Human and Ape Molecular Clocks and Constraints on Paleontological Hypotheses

Total Page:16

File Type:pdf, Size:1020Kb

Human and Ape Molecular Clocks and Constraints on Paleontological Hypotheses Human and Ape Molecular Clocks and Constraints on Paleontological Hypotheses R. L. Stauffer, A. Walker, O. A. Ryder, M. Lyons-Weiler, and S. Blair Hedges Although the relationships of the living hominoid primates (humans and apes) are well known, the relationships of the fossil species, times of divergence of both living and fossil species, and the biogeographic history of hominoids are not well established. Divergence times of living species, estimated from molecular clocks, have the potential to constrain hypotheses of the relationships of fossil species. In this study, new DNA sequences from nine protein-coding nuclear genes in great apes are added to existing datasets to increase the precision of molecular time estimates bearing on the evolutionary history of apes and humans. The divergence of Old World monkeys and hominoids at the Oligocene-Miocene boundary (approx- imately 23 million years ago) provides the best primate calibration point and yields (a time and 95% confidence interval of 5.4 ؎ 1.1 million years ago (36 nuclear genes for the human-chimpanzee divergence. Older splitting events are estimated as 6.4 ,million years ago (gorilla, 31 genes), 11.3 ؎ 1.3 million years ago (orangutan 1.5 ؎ genes), and 14.9 ؎ 2.0 million years ago (gibbon, 27 genes). Based on these 33 molecular constraints, we find that several proposed phylogenies of fossil homi- noid taxa are unlikely to be correct. Fossils of the earliest hominoids (21 mil- preservation biases (Fleagle 1999). All of lion years ago) and the cercopithecoids these factors make it difficult to impose (Old World monkeys; 19 million years ago) time constraints on the origin of living are known from the early Miocene (Gebo species of hominoids. et al. 1997; Lewin 1999; Miller 1999; Pil- With such uncertainty in the hominoid beam 1996). Between then and the end of fossil record, considerable attention has the Miocene (approximately 5 million been focused on molecular clocks during years ago), hominoids decreased and cer- the last three decades. During the first half copithecoids increased in diversity in the of the 20th century, anthropologists as- fossil record (Fleagle 1999). Relating the sumed that the great apes formed a single Miocene apes to living species has proven evolutionary group distinct from the hu- to be problematic (Pilbeam 1996). There man lineage, with a divergence time of ap- is no fossil species that is clearly a close proximately 30 million years ago (Lewin relative of the gorilla, chimpanzee, or gib- 1999). However, the first applications of bon. It has been debated whether Sivapi- molecular techniques to this problem thecus (8–13 million years ago) or other showed that humans are closer to African From the Department of Biology and Institute of Mo- Eurasian fossil apes are close relatives of apes than to Asian apes (Goodman 1962) lecular Evolutionary Genetics (Stauffer, Walker, Lyons- Weiler, and Hedges) and Department of Anthropology the orangutan lineage (Pilbeam 1996; and the human-African ape divergence oc- (Walker), Pennsylvania State University, University Ward 1997). Although the skull of one par- curred only 5 million years ago (Sarich Park, PA 16802, and the Center for Reproduction of En- ticular Sivapithecus species from 8 million and Wilson 1967). Many molecular studies dangered Species, Zoological Society of San Diego, San Diego, CA 92112-0551 (Ryder). We thank Mary T. Silcox years ago is orangutan-like, postcranial have been published since then (Easteal for comments. This research was supported by a grant features and the morphology of the cheek et al. 1995) and have clarified the branch- from the Innovative Biotechnology Research Fund of teeth have suggested affinities with archa- ing order ((((human, chimpanzee) gorilla) the Biotechnology Institute, Life Sciences Consortium, Pennsylvania State University (to S.B.H. and A.W.). Ad- ic hominoids (Pilbeam 1996). With this un- orangutan) gibbon). However, divergence dress correspondence to S. Blair Hedges, Department certainty, the orangutan divergence is of time estimates have varied considerably of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802, or e-mail: limited value as a calibration point for mo- (Figure 1). If the ratios of the distances or [email protected]. This paper was delivered at a sympo- lecular time estimates. The absence of time estimates are considered, the results sium entitled ‘‘Primate Evolutionary Genetics’’ spon- Plio-Pleistocene fossil apes from Africa are more consistent among studies. This sored by the American Genetic Association at Town and Country Resort and Convention Center, San Diego, contrasts strongly with the rich hominid suggests that variation in time estimates CA, USA, May 19–20, 2001. fossil record during that same period and is largely attributable to the calibration ᭧ 2001 The American Genetic Association 92:469–474 is most likely explained by ecological and used in each study. 