Hominoid Teeth with Chimpanzee

Total Page:16

File Type:pdf, Size:1020Kb

Hominoid Teeth with Chimpanzee ANTHROPOLOGICAL SCIENCE Vol. 113, 95–102, 2005 Hominoid teeth with chimpanzee- and gorilla-like features from the Miocene of Kenya: implications for the chronology of ape-human divergence and biogeography of Miocene hominoids MARTIN PICKFORD1*, BRIGITTE SENUT2 1Chaire de Paléoanthropologie et de Préhistoire du Collège de France, GDR 983 and UMR 5143 du CNRS, 8, rue Buffon, 75005 Paris 2Département Histoire de la Terre du Muséum National d’Histoire Naturelle, Paris Received 30 June 2003; accepted 16 March 2004 Abstract One of the major lacunae in our knowledge of African hominoid evolution concerns the origins of the chimpanzee and gorilla. Several thousand specimens from the Plio–Pleistocene of Africa have been attributed to Hominidae (sensu stricto) of which only a few, including Ardipithecus ramidus, have been re-interpreted by some authors as possibly representing an ape rather than a hominid (Senut, 1998). Four recently discovered ape-like specimens from the late Middle Miocene (12.5 Ma) and Late Miocene (5.9 Ma) of Kenya partly fill the gap in the fossil record of African apes, and show some mor- phological and metric affinities with teeth of chimpanzees and gorillas. If these few specimens from Kenya are indeed more closely related to chimps and gorillas than to hominids, then this implies that the dichotomy between African apes and hominids occurred several million years earlier than is cur- rently estimated by most researchers. Furthermore these ape teeth from Ngorora and Lukeino suggest that extant African apes evolved in Africa, and did not immigrate into the continent from Europe or Asia. Key words: Miocene, Kenya, Orrorin, Pan, Gorilla Introduction trally directed crests which close off a low walled mesial fovea. Anterior crests from these same cusps meet mesially This paper concerns four ape-like teeth from Kenya, one to wall off the anterior side of the mesial fovea, which is from the Ngorora Formation (12.5 Ma), and three from the buccolingually wide and mesiodistally short. The hypoconid Lukeino Formation (5.9 Ma), collected by the Kenya Palae- has low crests descending from its apex mesially and distally ontology Expedition. but not crossing the grooves, which separate the cusp from In this paper we restrict the term ‘hominid’ to encompass its neighbors. There is a basal cingular enamel fold between only those hominoids that possess skeletal morphology the protoconid and hypoconid and a tiny fold between the indicative of habitual or obligate bipedal locomotion. We do hypoconid and hypoconulid. The hypoconulid has a crest not employ it in the much wider sense that has recently been descending obliquely anteriorly into the talonid basin, but it used by some authors, in which even the genera Pan and is low and does not separate the basin from the distal fovea. Gorilla are included in the family Hominidae. The postcristid reaches lingually towards the low cusplet present between the hypoconulid and the entoconid. The Ngorora Lower Molar The apices of the metaconid and entoconid are strongly buccolingually compressed and peripherally positioned, a Morphological description (Figure 1A) disposition that results in a voluminous sunken talonid basin Bar 91’99 is an unworn right lower molar, probably the bordered by cusps that are somewhat trenchant in appear- second (11.4 mm mesiodistal P 9.4 mm buccolingual), ance. The posterior crest of the metaconid descends towards although a case could be made for it being a third molar. The a low, peripherally positioned cusplet between the meta- apices of the protoconid and hypoconid are buccolingually conid and entoconid. The hypoconid extends beyond the compressed and not very voluminous. They are located midline of the crown and reaches this small cusplet. As a towards the buccal margin of the tooth and they express consequence, the metaconid and entoconid do not touch minor buccal flare. The apices of the protoconid and meta- each other. A postentoconid crest descends obliquely conid are 5.2 mm apart and the tooth is 9.2 mm broad at this towards another low cusplet located between the entoconid level. The protoconid and metaconid have low-relief, cen- and hypoconulid from which it is separated by narrow but short vertical grooves on the posterolingual surface. * Corresponding author. e-mail: [email protected] The occlusal basin is wide, deep, and long. The wall phone: +33-1-40-79-30-03; fax: +33-1-40-79-35-80 between the anterior fovea and the talonid basin is low and Published online 13 July 2004 the posterior fovea is not clearly demarcated from it, and in J-STAGE (www.jstage.jst.go.jp) DOI: 10.1537/ase.04S014 thus extends for almost the entire length of the tooth. The © 2004 The Anthropological Society of Nippon 95 96 M. PICKFORD AND B. SENUT ANTHROPOLOGICAL SCIENCE Figure 1. Selected hominoid teeth from Africa and Europe (scale bar, 10 mm). (A) Bar 91’99, right lower molar (cast); (A1) stereo