From the Activation of Tetraphosphorus to the Chemistry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Chemistry of Carbene-Stabilized
THE CHEMISTRY OF CARBENE-STABILIZED MAIN GROUP DIATOMIC ALLOTROPES by MARIHAM ABRAHAM (Under the Direction of Gregory H. Robinson) ABSTRACT The syntheses and molecular structures of carbene-stabilized arsenic derivatives of 1 1 i 1 1 AsCl3 (L :AsCl3 (1); L : = :C{N(2,6- Pr2C6H3)CH}2), and As2 (L :As–As:L (2)), are presented herein. The potassium graphite reduction of 1 afforded the carbene-stabilized diarsenic complex, 2. Notably, compound 2 is the first Lewis base stabilized diatomic molecule of the Group 13–15 elements, in the formal oxidation state of zero, in the fourth period or lower of the Periodic Table. Compound 2 contains one As–As σ-bond and two lone pairs of electrons on each arsenic atom. In an effort to study the chemistry of the electron-rich compound 2, it was combined with an electron-deficient Lewis acid, GaCl3. The addition of two equivalents of GaCl3 to 2 resulted in one-electron oxidation of 2 to 1 1 •+ – •+ – give [L :As As:L ] [GaCl4] (6 [GaCl4] ). Conversely, the addition of four equivalents of GaCl3 to 2 resulted in two- electron oxidation of 2 to give 1 1 2+ – 2+ – •+ [L :As=As:L ] [GaCl4 ]2 (6 [GaCl4 ]2). Strikingly, 6 represents the first arsenic radical to be structurally characterized in the solid state. The research project also explored the reactivity of carbene-stabilized disilicon, (L1:Si=Si:L1 (7)), with borane. The reaction of 7 with BH3·THF afforded two unique compounds: one containing a parent silylene (:SiH2) unit (8), and another containing a three-membered silylene ring (9). -
Phosphorus: from the Stars to Land &
Phosphorus: From the Stars to Land & Sea The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Cummins, Christopher C. “Phosphorus: From the Stars to Land & Sea.” Daedalus 143, no. 4 (October 2014): 9–20. As Published http://dx.doi.org/10.1162/DAED_a_00301 Publisher MIT Press Version Final published version Citable link http://hdl.handle.net/1721.1/92509 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Phosphorus: From the Stars to Land & Sea Christopher C. Cummins Abstract: The chemistry of the element phosphorus offers a window into the diverse ½eld of inorganic chemistry. Fundamental investigations into some simple molecules containing phosphorus reveal much about the rami½cations of this element’s position in the periodic table and that of its neighbors. Addition - ally, there are many phosphorus compounds of commercial importance, and the industry surrounding this element resides at a crucial nexus of natural resource stewardship, technology, and modern agriculture. Questions about our sources of phosphorus and the applications for which we deploy it raise the provocative issue of the human role in the ongoing depletion of phosphorus deposits, as well as the transfer of phos- phorus from the land into the seas. Inorganic chemistry can be de½ned as “the chem- istry of all the elements of the periodic table,”1 but as such, the ½eld is impossibly broad, encompassing everything from organic chemistry to materials sci- ence and enzymology. -
Chemical Names and CAS Numbers Final
Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride -
Agricultural Commodity Protection by Phosphine Fumigation: Programmatic Environmental Assessment Tools Annex