469 tween the origin of hominids themselves quence was available for Homo and at and bipedal locomotion (the first major least one other ape genus (Pan, Gorilla, hominid adaptation) and environmental Pongo, Hylobates), and (2) at least one cal- change. It also is possible that extinction ibration species (from Cercopithecidae, rather than speciation events are correlat- Artiodactyla, or Rodentia) and a mamma- ed with climate change (Foley 1994). lian or avian outgroup species sequence was available for relative rate testing. Fur- thermore, all Pan and Gorilla sequences Materials and Methods that were identical to the corresponding Portions of complementary DNAs (cDNAs) Homo sequence were deemed uninforma- from the following nine nuclear genes tive and were therefore eliminated. All were amplified and sequenced for Gorilla analyses were performed on both the gorilla and Pongo pygmaeus: acyl-coA: cho- group of rate-constant genes only and on lesterol acyltransferase I, alcohol dehydro- the entire dataset. genase 1, beta-glucuronidase, Cd 46, CMP- The relatively low pairwise distances for N-acetylneuraminic acid hydroxylase, in- most protein coding genes in these com- Figure 1. Molecular divergence time estimates for ␣ apes and human. The results of selected studies pub- terleukin- 1, prostaglandin D2 synthase, parisons of closely related species, com- lished during the last four decades are shown, where chemokine receptor 2, and muscarinic bined with limited sequence lengths, fa- an Old World monkey (cercopithecoid) also was in- acetylcholine receptor 5. A cDNA pool for vors the more variable nucleotide data (all cluded. Left panel shows the ratio of the human-ape divergence time divided by the hominoid-cercopithe- each species was created by reverse tran- three codon positions) instead of amino coid divergence time. Right panel shows the actual scription polymerase chain reaction (RT- acid data. For time estimation, the Kimura divergence times. Symbols represent the following di- vergences: human-chimpanzee (open circles), human- PCR) (Perkin-Elmer RNA Core kit). RNA (1980) two-parameter with gamma model gorilla (closed circles), human-orangutan (open was extracted using the RNAqueous kit was used, which accounts for rate varia- squares), human-gibbon (closed squares), and human- (Ambion, Inc., Austin, TX) from fibroblast tion among sites. The gamma parameter cercopithecoid (open triangles). The data are from the following studies: 1 (Sarich and Wilson 1967), 2 (Sibley cell cultures established and character- was estimated by maximum likelihood es- and Ahlquist 1987), 3 (Bailey et al. 1992), 4 (Easteal ized at the Zoological Society of San Diego timation ( Yang 1997) for each gene. Be- and Herbert 1997), 5 (Takahata and Satta 1997), 6 (Ku- (www.sandiegozoo.org/cres/frozen.html). tween-group distance estimation was mar and Hedges 1998), 7 (Arnason et al. 1998), 8 ( Yod- er and Yang 2000), and 9 (Page and Goodman 2001). Primers were designed from conserved re- made using PHYLTEST (Kumar 1996), and gions of the cercopithecoid and human se- two methods of time estimation were quences in the public databases. Gene used. The multigene method uses the To gain better and more precise esti- fragments were amplified (PCR) and com- mean (or mode) of single-gene time esti- mates of hominoid splitting we have col- plimentary strands were sequenced. Gene mates (Hedges et al. 1996; Kumar and lected new sequence data from nine nucle- fragments for each gene were combined Hedges 1998). The average distance meth- ar protein-coding genes in selected apes. and aligned using CLUSTAL W (Thompson od is similar, but averages the concatenat- Analyses of these data, along with all oth- et al. 1994). All primer sequences, align- ed distances, each weighted by sequence er available sequence data, have helped to ments, and sequence accession numbers length (Lynch 1999; Nei et al. 2001). Rate constrain hypotheses concerning the phy- for this project are available at http:// tests (Takezaki et al. 1995) were made for logenetic placement of important fossil www.evogenomics.org/publications/data/ all comparisons using PHYLTEST. hominoids. One major element of