Manganese, Iron and Cobalt Catalyzed Reductive Hydrogenation and Cross-Coupling Reactions

Total Page:16

File Type:pdf, Size:1020Kb

Manganese, Iron and Cobalt Catalyzed Reductive Hydrogenation and Cross-Coupling Reactions Manganese, Iron and Cobalt Catalyzed Reductive Hydrogenation and Cross-Coupling Reactions Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften Dr. rer. nat. an der Fakultät für Chemie und Pharmazie der Universität Regensburg vorgelegt von Efrain Reyes-Rodriguez Regensburg 2018 ii iii Für meine Mutter iv v The experimental part of this work was carried out between January 2015 and March 2018 at the University of Regensburg, Institute of Organic Chemistry under the su- pervision of Prof. Dr. Axel Jacobi von Wangelin. The thesis was submitted on: 19.12.2018 Date of the defense: 25.01.2019 Board of examiners: Prof. Dr. Rainer Müller (chairman) Prof. Dr. Axel Jacobi von Wangelin (1st referee) Jun.-Prof. Dr. Ivana Fleischer (2nd referee) Prof. Dr. Frank-Michael Matysik (examiner) vi Contents 1 Introduction 1 1.1 Environmental Aspects of Chemical Transformations . .2 1.2 Current State of 3d Transition Metal Catalysis . .3 1.3 Scope of the Thesis . .8 1.4 References . 12 2 Recyclable Cobalt(0) Nanoparticle Catalysts for Hydrogenations 15 2.1 Introduction . 16 2.2 Results and Discussion . 17 2.3 Conclusion . 24 2.4 Experimental Section . 25 2.4.1 General information . 25 2.4.2 General Procedures . 26 2.4.3 Synthesis of Starting Materials . 28 2.4.4 Hydrogenation Reactions . 30 2.4.4.1 Catalyst and Substrate Screening . 30 2.4.4.2 Isolated Hydrogenation Reaction Products . 38 2.4.5 ICP-OES Measurement . 60 2.4.6 ICP-MS Measurement . 61 2.4.7 Functional Group Tolerance Tests . 62 2.4.8 Comparison of Different Co-Np Preparations . 63 2.4.9 Recycling Experiments . 64 2.4.10 Particle Analyses . 64 2.5 References . 67 vii viii Contents 3 A Manganese Nanosheet: New Cluster Topology and Catalysis 73 3.1 Introduction . 74 3.2 Cluster Synthesis and Characterization . 75 3.3 Hydrogenation Results . 79 3.4 Conclusion . 83 3.5 Experimental Section . 84 3.5.1 General Information . 84 3.5.2 General Procedures . 85 3.5.3 Synthesis and Characterization of the Manganese Nanocluster [Mn6(m3-H)4(m2-H)2{m2-N(SiMe3)2}4{N(SiMe3)2}2] (2) . 86 3.5.4 Radical clock reaction . 88 3.5.5 Cyclotrimerization Reactions of Phenyl Acetylene . 89 3.5.6 Reaction of 2 with 4-Me-Pyridine . 90 3.5.7 Hydroboration of Pyridine . 91 3.5.8 X-Ray Structure . 95 3.5.9 Magnetic Measurements . 96 3.5.10 Poisoning Studies . 97 3.5.11 Synthesis of Starting Materials . 98 3.5.12 Hydrogenation products . 103 3.6 References . 113 4 Alkene Metalates as Hydrogenation Catalysts 119 4.1 Introduction . 120 4.2 Results and Discussion . 122 4.2.1 Precatalyst Syntheses . 122 4.2.2 Catalytic Hydrogenations . 126 4.2.3 Mechanistic Studies . 130 4.2.4 Methodology Extensions . 138 4.3 Conclusions . 143 4.4 Experimental Section . 144 4.4.1 General Information . 144 4.4.2 General Procedures . 146 4.4.3 1H-NMR Spectra of the New Complexes 5−7 . 148 4.4.4 Photographic Images of Monitoring Experiments . 150 4.4.5 Negative-Ion Mode ESI Spectra . 151 4.4.6 X-Ray Crystallography . 155 4.5 References . 157 Contents ix 5 Iron-Catalyzed Cross-Coupling of Secondary Alkyl Chlorides 163 5.1 Introduction . 164 5.2 Results and Discussion . 165 5.3 Conclusion . 179 5.4 Experimental Section . 180 5.4.1 General Information . 180 5.4.2 General Procedures . 181 5.4.3 Synthesized Starting Materials . 182 5.4.4 Ligand Synthesis . 187 5.4.5 Synthesis of b-Ketiminato Iron Complexes . 188 5.4.6 Optimization Experiments . 190 5.4.6.1 Catalyst Loading Experiments . 190 5.4.6.2 Optimization Experiments Using Electron Withdraw- ing Aryl Grignard Reagents . 190 5.4.6.3 Effect of Fluorinated Substrates as Additive . 191 5.4.6.4 Amine and Amide Ligand Screening . 192 5.4.6.5 Further Investigation into Ligand Activity . 196 5.4.6.6 Use of Well-Defined Iron(II) Complexes . 197 5.4.7 Mechanistical Investigations . 199 5.4.7.1 Using 4-Chlorophenylmagnesium Bromide . 199 5.4.7.2 Catalyst Poisoning Experiments Under Ligand-Free Con- ditions . 200 5.4.7.3 Radical Clock Experiments . 200 5.4.7.4 Competition Reactions Between LMeFeAr and Ar’MgBr 201 5.4.8 Isolated Coupling Products . 202 5.4.9 Cyclic Voltammetry . 217 5.4.10 UV/Vis Experiments . 218 5.4.11 NMR Reaction Analysis . 219 5.4.12 X-Ray Crystallography . 221 5.4.13 Selected NMR-Spectra . 