Parametrized ♢ Principles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guessing Axioms, Invariance and Suslin Trees
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of East Anglia digital repository Guessing Axioms, Invariance and Suslin Trees A thesis submitted to the School of Mathematics of the University of East Anglia in partial fulfilment of the requirements for the degree of Doctor of Philosophy By Alexander Primavesi November 2011 c This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. Abstract In this thesis we investigate the properties of a group of axioms known as `Guessing Axioms,' which can be used to extend the standard axiomatisation of set theory, ZFC. In particular, we focus on the axioms called `diamond' and `club,' and ask to what extent properties of the former hold of the latter. A question of I. Juhasz, of whether club implies the existence of a Suslin tree, remains unanswered at the time of writing and motivates a large part of our in- vestigation into diamond and club. We give a positive partial answer to Juhasz's question by defining the principle Superclub and proving that it implies the exis- tence of a Suslin tree, and that it is weaker than diamond and stronger than club (though these implications are not necessarily strict). Conversely, we specify some conditions that a forcing would have to meet if it were to be used to provide a negative answer, or partial answer, to Juhasz's question, and prove several results related to this. -
Axiomatic Set Teory P.D.Welch
Axiomatic Set Teory P.D.Welch. August 16, 2020 Contents Page 1 Axioms and Formal Systems 1 1.1 Introduction 1 1.2 Preliminaries: axioms and formal systems. 3 1.2.1 The formal language of ZF set theory; terms 4 1.2.2 The Zermelo-Fraenkel Axioms 7 1.3 Transfinite Recursion 9 1.4 Relativisation of terms and formulae 11 2 Initial segments of the Universe 17 2.1 Singular ordinals: cofinality 17 2.1.1 Cofinality 17 2.1.2 Normal Functions and closed and unbounded classes 19 2.1.3 Stationary Sets 22 2.2 Some further cardinal arithmetic 24 2.3 Transitive Models 25 2.4 The H sets 27 2.4.1 H - the hereditarily finite sets 28 2.4.2 H - the hereditarily countable sets 29 2.5 The Montague-Levy Reflection theorem 30 2.5.1 Absoluteness 30 2.5.2 Reflection Theorems 32 2.6 Inaccessible Cardinals 34 2.6.1 Inaccessible cardinals 35 2.6.2 A menagerie of other large cardinals 36 3 Formalising semantics within ZF 39 3.1 Definite terms and formulae 39 3.1.1 The non-finite axiomatisability of ZF 44 3.2 Formalising syntax 45 3.3 Formalising the satisfaction relation 46 3.4 Formalising definability: the function Def. 47 3.5 More on correctness and consistency 48 ii iii 3.5.1 Incompleteness and Consistency Arguments 50 4 The Constructible Hierarchy 53 4.1 The L -hierarchy 53 4.2 The Axiom of Choice in L 56 4.3 The Axiom of Constructibility 57 4.4 The Generalised Continuum Hypothesis in L. -
AUTOMORPHISMS of A^-TREES
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 173, November 1972 AUTOMORPHISMSOF a^-TREES BY THOMASJ. JECH(') ABSTRACT. The number of automorphisms of a normal c<Ji-tree T, denoted by o-(T), is either finite or 2 °<cr(T)¿ 2 . Moreover, if cr(T) is infinite then cr(T)^0 _ cr(T). Moreover, if T has no Suslin subtree then cr(T) is finite or v(T) - 2 " or cr(T) -2 '.It is consistent that there is a Suslin tree with arbitrary pre- cribed °~(T) between 2 u and 2 *, subject to the restriction above; e.g. 2 0 K, 2 1 = ^324 an(^ a(T) = N]7. We prove related results for Kurepa trees and isomorphism types of trees. We use Cohen's method of forcing and Jensen's tech- niques in L. 0. Introduction. A normal co.-tree, being a partially ordered set with K. elements, admits at most 2 automorphisms. Also, the number of isomorphism types of co .-trees is not larger that 2 . In §1, we shall show that the number of automorphisms a normal co .-tree admits is either finite, or at least 2 ; as a matter of fact, it is 2 or 2 , with the exception of Suslin trees. In §2, we investigate Suslin trees. Inspired by Jensen's result [6l, which says that it is consistent to have rigid Suslin trees, and Suslin trees which admit N ., or N~ automorphisms, we prove a general consistency result saying that the number of automorphisms of a Suslin tree can be anything between 2 and 2 it is allowed to be. -
A Class of Strong Diamond Principles