occlusal view; (A2) mesial view to show buccal flare. (B) Pan paniscus right m/2, occlusal view. (C) Pan troglodytes, cast of right m/2, occlusal view. (D– F) Dryopithecus brancoi casts of lower molars from Europe, occlusal views (D, Trochtelfingen; E, Salmendingen; F, Ebingen). (G) Gorilla gorilla lower m/2, occlusal view. occlusal surface of the enamel in the basin is wrinkled. chtelfingen, and Ebingen (Figure 1D–F). It is not impossible that the Ngorora species is related to the genus Dryop- Comparisons with Pan ithecus. The main differences from molars of Pan paniscus (Fig- ure 1B) concern the buccal cusps, which are slightly more Comparisons with Miocene African hominoids internally positioned in the fossil. In P. paniscus, the buccal Comparison of the Ngorora tooth (Figure 1A) with lower cusps are even more peripherally located than they are in the molars of African fossil hominoids reveals that it does not Ngorora tooth. Another difference between the Ngorora belong to any of the described Miocene forms, none of tooth and P. paniscus lies in the height of the entoconid, which possess the large occlusal basin and peripheralized which is taller and more trenchant in P. paniscus. The ante- cusps that distinguish this tooth. The only specimen with rior fovea is buccolingually narrower in the fossil than in which it accords in morphology is the Ngorora upper molar Pan. However, these are relatively minor differences. (KNM-BN 1378), which has wide occlusal fovea and a large The Ngorora molar resembles lower molars of Pan trogl- protocone, but this tooth is appreciably larger than what odytes from Mahale, Tanzania (Figure 1C) more closely than would be expected to occlude with Bar 91’99. it does those of P. paniscus. This is mainly because the buc- cal cusps are slightly more internally positioned in the com- Implications of the Ngorora lower molar mon chimpanzee, and they thus have moderate buccal flare Until now, no fossil chimpanzees and gorillas have been of the cusp walls. A minor difference is the extent of the reported and there has thus been a lack of evidence to test the mesial fovea, which is greater in P. troglodytes than it is in molecular clock estimates of the dichotomy between African the Ngorora specimen, and most chimpanzee molars do not apes and hominids. If the derived characters of the Ngorora have any trace of a buccal cingulum. molar represent homologies shared with chimpanzees, then it would indicate that the Pan clade has its roots in the latter Comparison with molars of Dryopithecus part of the Middle Miocene, sometime prior to 12.5 Ma. Lower molars of the European genus Dryopithecus (Fig- The dichotomy between chimpanzees and humans is usu- ure 1D–F) have peripheralized cusps, and broad but shallow ally estimated by molecular biologists to be more recent than occlusal basins (Begun, 2002). They also possess slight buc- 6 Ma (Gagneux et al., 1999; Stauffer et al., 2001) and the cal cingula and some specimens have a small accessory cus- split between chimpanzees and gorillas has been estimated plet separating the metaconid and entoconid in the lingual at 8–9 Ma by Wrangham and Pilbeam (2001) and 7.7 Ma by notch. The most significant differences between the Kenyan Gagneux et al. (1999). The only molecular biologists who and European specimens are the shallower occlusal basins have proposed an earlier age for African ape origins are and the less buccolingually compressed lingual cusps that Arnason and co-workers (Arnason et al.,1996, 1998, 2000; occur in Dryopithecus. In particular, the Ngorora tooth Janke and Arnason, 2002), but their results are usually con- resembles some of the central European D. brancoi, espe- sidered suspect by others who appear to favor appreciably cially specimens such as those from Salmendingen, Tro- later divergence times (Bailey et al., 1992; Adachi and Vol. 113, 2005 HOMINOID TEETH FROM THE MIOCENE OF KENYA 97 Hasegawa, 1995; Gagneux et al., 1999; Stauffer et al., 2001; are the entire paracone and metacone, part of the hypocone Pilbeam, 2002). and the distobuccal extremity of the protocone (the crista The Ngorora specimen thus runs counter to the recent obliqua). The distal fovea is complete. The tooth is 14 mm ideas of Pilbeam (1996) who wrote that “the common ances- mesiodistal. It is low crowned (7.3 mm from cervix to tip of tor of humans and chimpanzees was probably chimpanzee- metacone) and the cusps are endowed with low but broad like, a knuckle-walker with small thin-enamelled cheek wrinkles. teeth,” and Wrangham and Pilbeam (2001) who postulated The paracone and metacone are separated from each other that the “6 mybp ancestor…would have been thin- by a narrow slit-like buccal groove (Figure 2B). The part of enamelled, knuckle-walking, and females would have had the trigon basin preserved is relatively large and open, the black body coats.” It is already known that 6 Ma hominids main cusps being peripherally positioned and the cusps not such as Orrorin tugenensis had thick-enamelled molars with bulbous.