223 5.5 References . 226 x Contents 6 Transition Metal-Free Reductive Silylation of (Het)Aryl Bromides 233 6.1 Introduction . 234 6.2 Results and Discussion . 235 6.3 Conclusion . 240 6.4 Experimental Section . 241 6.4.1 General Information . 241 6.4.2 General Procedures . 242 6.4.3 Reaction Optimization . 244 6.4.4 Synthesis of Starting Materials . 246 6.4.5 Isolated Coupling Products . 250 6.5 References . 274 7 Appendix 279 7.1 List of Figures . 279 7.2 List of Schemes . 283 7.3 List of Tables . 285 7.4 Acknowledgements . 287 Chapter 1 Introduction Reductive hydrogenation and cross- coupling utilizing cheap and readily available base metal catalysts H X R' X R' R H2 R Fe H ArMgBr R Cl Co Mn R Ar R' R' ArX transition metal free R3Si-X Mg R3Si-Ar One-pot reductive silylation of aryl bromides and chlorides mediated by microwave irradiation Abstract: The need for sustainable chemical transformations has been steadily in- creasing in recent years due to the rising prices of noble metals and new ecological policies to reduce atmospheric pollution and hazardous waste. This introductory chapter strives to describe the basic principles necessary to attain “green” and sus- tainable chemistry in our modern industrial age as well as going into more detail on the importance of base metal catalysis. Lastly, an overview of the subsequent chapters is given. 1 2 Introduction 1.1 Environmental Aspects of Chemical Transformations The biosphere of our planet has enabled the proliferation of aerobic organisms and the accumulation of oxidized matter on the earth’s surface (water, CO2, oxides, car- bohydrates). On the other hand, reduced chemical compounds are valuable sources of energy found only in deeper layers or isolated reservoirs (hydrogen, methane, petroleum, natural gas, coal, solid metals). Many oxidation events proceed spon- taneously or are highly thermodynamically favored, while reduction reactions often require an external driving force through the supply of energy or high-energy re- agents. The scarcity of high-energy resources makes the reductive transformation of available oxidized raw materials (biomass, water, atmosphere) into energy sources (H2, methanol) and intermediates (NH3, synthesis gas, platform chemicals) one of the greatest challenges of modern industrial societies.[1] The emerging field of Green Chemistry aims to overcome these challenges in an environmentally sustainable way. Its main goals are summarized by the Twelve Prin- ciples of Green Chemistry which were postulated by Paul Anastas and John Warner in 1998.[2] In general, Green Chemistry strives to minimize the use of hazardous chemicals and waste production as well as maximizing the efficiency of chemical reactions while relying mostly on renewable feedstocks. A lot of different methods have been developed to reduce energy consumption (e.g. by using microwave irradi- ation instead of conventional heating methods),[3] waste generation (e.g. recycling of catalyst material[4] or the use of flow reactors[5]) and the use of hazardous chemicals (e.g. substitution of solvents for water[6] or ionic liquids[7]). The use of catalysts represent a cornerstone in the abovementioned principles of Green Chemistry and is generally seen as a very important aspect for the economical generation of chemical compounds in industry. Catalytic processes are a vital tool in the development of new synthetic routes for the functionalization of molecules. It is estimated that 75% of the existing industrial chemical transformations and 90% of newly developed processes include the use of catalysts.[8] The established cata- lyst systems are based predominantly on second- and third-row transition metals, i.e. ruthenium, rhodium, palladium and iridium[9] as well as on nickel and cop- per.[10] Despite their high efficiency and broad application, the development of novel synthetic routes and catalytic systems is in full swing. This is not least owed to the increasing prices of noble metals, the toxicity of nickel and the new ecological policies to reduce atmospheric pollution and to eliminate hazardous waste. In this regard, first-row transition metals, like Mn, Co and Fe constitute a viable alternative to the existing catalyst metals. The selected examples in Figure 1.1 show the advantages of first-row transition metals in comparison to the most-used noble metals - they are abundant, very cheap and pose small threat to the environment and to human health. A direct comparison shows a difference of multiple orders of magnitude between the selected 3d transition Chapter 1.2: Current State of 3d Transition Metal Catalysis 3 Figure 1.1: Comparison of abundance, price, and greenhouse potential for highly- used catalyst metals. A logarithmic.