AGRICULTURAL COMMODITY PROTECTION BY PHOSPHINE FUMIGATION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT TOOLS ANNEX NOVEMBER 2013 This publication was produced for review by the United States Agency for International Development (USAID). It was prepared under USAID’s Global Environmental Management Support (GEMS) project. Cover photos: Phosphine fumigation monitoring equipment (top left), DIMEGSA Pest Control staff in Guatemala (top right), USAID food commodities stored in a warehouse (bottom). COMMODITY PROTECTION BY PHOSPHINE FUMIGATION IN USAID FOOD AID PROGRAMS PROGRAMMATIC ENVIRONMENTAL ASSESSMENT TOOLS ANNEX Updated December 2015 (original NOVEMBER 2013) Contract No.: AID-OAA-M-11-00021 Prepared for: Office of Food for Peace Bureau for Democracy, Conflict and Humanitarian Assistance United States Agency for International Development Prepared under: The Global Environmental Management Support Project (GEMS), Award Number AID-OAA-M-11-00021. The Cadmus Group, Inc., prime contractor (www.cadmusgroup.com). Sun Mountain International, principal partner (www.smtn.org). DISCLAIMER Until and unless this document is approved by USAID as a 22 CFR 216 Programmatic Environmental Assessment, the contents may not necessarily reflect the views of the United States Agency for International Development or the United States Government. TABLE OF CONTENTS ANNEX T-1: GUIDE: FUMIGATION COMPLIANCE GUIDANCE FOR USAID PARTNERS…..…….1 ANNEX T-2: TEMPLATE: FOOD COMMODITY PROTECTION PERSUAP FOR PHOSPHINE FUMIGATION & CONTACT PESTICIDES…………………………………………………..…………4 ANNEX -
1 Introduction
Phosphine-catalysed reductive coupling of Dihalophosphanes Jan-Erik Siewert,[a] André Schumann[a] and Christian Hering-Junghans*[a] [a] M.Sc. Jan-Erik Siewert, Dr. André Schumann, Dr. Chirstian Hering-Junghans Leibniz Institute of Catalysis e.V. Rostock (LIKAT) Albert-Einstein-Straße 29a, 18059 Rostock, Germany E-Mail: [email protected] Abstract Classically, tetraorgano diphosphanes have been synthesized through Wurtz-type reductive coupling of halophosphanes R2PX or more recently, through the dehydrocoupling of phosphines R2PH. Catalytic variants of the dehydrocoupling reaction have been reported but are limited to R2PH compounds. Using PEt3 as a catalyst, we now show that TipPBr2 (Tip = 2,4,6-iPr3C6H2) is selectively coupled to give the dibromodiphosphane (TipPBr)2 (1), a compound not accessible using classic Mg reduction. Surprisingly, when using DipPBr2 (Dip = 2,6-iPr3C6H3) in the PEt3-catalysed reductive coupling the diphosphene (PDip) 2 (2) with a P=P double was formed selectively. In benzene solutions (PDip)2 has a half life-time of ca. 28 days and can be utilized with NHCs to access NHC-phosphinidene adducts. Control experiments show that [BrPEt3]Br is a potential oxidation product in the catalytic cycle, which can be then debrominated by using Zn dust as sacrificial reductant. 1 Introduction The formation of element-element bonds in main group chemistry is still dominated by classic stoichiometric salt metathesis and reductive coupling reactions. Only in S1 recent years, catalytic protocols for the dehydrocoupling of main group (p-block) substrates to species with homonuclear (E−E) or heteronuclear (E−E’) bonds have emerged.1-3 Catalysis with earth-abundant metals, in particular Zr, Fe and Ni,4 has been shown to be a viable alternative to using rather expensive systems based on Rh,5-7 Ir7- 10 and Ru.11 Using main-group species to facilitate the homo- or heterocoupling of p- block elements has also been in the focus of current research. -
Dipyrazolylphosphanes in Condensation and P–N/P–P Bond Metathesis Reactions