uncer- primate/. We used the hominoid-cercopithecoid tainty is the time of the human-chimpan- The other nuclear genes analyzed were divergence, set at 23.3 million years ago, zee divergence. Although the hominid fos- 5-hydroxytriptamine receptor 1a, alpha 1,3 as the primate calibration point. It is a fos- sil record is relatively good, there are no galactosyltrasferase, alanine: glyoxylate sil calibration point, because the earliest undisputed Pliocene fossils of African aminotransferase, atrophin, beta-nerve fossils of each lineage are known from 19– apes (chimpanzees and gorillas) and no growth factor, blue opsin, carbonic anhy- 21 million years ago (see above). The spe- Miocene ape fossils that clearly constrain drase, c-myc oncogne, cytochrome oxi- cific date used (23.3 million years ago) is a lower limit to that divergence. An advan- dase subunit 4, DDX5 (p68 RNA helicase), the geologic boundary between the Oli- tage of molecular time estimates is that decay accelerating factor, dopamine 4 re- gocene and Miocene epochs (Harland et they measure the mean time of separation ceptor, dystrophin, eosinophil-derived al.
Recommended publications
  • A New Species of Mioeuoticus (Lorisiformes, Primates) from the Early Middle Miocene of Kenya
    ANTHROPOLOGICAL SCIENCE Vol. 125(2), 59–65, 2017 A new species of Mioeuoticus (Lorisiformes, Primates) from the early Middle Miocene of Kenya Yutaka KUNIMATSU1*, Hiroshi TSUJIKAWA2, Masato NAKATSUKASA3, Daisuke SHIMIZU3, Naomichi OGIHARA4, Yasuhiro KIKUCHI5, Yoshihiko NAKANO6, Tomo TAKANO7, Naoki MORIMOTO3, Hidemi ISHIDA8 1Faculty of Business Administration, Ryukoku University, Kyoto 612-8577, Japan 2Department of Rehabilitation, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Sendai 981-8551, Japan 3Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan 4Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan 5Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga 849-8501, Japan 6Graduate School of Human Sciences, Osaka University, Suita 565-0871, Japan 7Japan Monkey Center, Inuyama 484-0081, Japan 8Professor Emeritus, Kyoto University, Kyoto 606-8502, Japan Received 24 November 2016; accepted 22 March 2017 Abstract We here describe a prosimian specimen discovered from the early Middle Miocene (~15 Ma) of Nachola, northern Kenya. It is a right maxilla that preserves P4–M3, and is assigned to a new species of the Miocene lorisid genus Mioeuoticus. Previously, Mioeuoticus was known from the Early Miocene of East Africa. The Nachola specimen is therefore the first discovery of this genus from the Middle Mi- ocene. The presence of a new lorisid species in the Nachola fauna indicates a forested paleoenvironment for this locality, consistent with previously known evidence including the abundance of large-bodied hominoid fossils (Nacholapithecus kerioi), the dominance of browsers among the herbivore fauna, and the presence of plenty of petrified wood.
    [Show full text]
  • Download Full Article in PDF Format
    Dryopithecins, Darwin, de Bonis, and the European origin of the African apes and human clade David R. BEGUN University of Toronto, Department of Anthropology, 19 Russell Street, Toronto, ON, M5S 2S2 (Canada) [email protected] Begun R. D. 2009. — Dryopithecins, Darwin, de Bonis, and the European origin of the African apes and human clade. Geodiversitas 31 (4) : 789-816. ABSTRACT Darwin famously opined that the most likely place of origin of the common ancestor of African apes and humans is Africa, given the distribution of its liv- ing descendents. But it is infrequently recalled that immediately afterwards, Darwin, in his typically thorough and cautious style, noted that a fossil ape from Europe, Dryopithecus, may instead represent the ancestors of African apes, which dispersed into Africa from Europe. Louis de Bonis and his collaborators were the fi rst researchers in the modern era to echo Darwin’s suggestion about apes from Europe. Resulting from their spectacular discoveries in Greece over several decades, de Bonis and colleagues have shown convincingly that African KEY WORDS ape and human clade members (hominines) lived in Europe at least 9.5 million Mammalia, years ago. Here I review the fossil record of hominoids in Europe as it relates to Primates, Dryopithecus, the origins of the hominines. While I diff er in some details with Louis, we are Hispanopithecus, in complete agreement on the importance of Europe in determining the fate Rudapithecus, of the African ape and human clade. Th ere is no doubt that Louis de Bonis is Ouranopithecus, hominine origins, a pioneer in advancing our understanding of this fascinating time in our evo- new subtribe.