Recommended publications
  • A New Species of Mioeuoticus (Lorisiformes, Primates) from the Early Middle Miocene of Kenya
    ANTHROPOLOGICAL SCIENCE Vol. 125(2), 59–65, 2017 A new species of Mioeuoticus (Lorisiformes, Primates) from the early Middle Miocene of Kenya Yutaka KUNIMATSU1*, Hiroshi TSUJIKAWA2, Masato NAKATSUKASA3, Daisuke SHIMIZU3, Naomichi OGIHARA4, Yasuhiro KIKUCHI5, Yoshihiko NAKANO6, Tomo TAKANO7, Naoki MORIMOTO3, Hidemi ISHIDA8 1Faculty of Business Administration, Ryukoku University, Kyoto 612-8577, Japan 2Department of Rehabilitation, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Sendai 981-8551, Japan 3Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan 4Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan 5Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga 849-8501, Japan 6Graduate School of Human Sciences, Osaka University, Suita 565-0871, Japan 7Japan Monkey Center, Inuyama 484-0081, Japan 8Professor Emeritus, Kyoto University, Kyoto 606-8502, Japan Received 24 November 2016; accepted 22 March 2017 Abstract We here describe a prosimian specimen discovered from the early Middle Miocene (~15 Ma) of Nachola, northern Kenya. It is a right maxilla that preserves P4–M3, and is assigned to a new species of the Miocene lorisid genus Mioeuoticus. Previously, Mioeuoticus was known from the Early Miocene of East Africa. The Nachola specimen is therefore the first discovery of this genus from the Middle Mi- ocene. The presence of a new lorisid species in the Nachola fauna indicates a forested paleoenvironment for this locality, consistent with previously known evidence including the abundance of large-bodied hominoid fossils (Nacholapithecus kerioi), the dominance of browsers among the herbivore fauna, and the presence of plenty of petrified wood.
    [Show full text]
  • Download Full Article in PDF Format
    Dryopithecins, Darwin, de Bonis, and the European origin of the African apes and human clade David R. BEGUN University of Toronto, Department of Anthropology, 19 Russell Street, Toronto, ON, M5S 2S2 (Canada) [email protected] Begun R. D. 2009. — Dryopithecins, Darwin, de Bonis, and the European origin of the African apes and human clade. Geodiversitas 31 (4) : 789-816. ABSTRACT Darwin famously opined that the most likely place of origin of the common ancestor of African apes and humans is Africa, given the distribution of its liv- ing descendents. But it is infrequently recalled that immediately afterwards, Darwin, in his typically thorough and cautious style, noted that a fossil ape from Europe, Dryopithecus, may instead represent the ancestors of African apes, which dispersed into Africa from Europe. Louis de Bonis and his collaborators were the fi rst researchers in the modern era to echo Darwin’s suggestion about apes from Europe. Resulting from their spectacular discoveries in Greece over several decades, de Bonis and colleagues have shown convincingly that African KEY WORDS ape and human clade members (hominines) lived in Europe at least 9.5 million Mammalia, years ago. Here I review the fossil record of hominoids in Europe as it relates to Primates, Dryopithecus, the origins of the hominines. While I diff er in some details with Louis, we are Hispanopithecus, in complete agreement on the importance of Europe in determining the fate Rudapithecus, of the African ape and human clade. Th ere is no doubt that Louis de Bonis is Ouranopithecus, hominine origins, a pioneer in advancing our understanding of this fascinating time in our evo- new subtribe.