Recommended publications
  • Pearson-CV-15.Pdf
    A. J. Pearson/C.V. January 2016 Curriculum Vitae Anthony J. Pearson Academic Rank: Rudolph & Susan Rense Professor of Chemistry Birthplace: Kingswinford, England. Citizenship: British; U.S. Naturalized Citizen. Education: University of Leeds, England, B.Sc. Hons. Class 1, 1971, Chemistry. Aston University, England, Ph.D., 1974, Organic Chemistry. Awards & Honors: Akroyd Scholarship (1969), Whytlaw-Gray Prize for Chemistry (1971), and Dawson Prize for Physical Chemistry (1971), University of Leeds. Sir Gilbert Morgan Medal (1973), Society for Chemical Industry, U.K. Science and Engineering Research Council (U.K.) Advanced Fellowship (1977-82). Sigma Xi Research Award (1984), Case Western Reserve University. John S. Diekhoff Award for Distinguished Graduate Teaching (1994), Case Western Reserve University. Visiting Scientist, Chemistry Research Promotion Center, Taipei, Taiwan, R.O.C., May 1990. Visiting Professor, University of Auckland, New Zealand, July/August, 1995. Chairman-Elect, American Chemical Society, Cleveland Section, 1999. Chairman, 2000. Finalist (one of three) for Northern Ohio Live 2001 Award of Achievement in Architecture, with R. Bostwick, N. Distad, K. Kutina, and N. Rushforth, for design of Agnar Pytte Science Center at CWRU. Case Alumni Association, Recognition of Meritorious Service, 2003. Experience: 1963-66 Chemist. Industrial research and analytical laboratories. Albright & Wilson; British Steel; West Midlands Gas Board. Semi-professional musician. 1974-77 Postdoctoral Research Fellow, with Arthur J. Birch. Research School of Chemistry, Australian National University, Canberra, Australia. 1977-82 SERC Advanced Fellow. Cambridge University Chemical Laboratory. 1978-81 Pauline Merz Official Fellow and Lecturer in Chemistry. Girton College, Cambridge University. 1979-81 Tutor. Girton College, Cambridge University. 1982-84 Associate Professor of Chemistry.
    [Show full text]
  • 04. M.SC Chemistry
    DEPARTMENT OF CHEMISTRY ANNA UNIVERSITY, CHENNAI VISION The Department of Chemistry at Anna University shall strive towards attaining world class status and recognition by producing students with sound knowledge, professional skills, high levels of integrity and ethical values. The Department shall provide an outstanding ambience for teaching, research and consultancy.The Department shall perform frontier research and create knowledge base in theoretical and appliedchemistry, polymeric and catalytic materials, fuel and energy related processes and materials, environmental chemistry and other transdisciplinary areas of technological importance. MISSION The Department of Chemistry, Anna University shall contribute to the educational, economic and social development: By producing postgraduates and Doctorates who are equipped with thorough knowledge in Chemistry, analytical thinking, practical skills and ethics. By inspiring the students to be creative thinkers, inspirational role models and citizens with environmental and social consciousness. By introducing high quality academic and research programmes in Chemistry and enabling interaction with experts from around the world in the fields of Chemistry. By ensuring a supportive ambience in the Department with dynamic leadership and growth opportunities to meet the needs of the students, faculty and staff. By promoting the development of technologically and socially relevant processes and products in the fields of catalysis, polymers, corrosion resistance coatings and energy conversion through academic and sponsored research, in collaboration with global research groups. By sharing the intellectual resources and infrastructural facilities of the Department of Chemistry among the academic fraternity of the University campus and other Institutions, among the industrial research groups, funding agencies and the Government. By facilitating collaborative partnership with industries and other institutions and catalyseinnovation, transfer of technology and commercialization towards fulfilling societal developments.