A class of strong diamond principles Joel David Hamkins Georgia State University & The City University of New York∗ Abstract. In the context of large cardinals, the classical diamond principle 3κ is easily strengthened in natural ways. When κ is a measurable cardinal, for example, one might ask that a 3κ sequence anticipate every subset of κ not merely on a stationary set, but on a set of normal measure one. This . is equivalent to the existence of a function ` . κ → Vκ such that for any A ∈ H(κ+) there is an embedding j : V → M having critical point κ with j(`)(κ) = A. This and the similar principles formulated for many other large cardinal notions, including weakly compact, indescribable, unfoldable, Ram- sey, strongly unfoldable and strongly compact cardinals, are best conceived as an expression of the Laver function concept from supercompact cardi- nals for these weaker large cardinal notions. The resulting Laver diamond ? principles \ κ can hold or fail in a variety of interesting ways. The classical diamond principle 3κ, for an infinite cardinal κ, is a gem of modern infinite combinatorics; its reflections have illuminated the path of in- numerable combinatorial constructions and unify an infinite amount of com- binatorial information into a single, transparent statement. When κ exhibits any of a variety of large cardinal properties, however, the principle can be easily strengthened in natural ways, and in this article I introduce and survey the resulting class of strengthened principles, which I call the Laver diamond principles. MSC Subject Codes: 03E55, 03E35, 03E05. Keywords: Large cardinals, Laver dia- mond, Laver function, fast function, diamond sequence. -
Diamonds on Large Cardinals
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto Diamonds on large cardinals Alex Hellsten Academic dissertation To be presented, with the permission of the Faculty of Science of the University of Helsinki, for public criticism in Auditorium III, Porthania, on December 13th, 2003, at 10 o’clock a.m. Department of Mathematics Faculty of Science University of Helsinki ISBN 952-91-6680-X (paperback) ISBN 952-10-1502-0 (PDF) Yliopistopaino Helsinki 2003 Acknowledgements I want to express my sincere gratitude to my supervisor Professor Jouko V¨a¨an¨anen for supporting me during all these years of getting acquainted with the intriguing field of set theory. I am also grateful to all other members of the Helsinki Logic Group for interesting discussions and guidance. Especially I wish to thank Do- cent Tapani Hyttinen who patiently has worked with all graduate students regardless of whether they study under his supervision or not. Professor Saharon Shelah deserve special thanks for all collaboration and sharing of his insight in the subject. The officially appointed readers Professor Boban Veliˇckovi´cand Docent Kerkko Luosto have done a careful and minute job in reading the thesis. In effect they have served as referees for the second paper and provided many valuable comments. Finally I direct my warmest gratitude and love to my family to whom I also wish to dedicate this work. My wife Carmela and my daughters Jolanda and Vendela have patiently endured the process and have always stood me by. -
Weak Prediction Principles
WEAK PREDICTION PRINCIPLES OMER BEN-NERIA, SHIMON GARTI, AND YAIR HAYUT Abstract. We prove the consistency of the failure of the weak diamond Φλ at strongly inaccessible cardinals. On the other hand we show that <λ λ the very weak diamond Ψλ is equivalent to the statement 2 < 2 and hence holds at every strongly inaccessible cardinal. 2010 Mathematics Subject Classification. 03E05. Key words and phrases. Weak diamond, very weak diamond, Radin forcing. 1 2 OMER BEN-NERIA, SHIMON GARTI, AND YAIR HAYUT 0. Introduction The prediction principle ♦λ (diamond on λ) was discovered by Jensen, [6], who proved that it holds over any regular cardinal λ in the constructible universe. This principle says that there exists a sequence hAα : α < λi of sets, Aα ⊆ α for every α < λ, such that for every A ⊆ λ the set fα < λ : A \ α = Aαg is stationary. Jensen introduced the diamond in 1972, and the main focus was the case of @0 @0 λ = @1. It is immediate that ♦@1 ) 2 = @1, but consistent that 2 = @1 along with :♦@1 . Motivated by algebraic constructions, Devlin and Shelah [2] introduced a weak form of the diamond principle which follows from the continuum hypothesis: Definition 0.1 (The Devlin-Shelah weak diamond). Let λ be a regular uncountable cardinal. The weak diamond on λ (denoted by Φλ) is the following principle: For every function c : <λ2 ! 2 there exists a function g 2 λ2 such that λ fα 2 λ : c(f α) = g(α)g is a stationary subset of λ whenever f 2 2. -
On the Continuous Gradability of the Cut-Point Orders of $\Mathbb R $-Trees