    [Show full text]
  • Human Evolution: a Paleoanthropological Perspective - F.H
    PHYSICAL (BIOLOGICAL) ANTHROPOLOGY - Human Evolution: A Paleoanthropological Perspective - F.H. Smith HUMAN EVOLUTION: A PALEOANTHROPOLOGICAL PERSPECTIVE F.H. Smith Department of Anthropology, Loyola University Chicago, USA Keywords: Human evolution, Miocene apes, Sahelanthropus, australopithecines, Australopithecus afarensis, cladogenesis, robust australopithecines, early Homo, Homo erectus, Homo heidelbergensis, Australopithecus africanus/Australopithecus garhi, mitochondrial DNA, homology, Neandertals, modern human origins, African Transitional Group. Contents 1. Introduction 2. Reconstructing Biological History: The Relationship of Humans and Apes 3. The Human Fossil Record: Basal Hominins 4. The Earliest Definite Hominins: The Australopithecines 5. Early Australopithecines as Primitive Humans 6. The Australopithecine Radiation 7. Origin and Evolution of the Genus Homo 8. Explaining Early Hominin Evolution: Controversy and the Documentation- Explanation Controversy 9. Early Homo erectus in East Africa and the Initial Radiation of Homo 10. After Homo erectus: The Middle Range of the Evolution of the Genus Homo 11. Neandertals and Late Archaics from Africa and Asia: The Hominin World before Modernity 12. The Origin of Modern Humans 13. Closing Perspective Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS The basic course of human biological history is well represented by the existing fossil record, although there is considerable debate on the details of that history. This review details both what is firmly understood (first echelon issues) and what is contentious concerning humanSAMPLE evolution. Most of the coCHAPTERSntention actually concerns the details (second echelon issues) of human evolution rather than the fundamental issues. For example, both anatomical and molecular evidence on living (extant) hominoids (apes and humans) suggests the close relationship of African great apes and humans (hominins). That relationship is demonstrated by the existing hominoid fossil record, including that of early hominins.
    [Show full text]
  • Unravelling the Positional Behaviour of Fossil Hominoids: Morphofunctional and Structural Analysis of the Primate Hindlimb
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Doctorado en Biodiversitat Facultad de Ciènces Tesis doctoral Unravelling the positional behaviour of fossil hominoids: Morphofunctional and structural analysis of the primate hindlimb Marta Pina Miguel 2016 Memoria presentada por Marta Pina Miguel para optar al grado de Doctor por la Universitat Autònoma de Barcelona, programa de doctorado en Biodiversitat del Departamento de Biologia Animal, de Biologia Vegetal i d’Ecologia (Facultad de Ciències). Este trabajo ha sido dirigido por el Dr. Salvador Moyà Solà (Institut Català de Paleontologia Miquel Crusafont) y el Dr. Sergio Almécija Martínez (The George Washington Univertisy). Director Co-director Dr. Salvador Moyà Solà Dr. Sergio Almécija Martínez A mis padres y hermana. Y a todas aquelas personas que un día decidieron perseguir un sueño Contents Acknowledgments [in Spanish] 13 Abstract 19 Resumen 21 Section I. Introduction 23 Hominoid positional behaviour The great apes of the Vallès-Penedès Basin: State-of-the-art Section II. Objectives 55 Section III. Material and Methods 59 Hindlimb fossil remains of the Vallès-Penedès hominoids Comparative sample Area of study: The Vallès-Penedès Basin Methodology: Generalities and principles Section IV.