Dipyrazolylphosphanes in Condensation and P–N/P–P Bond Metathesis Reactions DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Bereich Mathematik und Naturwissenschaften der Technischen Universität Dresden von M.Sc. Robin Schoemaker geboren am 05.07.1991 in Nordhorn Eingereicht am 09.06.2020 Verteidigt am 04.09.2020 Gutachter: Prof. Dr. Jan J. Weigand Prof. Dr. Christian Müller Die Dissertation wurde in der Zeit von 11/2015 bis 06/2020 in der Professur für Anorganische Molekülchemie der Technischen Universität Dresden angefertigt. I am very much indebted to Prof. Dr. Jan J. Weigand for his generous support, help and advice. Content 1. Introduction ................................................................................................................... 3 1.1. Pyrazolyl-substituted Phosphanes – Synthesis and Application in Condensation Reactions ........................................................................................................................... 4 1.2. Pyrazolyl-substituted Phosphorus Compounds in Scrambling Reactions .................. 7 1.3. Polyphosphanes in Methylation Reactions ............................................................... 12 1.4. Classification of Pyrazolylphosphanes ..................................................................... 14 2. Objectives .................................................................................................................... 16 3. Synthesis of Pyrazolylphosphanes ............................................................................. -
Staging Category Base Rate Article Description HTS Heading
HTS Heading/Article Subheading description Base Rate Staging Category I. CHEMICAL ELEMENTS 2801 Fluorine, chlorine, bromine and iodine: 28011000 -Chlorine Free E 28012000 -Iodine Free E 280130 -Fluorine; bromine: 28013010 --Fluorine 3.7% A 28013020 --Bromine 5.5% A 28020000 Sulfur, sublimed or precipitated; colloidal sulfur Free E Carbon (carbon blacks and other forms of carbon not 28030000 elsewhere specified or included) Free E 2804 Hydrogen, rare gases and other nonmetals: 28041000 -Hydrogen 3.7% A -Rare gases: 28042100 --Argon 3.7% A 28042900 --Other 3.7% A 28043000 -Nitrogen 3.7% A 28044000 -Oxygen 3.7% A 28045000 -Boron; tellurium Free E -Silicon: --Containing by weight not less than 99.99 percent of 28046100 silicon Free E 280469 --Other: ---Containing by weight less than 99.99 percent but not 28046910 less than 99 percent of silicon 5.3% B 28046950 ---Other 5.5% B 28047000 -Phosphorus Free E 28048000 -Arsenic Free E 28049000 -Selenium Free E Alkali or alkaline-earth metals; rare-earth metals, scandium and yttrium, whether or not intermixed or 2805 interalloyed; mercury: -Alkali metals: 28051100 --Sodium 5.3% B 28051900 --Other 5.5% B -Alkaline-earth metals: 28052100 --Calcium 3% A 280522 --Strontium and barium: 28052210 ---Strontium 3.7% A 28052220 ---Barium Free E -Rare-earth metals, scandium and yttrium, whether or 28053000 not intermixed or interalloyed 5% A 28054000 -Mercury 1.7% A II. INORGANIC ACIDS AND INORGANIC OXYGEN COMPOUNDS OF NONMETALS Hydrogen chloride (Hydrochloric acid); chlorosulfuric 2806 acid: 28061000 -Hydrogen -
Nomenclature of Organic Chemistry. IUPAC Recommendations and Preferred Names 2013
International Union of Pure and Applied Chemistry Division VIII Chemical Nomenclature and Structure Representation Division Nomenclature of Organic Chemistry. IUPAC Recommendations and Preferred Names 2013. Prepared for publication by Henri A. Favre and Warren H. Powell, Royal Society of Chemistry, ISBN 978-0-85404-182-4 Chapter P-6 APPLICATIONS TO SPECIFIC CLASSES OF COMPOUNDS (continued) (P-66 to P-69) (continued from P-60 to P-65) P-60 Introduction P-61 Substitutive nomenclature: prefix mode P-62 Amines and imines P-63 Hydroxy compounds, ethers, peroxols, peroxides and chalcogen analogues P-64 Ketones, pseudoketones and heterones, and chalcogen analogues P-65 Acids and derivatives P-66 Amides, hydrazides, nitriles, aldehydes P-67 Oxoacids used as parents for organic compounds P-68 Nomenclature of other