    [Show full text]
  • Lithium Transport in Crown Ether Polymers
    Durham E-Theses Lithium transport in crown ether polymers Collie, Luke E. How to cite: Collie, Luke E. (1995) Lithium transport in crown ether polymers, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5196/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Lithium Transport in Crown Ether Polymers Luke E. Collie BSc. (Hons.) University of Durham Department of Chemistry The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. A Thesis submitted for the degree of Doctor of Philosophy October 1995 1 6 JAN 1996 Statement of Copyright The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.
    [Show full text]
  • Agricultural Commodity Protection by Phosphine Fumigation: Programmatic Environmental Assessment Tools Annex
    AGRICULTURAL COMMODITY PROTECTION BY PHOSPHINE FUMIGATION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT TOOLS ANNEX NOVEMBER 2013 This publication was produced for review by the United States Agency for International Development (USAID). It was prepared under USAID’s Global Environmental Management Support (GEMS) project. Cover photos: Phosphine fumigation monitoring equipment (top left), DIMEGSA Pest Control staff in Guatemala (top right), USAID food commodities stored in a warehouse (bottom). COMMODITY PROTECTION BY PHOSPHINE FUMIGATION IN USAID FOOD AID PROGRAMS PROGRAMMATIC ENVIRONMENTAL ASSESSMENT TOOLS ANNEX Updated December 2015 (original NOVEMBER 2013) Contract No.: AID-OAA-M-11-00021 Prepared for: Office of Food for Peace Bureau for Democracy, Conflict and Humanitarian Assistance United States Agency for International Development Prepared under: The Global Environmental Management Support Project (GEMS), Award Number AID-OAA-M-11-00021. The Cadmus Group, Inc., prime contractor (www.cadmusgroup.com). Sun Mountain International, principal partner (www.smtn.org). DISCLAIMER Until and unless this document is approved by USAID as a 22 CFR 216 Programmatic Environmental Assessment, the contents may not necessarily reflect the views of the United States Agency for International Development or the United States Government. TABLE OF CONTENTS ANNEX T-1: GUIDE: FUMIGATION COMPLIANCE GUIDANCE FOR USAID PARTNERS…..…….1 ANNEX T-2: TEMPLATE: FOOD COMMODITY PROTECTION PERSUAP FOR PHOSPHINE FUMIGATION & CONTACT PESTICIDES…………………………………………………..…………4 ANNEX
    [Show full text]
  • List of Publications
    List of Publications 316. D. Mishig, M. Gruner, T. Lübken, C. Ganbaatar, D. Regdel, H.-J. Knölker, Sci. Rep. 2021, 11, 13740: Isolation and Structure Elucidation of Pyridine Alkaloids from the Aerial Parts of the Mongolian Medicinal Plant Caryopteris mongolica Bunge. 315. A. K. Solanki, M. R. Biswal, S. Walterhouse, R. Martin, A. A. Kondkar, H.-J. Knölker, B. Rahman, E. Arif, S. Husain, S. R. Montezuma, D. Nihalani, G. P. Lobo, Cells 2021, 10, 1322: Loss of Motor Protein MYO1C Causes Rhodopsin Mislocation and Results in Impaired Visual Function. 314. A. Åslund, M. H. Bokhari, E. Wetterdal, R. Martin, H.-J. Knölker, T. Bengtsson, Mol. Metab. 2021, 53, 101247: Myosin 1c: A Novel Regulator of Glucose Uptake in Brown Adipocytes. 313. F. Puls, P. Linke, O. Kataeva, H.-J. Knölker, Angew. Chem. 2021, 133, 14202–14209; Angew. Chem. Int. Ed. 2021, 60, 14083–14090: Transition Metals in Organic Synthesis, Part 148. Iron- Catalyzed Wacker-type Oxidation of Olefins at Room Temperature with 1,3-Diketones or Neocuproine as Ligands. 312. M. Witting, U. Schmidt, H.-J. Knölker, Anal. Bioanal. Chem. 2021, 413, 2091–2102: UHPLC-IM- Q-ToFMS Analysis of Maradolipids, Found Exclusively in Caenorhabditis elegans Dauer Larvae. 311. H.-J. Knölker, Sitzungsberichte der Sächsischen Akademie der Wissenschaften zu Leipzig – Mathematisch-naturwissenschaftliche Klasse, S. Hirzel, Suttgart/Leipzig, 2021, Band 133, Heft 4, S. 1–30: Katalyse – Eine Renaissance der „Eisenzeit“? 310. S. Vellino, C. Oddou, P. Rivier, C. Boyault, E. Hiriart-Bryant, A. Kraut, R. Martin, Y. Coute, H.-J. Knölker, M. A. Valverde, C. Albigès-Rizo, O. Destaing, J.