    [Show full text]
  • The Late Miocene Mammalian Fauna of Chorora, Awash Basin
    The late Miocene mammalian fauna of Chorora, Awash basin, Ethiopia: systematics, biochronology and 40K-40Ar ages of the associated volcanics Denis Geraads, Zeresenay Alemseged, Hervé Bellon To cite this version: Denis Geraads, Zeresenay Alemseged, Hervé Bellon. The late Miocene mammalian fauna of Chorora, Awash basin, Ethiopia: systematics, biochronology and 40K-40Ar ages of the associated volcanics. Tertiary Research, 2002, 21 (1-4), pp.113-122. halshs-00009761 HAL Id: halshs-00009761 https://halshs.archives-ouvertes.fr/halshs-00009761 Submitted on 24 Mar 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The late Miocene mammalian fauna of Chorora, Awash basin, Ethiopia: systematics, biochronology and 40K-40Ar ages of the associated volcanics Denis GERAADS - EP 1781 CNRS, 44 rue de l'Amiral Mouchez, 75014 PARIS, France Zeresenay ALEMSEGED - National Museum, P.O.Box 76, Addis Ababa, Ethiopia Hervé BELLON - UMR 6538 CNRS, Université de Bretagne Occidentale, BP 809, 29285 BREST CEDEX, France ABSTRACT New whole-rock 40K-40Ar ages on lava flows bracketing the Chorora Fm, Ethiopia, confirm that its Hipparion-bearing sediments must be in the 10-11 Ma time-range. The large Mammal fauna includes 10 species.
    [Show full text]
  • Miocene Planet of the Apes
    Miocene Planet of the Apes Jarðsaga 2 -Saga Lífs og Lands – Ólafur Ingólfsson Háskóli Íslands Available data has been interpreted to suggests that during Miocene 50-100 different species of Hominoid Apes roamed the Old World, compared to 11 species today... But this is not uncontroversial. Other studies suggest ~20 species An article in a 2003 number of Scientific American, “Planet of the Apes”: http://www.chass.utoronto.ca/anthropology/Faculty/Begun/begunSciAm.pdf Hot and debated subject – the origin of Man - http://www.pbs.org/wgbh/evolution/library/11/2/quicktime/e_s_5.html A family tree of primates There are 153 different living species of primates, divided into 6 main groups: • Humans, 1 family, 1 species •Hominoids(“mannapar”), 4 fam., 11 spec. •Oldworldmonkeys(“austur- apar”), 14 fam., 72 spec. •NewWorldmonkeys (“vesturapar”), 16 fam., 33 spec. • Tarsiers (Ghost Monkeys, “draugapar”), 1 fam., 3 spec. • Prosimians (“hálfapar”), 19 fam., 33 spec. Classifying the primates... Hominid - the group consisting of all modern and extinct Great Apes (that is, modern humans, chimpanzees, gorillas and orang-utans plus all their immediate ancestors). Hominin - the group consisting of modern humans, extinct human species and all our immediate ancestors (including members of the genera Homo, Australopithecus, Paranthropus and Ardipithecus). Why did the primates evolve so much during the Miocene? Of particular relevance to the story of primate evolution are the vegetational changes resulting from plate tectonics and formation of mountain ranges. In a cooler and dryer world, grasses flourished in many areas that had previously been forested. A new type of primate—the ground inhabitant— came into being during this period.
    [Show full text]
  • Fossil Primates
    AccessScience from McGraw-Hill Education Page 1 of 16 www.accessscience.com Fossil primates Contributed by: Eric Delson Publication year: 2014 Extinct members of the order of mammals to which humans belong. All current classifications divide the living primates into two major groups (suborders): the Strepsirhini or “lower” primates (lemurs, lorises, and bushbabies) and the Haplorhini or “higher” primates [tarsiers and anthropoids (New and Old World monkeys, greater and lesser apes, and humans)]. Some fossil groups (omomyiforms and adapiforms) can be placed with or near these two extant groupings; however, there is contention whether the Plesiadapiformes represent the earliest relatives of primates and are best placed within the order (as here) or outside it. See also: FOSSIL; MAMMALIA; PHYLOGENY; PHYSICAL ANTHROPOLOGY; PRIMATES. Vast evidence suggests that the order Primates is a monophyletic group, that is, the primates have a common genetic origin. Although several peculiarities of the primate bauplan (body plan) appear to be inherited from an inferred common ancestor, it seems that the order as a whole is characterized by showing a variety of parallel adaptations in different groups to a predominantly arboreal lifestyle, including anatomical and behavioral complexes related to improved grasping and manipulative capacities, a variety of locomotor styles, and enlargement of the higher centers of the brain. Among the extant primates, the lower primates more closely resemble forms that evolved relatively early in the history of the order, whereas the higher primates represent a group that evolved more recently (Fig. 1). A classification of the primates, as accepted here, appears above. Early primates The earliest primates are placed in their own semiorder, Plesiadapiformes (as contrasted with the semiorder Euprimates for all living forms), because they have no direct evolutionary links with, and bear few adaptive resemblances to, any group of living primates.