classes of compounds P-69 Organometallic compounds P-66 AMIDES, IMIDES, HYDRAZIDES, NITRILES, AND ALDEHYDES, P-66.0 Introduction P-66.1 Amides P-66.2 Imides P-66.3 Hydrazides P-66.4 Amidines, amidrazones, hydrazidines, and amidoximes (amide oximes) P-66.5 Nitriles P-66.6 Aldehydes P-66.0 INTRODUCTION The classes dealt with in this Section have in common the fact that their retained names are derived from those of acids by changing the ‘ic acid’ ending to a class name, for example ‘amide’, ‘ohydrazide’, ‘nitrile’, or ‘aldehyde’. Their systematic names are formed substitutively by the suffix mode using one of two types of suffix, one that includes the carbon atom, for example, ‘carbonitrile’ for –CN, and one that does not, for example, ‘-nitrile’ for –(C)N. Amidines are named as amides, hydrazidines as hydrazides, and amidrazones as amides or hydrazides. -
Synthesis, Purification, and Characterization of Tetraphosphine Ligands Deniz Cevik
Synthesis, purification, and characterization of tetraphosphine ligands Deniz Cevik To cite this version: Deniz Cevik. Synthesis, purification, and characterization of tetraphosphine ligands. Other. Univer- sité Paris-Saclay, 2017. English. NNT : 2017SACLX026. tel-01631221 HAL Id: tel-01631221 https://pastel.archives-ouvertes.fr/tel-01631221 Submitted on 8 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2017SACLX026 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY PREPAREE A ÉCOLE POLYTECHNIQUE ECOLE DOCTORALE N° 517 2MIB | Sciences chimiques : Molécules, matériaux, instrumentation et biosystèmes Spécialité de doctorat : Chimie Par Mme. Deniz Çevik Synthesis, Purification, and Characterization of Tetraphosphine Ligands Thèse présentée et soutenue à Palaiseau, le 17. Juillet 2017 : Composition du Jury : Mme. Hii, King Kuok (Mimi) Professeur Imperial College London Rapporteure M. Manoury, Eric DR - CNRS au LCC (Toulouse) Rapporteur M. Voituriez, Arnaud DR - CNRS á l’ICSN Président M. van Leeuwen, Piet Chaire d’Attractivité au LPCNO, INSA-Toulouse -
Principles of Chemical Nomenclature a GUIDE to IUPAC RECOMMENDATIONS Principles of Chemical Nomenclature a GUIDE to IUPAC RECOMMENDATIONS
Principles of Chemical Nomenclature A GUIDE TO IUPAC RECOMMENDATIONS Principles of Chemical Nomenclature A GUIDE TO IUPAC RECOMMENDATIONS G.J. LEIGH OBE TheSchool of Chemistry, Physics and Environmental Science, University of Sussex, Brighton, UK H.A. FAVRE Université de Montréal Montréal, Canada W.V. METANOMSKI Chemical Abstracts Service Columbus, Ohio, USA Edited by G.J. Leigh b Blackwell Science © 1998 by DISTRIBUTORS BlackweilScience Ltd Marston Book Services Ltd Editorial Offices: P0 Box 269 Osney Mead, Oxford 0X2 0EL Abingdon 25 John Street, London WC1N 2BL Oxon 0X14 4YN 23 Ainslie Place, Edinburgh EH3 6AJ (Orders:Tel:01235 465500 350 Main Street, Maiden Fax: MA 02 148-5018, USA 01235 465555) 54 University Street, Carlton USA Victoria 3053, Australia BlackwellScience, Inc. 10, Rue Casmir Delavigne Commerce Place 75006 Paris, France 350 Main Street Malden, MA 02 148-5018 Other Editorial Offices: (Orders:Tel:800 759 6102 Blackwell Wissenschafts-Verlag GmbH 781 388 8250 KurfUrstendamm 57 Fax:781 388 8255) 10707 Berlin, Germany Canada Blackwell Science KK Copp Clark Professional MG Kodenmacho Building 200Adelaide St West, 3rd Floor 7—10 Kodenmacho Nihombashi Toronto, Ontario M5H 1W7 Chuo-ku, Tokyo 104, Japan (Orders:Tel:416 597-1616 800 815-9417 All rights reserved. No part of Fax:416 597-1617) this publication may be reproduced, stored in a retrieval system, or Australia BlackwellScience Pty Ltd transmitted, in any form or by any 54 University Street means, electronic, mechanical, Carlton, Victoria 3053 photocopying, recording or otherwise, (Orders:Tel:39347 0300 except as permitted by the UK Fax:3 9347 5001) Copyright, Designs and Patents Act 1988, without the prior permission of the copyright owner. -
