα 2 λ : c(f α) = g(α)g is a stationary subset of λ whenever f 2 2. -
Lecture 9: Axiomatic Set Theory
Lecture 9: Axiomatic Set Theory December 16, 2014 Lecture 9: Axiomatic Set Theory Key points of today's lecture: I The iterative concept of set. I The language of set theory (LOST). I The axioms of Zermelo-Fraenkel set theory (ZFC). I Justification of the axioms based on the iterative concept of set. Today Lecture 9: Axiomatic Set Theory I The iterative concept of set. I The language of set theory (LOST). I The axioms of Zermelo-Fraenkel set theory (ZFC). I Justification of the axioms based on the iterative concept of set. Today Key points of today's lecture: Lecture 9: Axiomatic Set Theory I The language of set theory (LOST). I The axioms of Zermelo-Fraenkel set theory (ZFC). I Justification of the axioms based on the iterative concept of set. Today Key points of today's lecture: I The iterative concept of set. Lecture 9: Axiomatic Set Theory I The axioms of Zermelo-Fraenkel set theory (ZFC). I Justification of the axioms based on the iterative concept of set. Today Key points of today's lecture: I The iterative concept of set. I The language of set theory (LOST). Lecture 9: Axiomatic Set Theory I Justification of the axioms based on the iterative concept of set. Today Key points of today's lecture: I The iterative concept of set. I The language of set theory (LOST). I The axioms of Zermelo-Fraenkel set theory (ZFC). Lecture 9: Axiomatic Set Theory Today Key points of today's lecture: I The iterative concept of set. I The language of set theory (LOST). -
Set-Theoretical Background 1.1 Ordinals and Cardinals
Set-Theoretical Background 11 February 2019 Our set-theoretical framework will be the Zermelo{Fraenkel axioms with the axiom of choice (ZFC): • Axiom of Extensionality. If X and Y have the same elements, then X = Y . • Axiom of Pairing. For all a and b there exists a set fa; bg that contains exactly a and b. • Axiom Schema of Separation. If P is a property (with a parameter p), then for all X and p there exists a set Y = fx 2 X : P (x; p)g that contains all those x 2 X that have the property P . • Axiom of Union. For any X there exists a set Y = S X, the union of all elements of X. • Axiom of Power Set. For any X there exists a set Y = P (X), the set of all subsets of X. • Axiom of Infinity. There exists an infinite set. • Axiom Schema of Replacement. If a class F is a function, then for any X there exists a set Y = F (X) = fF (x): x 2 Xg. • Axiom of Regularity. Every nonempty set has a minimal element for the membership relation. • Axiom of Choice. Every family of nonempty sets has a choice function. 1.1 Ordinals and cardinals A set X is well ordered if it is equipped with a total order relation such that every nonempty subset S ⊆ X has a smallest element. The statement that every set admits a well ordering is equivalent to the axiom of choice. A set X is transitive if every element of an element of X is an element of X. -
Parametrized ♢ Principles
Parametrized ♦ principles Justin Tatch Moore, Michael Hruˇs´ak, Mirna Dˇzamonja ∗† September 2, 2003 Abstract We will present a collection of guessing principles which have a similar relationship to ♦ as cardinal invariants of the continuum have to CH. The purpose is to provide a means for systematically analyzing ♦ and its consequences. It also provides for a unified approach for understanding the status of a number of consequences of CH and ♦ in models such as those of Laver, Miller, and Sacks. 1 Introduction Very early on in the course of modern set theory, Jensen isolated the following combinatorial principle known as ♦: ♦ There is a sequence Aα (α < ω1) such that for all α < ω1, Aα ⊆ α and if X is a subset of ω1 then set {α < ω1 : X ∩ α = Aα} is stationary. ∗The first and third authors received support from EPSRC grant GR/M71121 for the research of this paper. The research of the second author was supported in part by the Netherlands Organization for Scientific Research (NWO) – Grant 613.007.039, and in part by the Grant Agency of the Czech Republic – Grant GACRˇ 201/00/1466. †2000 Mathematics Subject Classification. Primary 03E17, 03E65. Key words: Dia- mond, weak diamond, cardinal invariant, guessing principle. 1 Jensen used this principle to construct a Suslin tree [17] and later many other constructions were carried out using ♦ as an assumption — see [9]. The purpose of this paper is to provide a broad framework for analyzing the consequences of Jensen’s ♦ principle. Our intent is to present an array of ♦-principles which have the same relation to ♦ as the cardinal invariants of the continuum (see e.g. -
SET THEORY Andrea K. Dieterly a Thesis Submitted to the Graduate