On the continuous gradability of the cut-point orders of R-trees Sam Adam-Day* *Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom; [email protected] Abstract An R-tree is a certain kind of metric space tree in which every point can be branching. Favre and Jonsson posed the following problem in 2004: can the class of orders underlying R-trees be characterised by the fact that every branch is order-isomorphic to a real interval? In the first part, I answer this question in the negative: there is a ‘branchwise-real tree order’ which is not ‘continuously gradable’. In the second part, I show that a branchwise-real tree order is con- tinuously gradable if and only if every well-stratified subtree is R-gradable. This link with set theory is put to work in the third part answering refinements of the main question, yielding several independence results. For example, when κ ¾ c, there is a branchwise-real tree order which is not continuously gradable, and which satisfies a property corresponding to κ-separability. Conversely, under Martin’s Axiom at κ such a tree does not exist. 1 Introduction An R-tree is to the real numbers what a graph-theoretic tree is to the integers. Formally, let 〈X , d〉 be a metric space. An arc between x, y ∈ X is the image of a topological embedding r : [a, b] → X of a real interval such that r(a) = x and r(b) = y (allowing for the possibility that a = b). -
SET THEORY 1. the Suslin Problem 1.1. the Suslin Hypothesis. Recall
SET THEORY MOSHE KAMENSKY Abstract. Notes on set theory, mainly forcing. The first four sections closely follow the lecture notes Williams [8] and the book Kunen [4]. The last section covers topics from various sources, as indicated there. Hopefully, all errors are mine. 1. The Suslin problem 1.1. The Suslin hypothesis. Recall that R is the unique dense, complete and separable order without endpoints (up to isomorphism). It follows from the sepa- rability that any collection of pairwise disjoint open intervals is countable. Definition 1.1.1. A linear order satisfies the countable chain condition (ccc) if any collection of pairwise disjoint open intervals is countable. Hypothesis 1.1.2 (The Suslin hypothesis). (R; <) is the unique complete dense linear order without endpoints that satisfies the countable chain condition. We will not prove the Suslin hypothesis (this is a theorem). Instead, we will reformulate it in various ways. First, we have the following apparent generalisation of the Suslin hypothesis. Theorem 1.1.3. The following are equivalent: (1) The Suslin hypothesis (2) Any ccc linear order is separable Proof. Let (X; <) be a ccc linear order that is not separable. Assume first that it is dense. Then we may assume it has no end points (by dropping them). The completion again has the ccc, so by the Suslin hypothesis is isomorphic to R. Hence we may assume that X ⊆ R, but then X is separable. It remains to produce a dense counterexample from a general one. Define x ∼ y if both (x; y) and (y; x) are separable. This is clearly a convex equivalence relation, so the quotient Y is again a linear order satisfying the ccc. -
What Are Axioms of Set Theory?
What are Axioms of Set Theory? Set-theorists use the term Axiom (of Set Theory) quite freely. What do they mean by it? Examples Axioms of ZFC: Axiom of Extensionality Pairing Axiom Separation Axiom Union Axiom Powerset Axiom Axiom of Innity Replacement Axiom Axiom of Foundation Axiom of Choice What are Axioms of Set Theory? Beyond ZFC: Axiom of Constructibility Axiom of Determinacy Large Cardinal Axioms Reinhardt's Axiom Cardinal Characteristic Axioms Martin's Axiom Axiom A Proper Forcing Axiom Open Colouring Axiom What are Axioms of Set Theory? Hypotheses: Continuum Hypothesis Suslin Hypothesis Kurepa Hypothesis Singular Cardinal Hypothesis Principles: Diamond Principle Square Principle Vopenka's Principle Reection Principles What are Axioms of Set Theory? When does a statement achieve the status of axiom, hypothesis or principle? It is worth examining this question in three specic cases: A. The Pairing Axiom B. Large Cardinal Axioms C. The Axiom of Choice What are Axioms of Set Theory? A. The Pairing Axiom If x; y are sets then there is a set whose elements are precisely x and y Such an assertion is basic to the way sets are regarded in mathematics. Moreover if the term set is used in a way that violates this assertion we would have to regard this use as based upon a dierent concept altogether. Thus, as Feferman has observed, the Pairing Axiom qualies as an axiom in the ideal sense of the Oxford English Dictionary: A self-evident proposition requiring no formal demonstration to prove its truth, but received and assented to as soon as mentioned. -
Consistency of a Counterexample to Naimark's Problem