Status of Inorganic Chemistry Research in India
Proc Indian Natn Sci Acad 86 No. 2 June 2020 pp. 983-999 Printed in India. DOI: 10.16943/ptinsa/2019/49735 Review Article Status of Inorganic Chemistry Research in India V CHANDRASEKHAR1,2,* and A CHAKRABORTY2 1Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India 2Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500 107, India (Received on 03 March 2019; Revised on 25 May 2019; Accepted on 05 June 2019) The current status of research in the area of Inorganic chemistry in India is discussed. The article focuses on various aspects of inorganic chemistry being pursued in the country such as main-group chemistry, coordination chemistry, supramolecular chemistry, molecular materials and bio-inorganic chemistry. The strengths of the subject in the country and the possible future directions are discussed. Keywords: Inorganic Chemistry; Modern Chemistry; Chemical Research; Mercurous Nitrite Introduction for a long time and the amount of funding was substantially lower. It is only in the last two decades Modern chemistry research in India began with that reasonable funding became available for Acharya Prafulla Chandra Ray in Kolkata. The fact researchers across the country and this is reflected that he was an inorganic chemist by training is in the number of publications resulting from the incidental. His influence on chemical research in India country. The increased funding has resulted in higher is profound (Chakravorty, 2014). His most important number of publications. By a search of web-of-science contribution is the preparation of mercurous nitrite, using the key words “India” and “Address” (in topics Hg (NO ) , whose molecular structure was 2 2 2 search) the publications in the decades 1980-2019 is established several years later (Samanta et al., 2011). -
GLOSSARY of CLASS NAMES of ORGANIC COMPOUNDS and REACTIVE INTERMEDIATES BASED on STRUCTURE (IUPAC Recommendations 1995)
Pure &App/. Chem., Vol. 67, Nos 819, pp. 1307-1375, 1995. Printed in Great Britain. (B 1995 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC CHEMISTRY DMSION COMMISSION ON NOMENCLATURE OF ORGANIC CHEMISTRY (III. 1) COMMISSION ON PHYSICAL ORGANIC CHEMISTRY (III.2) GLOSSARY OF CLASS NAMES OF ORGANIC COMPOUNDS AND REACTIVE INTERMEDIATES BASED ON STRUCTURE (IUPAC Recommendations 1995) Prepared for publication by G.P. MOSS, P.A.S. SMITH and D. TAVERNIER Cornpodtion of the ZZZ.1 & 111.2 Working Party (1980-1994): H.J.T. Bos, A.J. Boulton, E.W. Godly, P. Griinanger, A.D. McNaught, G.P. Moss, R. PanicO, J. Rigaudy, P.A.S. Smith (Conwnorfiom ZZZ, I), J.H. Stocker, D. Tavernier, R.A.Y. Jones, J. March, J.M. McBnde, P. Miiller (Conwnorfim 111.2). Membership of the Commission on Nomenclature of Organic Chemistry during the preparation of this document (1980-1994) was as follows: Titular Members: 0. Achmatowicz (Poland) 1979-1987; H. J. T. Bos (Netherlands) 1987- , Vice-Chairman, 1991- ; J. R. Bull (Republic of South Africa) 1987-1993; H. A. Favre (Canada) 1989- , Chairman, 1991- ; P. M. Giles, Jr. (USA) 1989- ; E. W. Godly (UK) 1987-1993. Secretary, 1989-1993 ; D. Hellwinkel (Federal Republic of Germany) 1979-1987, Vice- Chairman, 1981-1987; B. J. Herold (Portugal) 1994- ; K. Hirayama (Japan) 1975-1983; M. V. KisakUrck (Switizrland) 1994- ; A. D. McNaught (UK) 1979-1987; G. P. Moss (UK) 1977- 1987, Chairinan, 1981- 1987, Vice-Chainnun, 1979-1981; R. Panico (Francc) 1981-1991, Vice- Chairman, 1989-1991; W. H. Powell (USA) Secretary, 1979-1989; J.