    [Show full text]
  • Dental Anatomy of the Early Hominid, Orrorin Tugenensis, from the Lukeino Formation, Tugen Hills, Kenya
    Revue de Paléobiologie, Genève (décembre 2018) 37 (2): 577-591 ISSN 0253-6730 Dental anatomy of the early hominid, Orrorin tugenensis, from the Lukeino Formation, Tugen Hills, Kenya Brigitte SENUT1,*, Martin PICKFORD2 & Dominique GOMMERY3 1 CR2P - Centre de Recherche en Paléontologie - Paris, MNHN - CNRS - Sorbonne Université, Muséum national d’Histoire naturelle, CP 38, 8, rue Buffon, F-75252 Paris cedex 05, France. E-mail: *[email protected] 2 CR2P - Centre de Recherche en Paléontologie - Paris, MNHN - CNRS - Sorbonne Université, Muséum national d’Histoire naturelle, CP 38, 8, rue Buffon, F-75252 Paris cedex 05, France. E-mail: [email protected] 3 CR2P - Centre de Recherche en Paléontologie - Paris, CNRS - MNHN - Sorbonne Université, Campus Pierre et Marie Curie - Jussieu, T. 46 - 56, E.5, Case 104, F-75252 Paris cedex 05, France. E-mail: [email protected] Abstract Subsequent to the initial publication of the Late Miocene hominid genus and species, Orrorin tugenensis, in 2001, additional dental remains were discovered which comprise the subject of this paper. Detailed descriptions of all the Orrorin fossils are provided and comparisons are made with other late Miocene and early Pliocene hominoid fossils, in particular Ardipithecus ramidus, Ardipithecus kadabba and Sahelanthropus tchadensis. The Late Miocene Lukeino Formation from which the remains of Orrorin were collected, has yielded rare remains of a chimpanzee-like hominoid as well as a gorilla-sized ape. Although comparisons with Ardipithecus ramidus are difficult due to the fact that measurements of the teeth have not been published, it is concluded thatAr. ramidus is chimpanzee-like in several features, whereas some of the Ardipithecus kadabba fossils are close to Orrorin (others are more chimpanzee-like).
    [Show full text]
  • Molar Enamel Thickness and Distribution Patterns in Extant Great Apes and Humans: New Insights Based on a 3-Dimensional Whole Crown Perspective REIKO T
    ANTHROPOLOGICAL SCIENCE Vol. 112, 121–146, 2004 Molar enamel thickness and distribution patterns in extant great apes and humans: new insights based on a 3-dimensional whole crown perspective REIKO T. KONO1* 1Department of Anthropology, National Science Museum, Hyakunincho, Shinjuku-ku, Tokyo, 169-0073 Japan Received 14 November 2003; accepted 21 December 2003 Abstract Molar enamel thickness is a key feature in the study of hominid evolution. Our understand- ing of enamel thickness and distribution patterns, however, has so far been based mostly on the limited information available from physical cross sections of the crown. In this study, the 3-dimensional (3D) whole crown enamel distribution pattern was explored in 74 extant great ape and modern human molars. Serial cross sections obtained from microfocal X-ray computed tomography were used to gen- erate digital molar reconstructions at 50 to 80 micron voxel resolution, each crown represented by two to five million voxels. Surface data of both enamel dentine junction (EDJ) and outer enamel were extracted to derive volumetric measures, surface areas, curvilinear distances, and whole crown radial thickness maps. Three-dimensional average enamel thickness (AET) was defined as enamel volume divided by EDJ surface area. In 3D AET relative to tooth size, Homo exhibited the thickest, Gorilla the thinnest, and Pan and Pongo intermediately thick enamel. This result differs from previous claims that molar enamel of Pongo is relatively thicker than that of Pan. The discrepancy between three and two-dimensional (2D) values of AET stems from a combination of local differences in within tooth enamel distribution pattern and EDJ topography between Pan and Pongo molars.