SET THEORY Andrea K. Dieterly A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF ARTS August 2011 Committee: Warren Wm. McGovern, Advisor Juan Bes Rieuwert Blok i Abstract Warren Wm. McGovern, Advisor This manuscript was to show the equivalency of the Axiom of Choice, Zorn's Lemma and Zermelo's Well-Ordering Principle. Starting with a brief history of the development of set history, this work introduced the Axioms of Zermelo-Fraenkel, common applications of the axioms, and set theoretic descriptions of sets of numbers. The book, Introduction to Set Theory, by Karel Hrbacek and Thomas Jech was the primary resource with other sources providing additional background information. ii Acknowledgements I would like to thank Warren Wm. McGovern for his assistance and guidance while working and writing this thesis. I also want to thank Reiuwert Blok and Juan Bes for being on my committee. Thank you to Dan Shifflet and Nate Iverson for help with the typesetting program LATEX. A personal thank you to my husband, Don, for his love and support. iii Contents Contents . iii 1 Introduction 1 1.1 Naive Set Theory . 2 1.2 The Axiom of Choice . 4 1.3 Russell's Paradox . 5 2 Axioms of Zermelo-Fraenkel 7 2.1 First Order Logic . 7 2.2 The Axioms of Zermelo-Fraenkel . 8 2.3 The Recursive Theorem . 13 3 Development of Numbers 16 3.1 Natural Numbers and Integers . 16 3.2 Rational Numbers . 20 3.3 Real Numbers . -
SET THEORY 1. the Suslin Problem 1.1. the Suslin Hypothesis. Recall
SET THEORY MOSHE KAMENSKY Abstract. Notes on set theory, mainly forcing. The first four sections closely follow the lecture notes Williams [8] and the book Kunen [4]. The last section covers topics from various sources, as indicated there. Hopefully, all errors are mine. 1. The Suslin problem 1.1. The Suslin hypothesis. Recall that R is the unique dense, complete and separable order without endpoints (up to isomorphism). It follows from the sepa- rability that any collection of pairwise disjoint open intervals is countable. Definition 1.1.1. A linear order satisfies the countable chain condition (ccc) if any collection of pairwise disjoint open intervals is countable. Hypothesis 1.1.2 (The Suslin hypothesis). (R; <) is the unique complete dense linear order without endpoints that satisfies the countable chain condition. We will not prove the Suslin hypothesis (this is a theorem). Instead, we will reformulate it in various ways. First, we have the following apparent generalisation of the Suslin hypothesis. Theorem 1.1.3. The following are equivalent: (1) The Suslin hypothesis (2) Any ccc linear order is separable Proof. Let (X; <) be a ccc linear order that is not separable. Assume first that it is dense. Then we may assume it has no end points (by dropping them). The completion again has the ccc, so by the Suslin hypothesis is isomorphic to R. Hence we may assume that X ⊆ R, but then X is separable. It remains to produce a dense counterexample from a general one. Define x ∼ y if both (x; y) and (y; x) are separable. This is clearly a convex equivalence relation, so the quotient Y is again a linear order satisfying the ccc. -
Consistency of a Counterexample to Naimark's Problem
Consistency of a counterexample to Naimark’s problem Charles Akemann† and Nik Weaver‡§ †Department of Mathematics, University of California, Santa Barbara, CA 93106; and ‡Department of Mathematics, Washington University, St. Louis, MO 63130 Edited by Vaughan F. Jones, University of California, Berkeley, CA, and approved March 29, 2004 (received for review March 2, 2004) We construct a C*-algebra that has only one irreducible represen- example to Naimark’s problem. Our construction is not carried tation up to unitary equivalence but is not isomorphic to the out in ZFC (Zermelo–Frankel set theory with the axion of algebra of compact operators on any Hilbert space. This answers an choice): it requires Jensen’s ‘‘diamond’’ principle, which follows old question of Naimark. Our construction uses a combinatorial from Go¨del’s axiom of constructibility and hence is relatively statement called the diamond principle, which is known to be consistent with ZFC, i.e., if ZFC is consistent then so is ZFC plus consistent with but not provable from the standard axioms of set diamond (see refs. 13 and 14 for general background on set theory (assuming that these axioms are consistent). We prove that theory). The diamond principle has been used to prove a variety the statement ‘‘there exists a counterexample to Naimark’s prob- of consistency results in mainstream mathematics (see, e.g., refs. lem which is generated by Ꭽ1 elements’’ is undecidable in standard 15–17). set theory. Presumably, the existence of a counterexample to Naimark’s problem is independent of ZFC, but we have not yet been able to show this.