    [Show full text]
  • Human Evolution: a Paleoanthropological Perspective - F.H
    PHYSICAL (BIOLOGICAL) ANTHROPOLOGY - Human Evolution: A Paleoanthropological Perspective - F.H. Smith HUMAN EVOLUTION: A PALEOANTHROPOLOGICAL PERSPECTIVE F.H. Smith Department of Anthropology, Loyola University Chicago, USA Keywords: Human evolution, Miocene apes, Sahelanthropus, australopithecines, Australopithecus afarensis, cladogenesis, robust australopithecines, early Homo, Homo erectus, Homo heidelbergensis, Australopithecus africanus/Australopithecus garhi, mitochondrial DNA, homology, Neandertals, modern human origins, African Transitional Group. Contents 1. Introduction 2. Reconstructing Biological History: The Relationship of Humans and Apes 3. The Human Fossil Record: Basal Hominins 4. The Earliest Definite Hominins: The Australopithecines 5. Early Australopithecines as Primitive Humans 6. The Australopithecine Radiation 7. Origin and Evolution of the Genus Homo 8. Explaining Early Hominin Evolution: Controversy and the Documentation- Explanation Controversy 9. Early Homo erectus in East Africa and the Initial Radiation of Homo 10. After Homo erectus: The Middle Range of the Evolution of the Genus Homo 11. Neandertals and Late Archaics from Africa and Asia: The Hominin World before Modernity 12. The Origin of Modern Humans 13. Closing Perspective Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS The basic course of human biological history is well represented by the existing fossil record, although there is considerable debate on the details of that history. This review details both what is firmly understood (first echelon issues) and what is contentious concerning humanSAMPLE evolution. Most of the coCHAPTERSntention actually concerns the details (second echelon issues) of human evolution rather than the fundamental issues. For example, both anatomical and molecular evidence on living (extant) hominoids (apes and humans) suggests the close relationship of African great apes and humans (hominins). That relationship is demonstrated by the existing hominoid fossil record, including that of early hominins.
    [Show full text]
  • Unravelling the Positional Behaviour of Fossil Hominoids: Morphofunctional and Structural Analysis of the Primate Hindlimb
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Doctorado en Biodiversitat Facultad de Ciènces Tesis doctoral Unravelling the positional behaviour of fossil hominoids: Morphofunctional and structural analysis of the primate hindlimb Marta Pina Miguel 2016 Memoria presentada por Marta Pina Miguel para optar al grado de Doctor por la Universitat Autònoma de Barcelona, programa de doctorado en Biodiversitat del Departamento de Biologia Animal, de Biologia Vegetal i d’Ecologia (Facultad de Ciències). Este trabajo ha sido dirigido por el Dr. Salvador Moyà Solà (Institut Català de Paleontologia Miquel Crusafont) y el Dr. Sergio Almécija Martínez (The George Washington Univertisy). Director Co-director Dr. Salvador Moyà Solà Dr. Sergio Almécija Martínez A mis padres y hermana. Y a todas aquelas personas que un día decidieron perseguir un sueño Contents Acknowledgments [in Spanish] 13 Abstract 19 Resumen 21 Section I. Introduction 23 Hominoid positional behaviour The great apes of the Vallès-Penedès Basin: State-of-the-art Section II. Objectives 55 Section III. Material and Methods 59 Hindlimb fossil remains of the Vallès-Penedès hominoids Comparative sample Area of study: The Vallès-Penedès Basin Methodology: Generalities and principles Section IV.
