Measurable Cardinal Wikipedia Contents
Total Page:16
File Type:pdf, Size:1020Kb
Measurable cardinal Wikipedia Contents 1 Atom (measure theory) 1 1.1 Definition ............................................... 1 1.2 Examples ............................................... 1 1.3 Non-atomic measures ......................................... 1 1.4 See also ................................................ 2 1.5 Notes ................................................. 2 1.6 References ............................................... 2 2 Axiom of determinacy 3 2.1 Types of game that are determined .................................. 3 2.2 Incompatibility of the axiom of determinacy with the axiom of choice ................ 3 2.3 Infinite logic and the axiom of determinacy .............................. 4 2.4 Large cardinals and the axiom of determinacy ............................ 4 2.5 See also ................................................ 4 2.6 References ............................................... 5 2.7 Further reading ............................................ 5 3 Cardinal number 6 3.1 History ................................................. 6 3.2 Motivation .............................................. 8 3.3 Formal definition ........................................... 9 3.4 Cardinal arithmetic .......................................... 10 3.4.1 Successor cardinal ...................................... 10 3.4.2 Cardinal addition ....................................... 10 3.4.3 Cardinal multiplication .................................... 11 3.4.4 Cardinal exponentiation ................................... 11 3.5 The continuum hypothesis ....................................... 12 3.6 See also ................................................ 12 3.7 References ............................................... 12 3.8 External links ............................................. 13 4 Class (set theory) 14 4.1 Examples ............................................... 14 i ii CONTENTS 4.2 Paradoxes ............................................... 14 4.3 Classes in formal set theories ..................................... 14 4.4 References ............................................... 15 4.5 External links ............................................. 15 5 Club filter 16 5.1 References ............................................... 16 6 Club set 17 6.1 Formal definition ........................................... 17 6.2 The closed unbounded filter ...................................... 17 6.3 See also ................................................ 18 6.4 References ............................................... 18 7 Continuum hypothesis 19 7.1 Cardinality of infinite sets ....................................... 19 7.2 Independence from ZFC ........................................ 20 7.3 Arguments for and against CH .................................... 20 7.4 The generalized continuum hypothesis ................................ 21 7.4.1 Implications of GCH for cardinal exponentiation ....................... 22 7.5 See also ................................................ 22 7.6 References ............................................... 22 7.7 External links ............................................. 23 8 Critical point (set theory) 24 8.1 References ............................................... 24 9 Dana Scott 25 9.1 Early career .............................................. 25 9.2 University of California, Berkeley, 1960–1963 ............................ 25 9.2.1 Modal and tense logic ..................................... 26 9.3 Stanford, Amsterdam and Princeton, 1963–1972 ........................... 26 9.4 Oxford University, 1972–1981 .................................... 26 9.4.1 Semantics of programming languages ............................. 26 9.5 Carnegie Mellon University 1981–2003 ................................ 27 9.6 See also ................................................ 27 9.7 Bibliography .............................................. 27 9.7.1 Works by Scott ........................................ 27 9.7.2 Other works .......................................... 27 9.8 References ............................................... 27 9.9 External links ............................................. 28 10 Diagonal intersection 29 10.1 See also ................................................ 29 CONTENTS iii 10.2 References ............................................... 29 11 Elementary equivalence 30 11.1 Elementarily equivalent structures ................................... 30 11.2 Elementary substructures and elementary extensions ......................... 30 11.3 Tarski–Vaught test ........................................... 31 11.4 Elementary embeddings ........................................ 31 11.5 References .............................................. 31 12 Equiconsistency 32 12.1 Consistency .............................................. 32 12.2 Consistency strength ......................................... 32 12.3 See also ................................................ 33 12.4 References ............................................... 33 13 Extender (set theory) 34 13.1 Formal definition of an extender .................................... 34 13.2 Defining an extender from an elementary embedding ......................... 34 13.3 References ............................................... 35 14 Fodor’s lemma 36 14.1 Proof ................................................. 36 14.2 Fodor’s lemma for trees ........................................ 36 14.3 References .............................................. 36 15 Huge cardinal 37 15.1 Variants ................................................ 37 15.2 Consistency strength ......................................... 38 15.3 ω-huge cardinals ............................................ 38 15.4 See also ................................................ 38 15.5 References .............................................. 38 16 Inaccessible cardinal 39 16.1 Models and consistency ........................................ 39 16.2 Existence of a proper class of inaccessibles .............................. 40 16.3 α-inaccessible cardinals and hyper-inaccessible cardinals ....................... 40 16.4 Two model-theoretic characterisations of inaccessibility ....................... 40 16.5 See also ................................................ 41 16.6 References .............................................. 41 17 Ineffable cardinal 42 17.1 References ............................................... 42 18 Intersection (set theory) 43 iv CONTENTS 18.1 Basic definition ............................................ 43 18.1.1 Intersecting and disjoint sets ................................. 45 18.2 Arbitrary intersections ......................................... 46 18.3 Nullary intersection .......................................... 47 18.4 See also ................................................ 48 18.5 References ............................................... 48 18.6 Further reading ............................................ 48 18.7 External links ............................................. 48 19 Lebesgue measure 49 19.1 Definition ............................................... 49 19.1.1 Intuition ........................................... 49 19.2 Examples ............................................... 50 19.3 Properties ............................................... 50 19.4 Null sets ................................................ 51 19.5 Construction of the Lebesgue measure ................................ 52 19.6 Relation to other measures ...................................... 52 19.7 See also ................................................ 53 19.8 References .............................................. 53 20 Measurable cardinal 54 20.1 Measurable .............................................. 54 20.2 Real-valued measurable ........................................ 55 20.3 See also ................................................ 55 20.4 References .............................................. 55 21 Measure (mathematics) 56 21.1 Definition ............................................... 56 21.2 Examples ............................................... 57 21.3 Properties ............................................... 57 21.3.1 Monotonicity ......................................... 58 21.3.2 Measures of infinite unions of measurable sets ........................ 58 21.3.3 Measures of infinite intersections of measurable sets ..................... 58 21.4 Sigma-finite measures ......................................... 58 21.5 Completeness ............................................. 59 21.6 Additivity ............................................... 59 21.7 Non-measurable sets .......................................... 59 21.8 Generalizations ............................................ 59 21.9 See also ................................................ 60 21.10References ............................................... 60 21.11Bibliography ............................................. 61 21.12External links ............................................. 61 CONTENTS v 22 Mitchell order 64 22.1 References ............................................... 64 23 Model theory 65 23.1 Branches of model theory ....................................... 65 23.2 Universal algebra ........................................... 66 23.3 Finite model theory .......................................... 67 23.4 First-order logic ............................................ 67 23.5 Axiomatizability, elimination of quantifiers, and model-completeness ................ 68