    [Show full text]
  • Perissodactyla, Rhinocerotidae) from the Upper
    Geobios 50 (2017) 197–209 Available online at ScienceDirect www.sciencedirect.com Original article A new Elasmotheriini (Perissodactyla, Rhinocerotidae) from the upper § Miocene of Samburu Hills and Nakali, northern Kenya a, b c d Naoto Handa *, Masato Nakatsukasa , Yutaka Kunimatsu , Hideo Nakaya a Museum of Osaka University, 1-20 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan b Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan c Faculty of Business Administration, Ryukoku University, 67 Tsukamoto-cho, Fukakusa, Fushimi-ku, Kyoto 612-8577, Japan d Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan A R T I C L E I N F O A B S T R A C T Article history: Several rhinocerotid cheek teeth and mandibular fragments from the upper Miocene of the Samburu Received 15 August 2016 Hills and Nakali in northern Kenya are described. These specimens show characteristics that place them Accepted 20 April 2017 in the Tribe Elasmotheriini such as a constricted protocone, a developed antecrochet, and coronal Available online 8 May 2017 cement. The present specimens are compared with other Elasmotheriini species from Eurasia and sub- Saharan East Africa. They are found to be morphologically different from the previously known species of Keywords: Elasmotheriini. Morphologically, they are most similar to Victoriaceros kenyensis from the middle Elasmotheriini Miocene of Kenya, but differ from V. kenyensis in having the upper molars with the simple crochet, Rhinocerotidae lingual groove of the protocone and enamel ring in the medisinus. Therefore, the present specimens are Late Miocene assigned to a new genus and species of Elasmotheriini: Samburuceros ishidai.
    [Show full text]
  • Robinson, C. A
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Journal of Human Evolution 63 (2012) 191e204 Contents lists available at SciVerse ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol Geometric morphometric analysis of mandibular shape diversity in Pan Chris Robinson Department of Biology, Bronx Community College, City University of New York, 2155 University Avenue, Bronx, NY 10453, USA article info abstract Article history: The aim of this research is to determine whether geometric morphometric (GM) techniques can provide Received 27 July 2010 insights into how the shape of the mandibular corpus differs between bonobos and chimpanzees and to Accepted 1 May 2012 explore the potential implications of those results for our understanding of hominin evolution. We Available online 8 June 2012 focused on this region of the mandible because of the relative frequency with which it has been recovered in the hominin fossil record. In addition, no previous study had explored in-depth three- Keywords: dimensional (3D) mandibular corpus shape differences between adults of the two Pan species using Chimpanzees geometric morphometrics.
    [Show full text]
  • Evolutionary History of Lorisiform Primates
    Evolution: Reviewed Article Folia Primatol 1998;69(suppl 1):250–285 oooooooooooooooooooooooooooooooo Evolutionary History of Lorisiform Primates D. Tab Rasmussen, Kimberley A. Nekaris Department of Anthropology, Washington University, St. Louis, Mo., USA Key Words Lorisidae · Strepsirhini · Plesiopithecus · Mioeuoticus · Progalago · Galago · Vertebrate paleontology · Phylogeny · Primate adaptation Abstract We integrate information from the fossil record, morphology, behavior and mo- lecular studies to provide a current overview of lorisoid evolution. Several Eocene prosimians of the northern continents, including both omomyids and adapoids, have been suggested as possible lorisoid ancestors, but these cannot be substantiated as true strepsirhines. A small-bodied primate, Anchomomys, of the middle Eocene of Europe may be the best candidate among putative adapoids for status as a true strepsirhine. Recent finds of Eocene primates in Africa have revealed new prosimian taxa that are also viable contenders for strepsirhine status. Plesiopithecus teras is a Nycticebus- sized, nocturnal prosimian from the late Eocene, Fayum, Egypt, that shares cranial specializations with lorisoids, but it also retains primitive features (e.g. four premo- lars) and has unique specializations of the anterior teeth excluding it from direct lorisi- form ancestry. Another unnamed Fayum primate resembles modern cheirogaleids in dental structure and body size. Two genera from Oman, Omanodon and Shizarodon, also reveal a mix of similarities to both cheirogaleids and anchomomyin adapoids. Resolving the phylogenetic position of these Africa primates of the early Tertiary will surely require more and better fossils. By the early to middle Miocene, lorisoids were well established in East Africa, and the debate about whether these represent lorisines or galagines is reviewed.
    [Show full text]