    [Show full text]
  • The Late Miocene Mammalian Fauna of Chorora, Awash Basin
    The late Miocene mammalian fauna of Chorora, Awash basin, Ethiopia: systematics, biochronology and 40K-40Ar ages of the associated volcanics Denis Geraads, Zeresenay Alemseged, Hervé Bellon To cite this version: Denis Geraads, Zeresenay Alemseged, Hervé Bellon. The late Miocene mammalian fauna of Chorora, Awash basin, Ethiopia: systematics, biochronology and 40K-40Ar ages of the associated volcanics. Tertiary Research, 2002, 21 (1-4), pp.113-122. halshs-00009761 HAL Id: halshs-00009761 https://halshs.archives-ouvertes.fr/halshs-00009761 Submitted on 24 Mar 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The late Miocene mammalian fauna of Chorora, Awash basin, Ethiopia: systematics, biochronology and 40K-40Ar ages of the associated volcanics Denis GERAADS - EP 1781 CNRS, 44 rue de l'Amiral Mouchez, 75014 PARIS, France Zeresenay ALEMSEGED - National Museum, P.O.Box 76, Addis Ababa, Ethiopia Hervé BELLON - UMR 6538 CNRS, Université de Bretagne Occidentale, BP 809, 29285 BREST CEDEX, France ABSTRACT New whole-rock 40K-40Ar ages on lava flows bracketing the Chorora Fm, Ethiopia, confirm that its Hipparion-bearing sediments must be in the 10-11 Ma time-range. The large Mammal fauna includes 10 species.
    [Show full text]
  • A Unique Middle Miocene European Hominoid and the Origins of the Great Ape and Human Clade Salvador Moya` -Sola` A,1, David M
    A unique Middle Miocene European hominoid and the origins of the great ape and human clade Salvador Moya` -Sola` a,1, David M. Albab,c, Sergio Alme´ cijac, Isaac Casanovas-Vilarc, Meike Ko¨ hlera, Soledad De Esteban-Trivignoc, Josep M. Roblesc,d, Jordi Galindoc, and Josep Fortunyc aInstitucio´Catalana de Recerca i Estudis Avanc¸ats at Institut Catala`de Paleontologia (ICP) and Unitat d’Antropologia Biolo`gica (Dipartimento de Biologia Animal, Biologia Vegetal, i Ecologia), Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; bDipartimento di Scienze della Terra, Universita`degli Studi di Firenze, Via G. La Pira 4, 50121 Florence, Italy; cInstitut Catala`de Paleontologia, Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; and dFOSSILIA Serveis Paleontolo`gics i Geolo`gics, S.L. c/ Jaume I nu´m 87, 1er 5a, 08470 Sant Celoni, Barcelona, Spain Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 4, 2009 (received for review November 20, 2008) The great ape and human clade (Primates: Hominidae) currently sediments by the diggers and bulldozers. After 6 years of includes orangutans, gorillas, chimpanzees, bonobos, and humans. fieldwork, 150 fossiliferous localities have been sampled from the When, where, and from which taxon hominids evolved are among 300-m-thick local stratigraphic series of ACM, which spans an the most exciting questions yet to be resolved. Within the Afro- interval of 1 million years (Ϸ12.5–11.3 Ma, Late Aragonian, pithecidae, the Kenyapithecinae (Kenyapithecini ؉ Equatorini) Middle Miocene).
    [Show full text]
  • Miocene Planet of the Apes
    Miocene Planet of the Apes Jarðsaga 2 -Saga Lífs og Lands – Ólafur Ingólfsson Háskóli Íslands Available data has been interpreted to suggests that during Miocene 50-100 different species of Hominoid Apes roamed the Old World, compared to 11 species today... But this is not uncontroversial. Other studies suggest ~20 species An article in a 2003 number of Scientific American, “Planet of the Apes”: http://www.chass.utoronto.ca/anthropology/Faculty/Begun/begunSciAm.pdf Hot and debated subject – the origin of Man - http://www.pbs.org/wgbh/evolution/library/11/2/quicktime/e_s_5.html A family tree of primates There are 153 different living species of primates, divided into 6 main groups: • Humans, 1 family, 1 species •Hominoids(“mannapar”), 4 fam., 11 spec. •Oldworldmonkeys(“austur- apar”), 14 fam., 72 spec. •NewWorldmonkeys (“vesturapar”), 16 fam., 33 spec. • Tarsiers (Ghost Monkeys, “draugapar”), 1 fam., 3 spec. • Prosimians (“hálfapar”), 19 fam., 33 spec. Classifying the primates... Hominid - the group consisting of all modern and extinct Great Apes (that is, modern humans, chimpanzees, gorillas and orang-utans plus all their immediate ancestors). Hominin - the group consisting of modern humans, extinct human species and all our immediate ancestors (including members of the genera Homo, Australopithecus, Paranthropus and Ardipithecus). Why did the primates evolve so much during the Miocene? Of particular relevance to the story of primate evolution are the vegetational changes resulting from plate tectonics and formation of mountain ranges. In a cooler and dryer world, grasses flourished in many areas that had previously been forested. A new type of primate—the ground inhabitant— came into being during this period.