    [Show full text]
  • Iron Catalysis in Organic Chemistry
    Iron Catalysis in Organic Chemistry Reactions and Applications Edited by Bernd Plietker Iron Catalysis in Organic Chemistry Edited by Bernd Plietker Related Titles Cornils, B., Herrmann, W. A., Muhler, M., Wong, C.-H. (eds.) Catalysis from A to Z A Concise Encyclopedia 2007 ISBN: 978-3-527-31438-6 Tietze, L. F., Brasche, G., Gericke, K. M. Domino Reactions in Organic Synthesis 2006 SBN: 978-3-527-29060-4 Yudin, A. K. (ed.) Aziridines and Epoxides in Organic Synthesis 2006 ISBN: 978-3-527-31213-9 Cornils, B., Herrmann, W. A., Horvath, I. T., Leitner, W., Mecking, S., Olivier-Bourbigou, H., Vogt, D. (eds.) Multiphase Homogeneous Catalysis 2005 ISBN: 978-3-527-30721-0 Christoffers, J., Baro, A. (eds.) Quaternary Stereocenters Challenges and Solutions for Organic Synthesis 2005 ISBN: 978-3-527-31107-1 Dyker, G. (ed.) Handbook of C-H Transformations Applications in Organic Synthesis 2005 ISBN: 978-3-527-31074-6 Knochel, P. (ed.) Handbook of Functionalized Organometallics Applications in Synthesis 2005 ISBN: 978-3-527-31131-6 Iron Catalysis in Organic Chemistry Reactions and Applications Edited by Bernd Plietker The Editor All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and Prof. Dr. Bernd Plietker publisher do not warrant the information contained Institut für Organische Chemie in these books, including this book, to be free of Universität Stuttgart errors. Readers are advised to keep in mind that Pfaffenwaldring 55 statements, data, illustrations, procedural details or 70569 Stuttgart other items may inadvertently be inaccurate. Germany Library of Congress Card No.: applied for British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.
    [Show full text]
  • Dipyrazolylphosphanes in Condensation and P–N/P–P Bond Metathesis Reactions
    Dipyrazolylphosphanes in Condensation and P–N/P–P Bond Metathesis Reactions DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Bereich Mathematik und Naturwissenschaften der Technischen Universität Dresden von M.Sc. Robin Schoemaker geboren am 05.07.1991 in Nordhorn Eingereicht am 09.06.2020 Verteidigt am 04.09.2020 Gutachter: Prof. Dr. Jan J. Weigand Prof. Dr. Christian Müller Die Dissertation wurde in der Zeit von 11/2015 bis 06/2020 in der Professur für Anorganische Molekülchemie der Technischen Universität Dresden angefertigt. I am very much indebted to Prof. Dr. Jan J. Weigand for his generous support, help and advice. Content 1. Introduction ................................................................................................................... 3 1.1. Pyrazolyl-substituted Phosphanes – Synthesis and Application in Condensation Reactions ........................................................................................................................... 4 1.2. Pyrazolyl-substituted Phosphorus Compounds in Scrambling Reactions .................. 7 1.3. Polyphosphanes in Methylation Reactions ............................................................... 12 1.4. Classification of Pyrazolylphosphanes ..................................................................... 14 2. Objectives .................................................................................................................... 16 3. Synthesis of Pyrazolylphosphanes .............................................................................