Consistency of a counterexample to Naimark’s problem Charles Akemann† and Nik Weaver‡§ †Department of Mathematics, University of California, Santa Barbara, CA 93106; and ‡Department of Mathematics, Washington University, St. Louis, MO 63130 Edited by Vaughan F. Jones, University of California, Berkeley, CA, and approved March 29, 2004 (received for review March 2, 2004) We construct a C*-algebra that has only one irreducible represen- example to Naimark’s problem. Our construction is not carried tation up to unitary equivalence but is not isomorphic to the out in ZFC (Zermelo–Frankel set theory with the axion of algebra of compact operators on any Hilbert space. This answers an choice): it requires Jensen’s ‘‘diamond’’ principle, which follows old question of Naimark. Our construction uses a combinatorial from Go¨del’s axiom of constructibility and hence is relatively statement called the diamond principle, which is known to be consistent with ZFC, i.e., if ZFC is consistent then so is ZFC plus consistent with but not provable from the standard axioms of set diamond (see refs. 13 and 14 for general background on set theory (assuming that these axioms are consistent). We prove that theory). The diamond principle has been used to prove a variety the statement ‘‘there exists a counterexample to Naimark’s prob- of consistency results in mainstream mathematics (see, e.g., refs. lem which is generated by Ꭽ1 elements’’ is undecidable in standard 15–17). set theory. Presumably, the existence of a counterexample to Naimark’s problem is independent of ZFC, but we have not yet been able to show this. -
Final Project Information
MATH 145A - SET THEORY I INFORMATION ON THE FINAL PROJECT What? The final project is an opportunity for you to follow your curiosity and connect the mathematics we have been learning with your broader interests and coursework. You could either investigate applications and connections of set theory to other fields, or explore a topic of set theory more deeply. The project is individual, but it is okay to take the same topic as others and discuss it in group. However the final writeup should be your own and you cannot keep records of your discussions: the same rules as for the assignments apply. The goal is to learn about a topic and write an 8-12 page exposition. The topic should be new to you and should not have been covered in class. You do not need to (and are not at all expected to) come up with an original research idea: this takes years! I just expect you to read about some cool math, understand it, and write your own exposition. Your report should include a clear introduction that motivates your topic and sets the stage for the rest of the report. I expect to see serious mathematical content, including definitions, theorems, and proofs. The report should also cite all the references that you used. You should typeset your project (preferably with latex, but this is not required). You should also submit a paragraph listing your collabora- tors and their contributions to the project. The rest of this handout gives the key deadlines, the grading rubric and presents some potential project ideas. -
Some Results in the Extension with a Coherent Suslin Tree
Some results in the extension with a coherent Suslin tree Teruyuki Yorioka (Shizuoka University) Winter School in Abstract Analysis section Set Theory & Topology 28th January { 4th February, 2012 Motivation Theorem (Kunen, Rowbottom, Solovay, etc). implies K : Every ccc forcing MA@1 2 has property K. Question (Todorˇcevi´c). Does K imply ? 2 MA@1 Theorem (Todorˇcevi´c). PID +p > @1 implies no S-spaces. Question (Todorˇcevi´c). Under PID, does no S-spaces imply p > @1? Definition (Todorˇcevi´c). PFA(S) is an axiom that there exists a coherent Suslin tree S such that the forcing axiom holds for every proper forcing which preserves S to be Suslin. Theorem (Farah). t = @1 holds in the extension with a Suslin tree. Proof. Suppose that T is a Suslin tree, and take π : T ! [!]@0 such that ∗ s ≤T t ! π(s) ⊇ π(t) and s ?T t ! π(s) \ π(t) finite: Then for a generic branch G through T , the set fπ(s): s 2 Gg is a ⊆∗-decreasing sequence which doesn't have its lower bound in [!]@0. Motivation Theorem (Kunen, Rowbottom, Solovay, etc). implies K : Every ccc forcing MA@1 2 has property K. Question (Todorˇcevi´c). Does K imply ? 2 MA@1 Theorem (Todorˇcevi´c). PID +p > @1 implies no S-spaces. Question (Todorˇcevi´c). Under PID, does no S-spaces imply p > @1? Definition (Todorˇcevi´c). PFA(S) is an axiom that there exists a coherent Suslin tree S such that the forcing axiom holds for every proper forcing which preserves S to be Suslin. Question (Todorˇcevi´c).