    [Show full text]
  • Chapter 18 Body Size and Intelligence in Hominoid Evolution
    Chapter 18 ................................ ................................ Body Size and Intelligence in Hominoid ................................ ................................ chapter Evolution ................................ ................................ Carol Ward ................................ Department of Anthropology – Department of Pathology and Anatomical Sciences ................................ 107 Swallow Hall, University of Missouri ................................ Columbia, MO 65211 USA ................................ [email protected] ................................ Mark Flinn ................................ Department of Anthropology, 107 Swallow Hall, University of Missouri ................................ Columbia, MO 65211 USA ................................ [email protected] ................................ David Begun ................................ Department of Anthropology, University of Toronto ................................ Toronto, ON M5S 3G3, Canada ................................ [email protected] ................................ ................................ Word count: text (6526) XML Typescript c Cambridge University Press – Generated by TechBooks. Body Size and Intelligence in Hominoid Evolution Page 1218 of 1365 A-Head 1 Introduction ................................ ................................ 2 Great apes and humans are the largest brained primates. Aside from a few ................................ 3 extinct subfossil lemurs, they are also the largest in body mass.
    [Show full text]
  • Fossil Primates
    AccessScience from McGraw-Hill Education Page 1 of 16 www.accessscience.com Fossil primates Contributed by: Eric Delson Publication year: 2014 Extinct members of the order of mammals to which humans belong. All current classifications divide the living primates into two major groups (suborders): the Strepsirhini or “lower” primates (lemurs, lorises, and bushbabies) and the Haplorhini or “higher” primates [tarsiers and anthropoids (New and Old World monkeys, greater and lesser apes, and humans)]. Some fossil groups (omomyiforms and adapiforms) can be placed with or near these two extant groupings; however, there is contention whether the Plesiadapiformes represent the earliest relatives of primates and are best placed within the order (as here) or outside it. See also: FOSSIL; MAMMALIA; PHYLOGENY; PHYSICAL ANTHROPOLOGY; PRIMATES. Vast evidence suggests that the order Primates is a monophyletic group, that is, the primates have a common genetic origin. Although several peculiarities of the primate bauplan (body plan) appear to be inherited from an inferred common ancestor, it seems that the order as a whole is characterized by showing a variety of parallel adaptations in different groups to a predominantly arboreal lifestyle, including anatomical and behavioral complexes related to improved grasping and manipulative capacities, a variety of locomotor styles, and enlargement of the higher centers of the brain. Among the extant primates, the lower primates more closely resemble forms that evolved relatively early in the history of the order, whereas the higher primates represent a group that evolved more recently (Fig. 1). A classification of the primates, as accepted here, appears above. Early primates The earliest primates are placed in their own semiorder, Plesiadapiformes (as contrasted with the semiorder Euprimates for all living forms), because they have no direct evolutionary links with, and bear few adaptive resemblances to, any group of living primates.
    [Show full text]
  • Dental Anatomy of the Early Hominid, Orrorin Tugenensis, from the Lukeino Formation, Tugen Hills, Kenya
    Revue de Paléobiologie, Genève (décembre 2018) 37 (2): 577-591 ISSN 0253-6730 Dental anatomy of the early hominid, Orrorin tugenensis, from the Lukeino Formation, Tugen Hills, Kenya Brigitte SENUT1,*, Martin PICKFORD2 & Dominique GOMMERY3 1 CR2P - Centre de Recherche en Paléontologie - Paris, MNHN - CNRS - Sorbonne Université, Muséum national d’Histoire naturelle, CP 38, 8, rue Buffon, F-75252 Paris cedex 05, France. E-mail: *[email protected] 2 CR2P - Centre de Recherche en Paléontologie - Paris, MNHN - CNRS - Sorbonne Université, Muséum national d’Histoire naturelle, CP 38, 8, rue Buffon, F-75252 Paris cedex 05, France. E-mail: [email protected] 3 CR2P - Centre de Recherche en Paléontologie - Paris, CNRS - MNHN - Sorbonne Université, Campus Pierre et Marie Curie - Jussieu, T. 46 - 56, E.5, Case 104, F-75252 Paris cedex 05, France. E-mail: [email protected] Abstract Subsequent to the initial publication of the Late Miocene hominid genus and species, Orrorin tugenensis, in 2001, additional dental remains were discovered which comprise the subject of this paper. Detailed descriptions of all the Orrorin fossils are provided and comparisons are made with other late Miocene and early Pliocene hominoid fossils, in particular Ardipithecus ramidus, Ardipithecus kadabba and Sahelanthropus tchadensis. The Late Miocene Lukeino Formation from which the remains of Orrorin were collected, has yielded rare remains of a chimpanzee-like hominoid as well as a gorilla-sized ape. Although comparisons with Ardipithecus ramidus are difficult due to the fact that measurements of the teeth have not been published, it is concluded thatAr. ramidus is chimpanzee-like in several features, whereas some of the Ardipithecus kadabba fossils are close to Orrorin (others are more chimpanzee-like).
    [Show full text]
  • Molar Enamel Thickness and Distribution Patterns in Extant Great Apes and Humans: New Insights Based on a 3-Dimensional Whole Crown Perspective REIKO T
    ANTHROPOLOGICAL SCIENCE Vol. 112, 121–146, 2004 Molar enamel thickness and distribution patterns in extant great apes and humans: new insights based on a 3-dimensional whole crown perspective REIKO T. KONO1* 1Department of Anthropology, National Science Museum, Hyakunincho, Shinjuku-ku, Tokyo, 169-0073 Japan Received 14 November 2003; accepted 21 December 2003 Abstract Molar enamel thickness is a key feature in the study of hominid evolution. Our understand- ing of enamel thickness and distribution patterns, however, has so far been based mostly on the limited information available from physical cross sections of the crown. In this study, the 3-dimensional (3D) whole crown enamel distribution pattern was explored in 74 extant great ape and modern human molars. Serial cross sections obtained from microfocal X-ray computed tomography were used to gen- erate digital molar reconstructions at 50 to 80 micron voxel resolution, each crown represented by two to five million voxels. Surface data of both enamel dentine junction (EDJ) and outer enamel were extracted to derive volumetric measures, surface areas, curvilinear distances, and whole crown radial thickness maps. Three-dimensional average enamel thickness (AET) was defined as enamel volume divided by EDJ surface area. In 3D AET relative to tooth size, Homo exhibited the thickest, Gorilla the thinnest, and Pan and Pongo intermediately thick enamel. This result differs from previous claims that molar enamel of Pongo is relatively thicker than that of Pan. The discrepancy between three and two-dimensional (2D) values of AET stems from a combination of local differences in within tooth enamel distribution pattern and EDJ topography between Pan and Pongo molars.
    [Show full text]
  • Robinson, C. A
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Journal of Human Evolution 63 (2012) 191e204 Contents lists available at SciVerse ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol Geometric morphometric analysis of mandibular shape diversity in Pan Chris Robinson Department of Biology, Bronx Community College, City University of New York, 2155 University Avenue, Bronx, NY 10453, USA article info abstract Article history: The aim of this research is to determine whether geometric morphometric (GM) techniques can provide Received 27 July 2010 insights into how the shape of the mandibular corpus differs between bonobos and chimpanzees and to Accepted 1 May 2012 explore the potential implications of those results for our understanding of hominin evolution. We Available online 8 June 2012 focused on this region of the mandible because of the relative frequency with which it has been recovered in the hominin fossil record. In addition, no previous study had explored in-depth three- Keywords: dimensional (3D) mandibular corpus shape differences between adults of the two Pan species using Chimpanzees geometric morphometrics.
    [Show full text]