    [Show full text]
  • Durham E-Theses
    Durham E-Theses The synthesis and potential applications of asymmetric silacycles Matthews, Jennifer Louise How to cite: Matthews, Jennifer Louise (1994) The synthesis and potential applications of asymmetric silacycles, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5504/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk The Synthesis and Potential Applications of Asymmetric Silacycles The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. Jennifer Louise Matthews, B.Sc. (Hons) Ph.D. Thesis University of Durham November 1994 COPYRIGHT The copyright of this work rests with the author. No quotation from it should be published without prior consent. Information derived from this thesis should be acknowledged. DECLARATION The work contained in this thesis was carried out in the Department of Chemistry at the University of Durham between October 1991 and September 1994.
    [Show full text]
  • Iron Complexes and (Dienyl)Iron Cations in Organic Synthesis William Donaldson Marquette University, [email protected]
    CORE Metadata, citation and similar papers at core.ac.uk Provided by epublications@Marquette Marquette University e-Publications@Marquette Chemistry Faculty Research and Publications Chemistry, Department of 8-1-2009 Recent Applications of Acyclic (Diene)iron Complexes and (Dienyl)iron Cations in Organic Synthesis William Donaldson Marquette University, [email protected] Subhabrata Chaudhury Marquette University Accepted version. European Journal of Organic Chemistry, Volume 2009, Issue 23 (August 2009). pp 3831-3843. DOI: 10.1002/ejoc.200900141 © 2009 Wiley-VCH Verlag. Used with permission. This is the pre-peer reviewed version of the article, which has been published in final form. NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation at the bottom of the page. Recent Applications of Acyclic (Diene)iron Complexes and (Dienyl)iron Cations in Organic Synthesis William A. Donaldson Department of Chemistry, Marquette University Milwaukee, WI Subhabrata Chaudhury Department of Chemistry, Marquette University Milwaukee, WI Abstract: Complexation of (tricarbonyl)iron to an acyclic diene serves to protect the ligand against oxidation, reduction and cycloaddition reactions while the steric bulk of this adjunct serves to direct the approach reagents to unsaturated groups attached to the diene onto the face opposite to iron. Furthermore, the Fe(CO)3 moiety can serve to stabilize carbocation centers adjacent to the diene (i.e. pentadienyl-iron cations). Recent applications of these reactivities to the synthesis of polyene, cyclopropane, cycloheptadiene and cyclohexenone containing natural products or analogs will be presented. Keywords: Diene ligands, Iron, Synthetic methods, Regioselective nucleophilic addition.
    [Show full text]
  • Iron(III) As Lewis Acid Catalyst in Organosilicon and Carbonyl Chemistry
    Risto Savela Iron(III) as Lewis Acid Catalyst in Organosilicon and Carbonyl Chemistry Iron(III) as Lewis Acid Catalyst in Organosilicon and Carbonyl Chemistry Acid Catalyst in Organosilicon Iron(III) as Lewis Risto Savela Johan Gadolin Process Chemistry Centre Laboratory of Organic Chemistry Faculty of Science and Technology Åbo Akademi University ISBN 978-952-12-3205-3 Åbo, Finland Painosalama Oy – Turku, Finland 2015 2015 2015 Iron(III) as Lewis Acid Catalyst in Organosilicon and Carbonyl Chemistry Risto Savela Johan Gadolin Process Chemistry Centre Laboratory of Organic Chemistry Faculty of Science and Technology Åbo Akademi University Åbo, Finland 2015 Supervisor and Custos Professor Reko Leino Laboratory of Organic Chemistry Åbo Akademi University Åbo, Finland Opponent Dr. George Britovsek Department of Chemistry Imperial College London London, United Kingdom Reviewers Professor Timo Repo Laboratory of Inorganic Chemistry University of Helsinki Helsinki, Finland and Professor Hans Adolfsson Department of Organic Chemistry Stockholm University Stockholm, Sweden ISBN 978-952-12-3206-0 Painosalama Oy – Turku, Finland 2015 Remember kids, the only difference between screwing around and science, is writing it down. Adam Savage PREFACE The present work was carried out at the Laboratory of Organic Chemistry, Department of Natural Sciences, Åbo Akademi University between the years 2009 and 2015. Financial support from the former National Graduate School of Organic Chemistry and Chemical Biology, Stiftelsen för Åbo Akademi, Magnus Ehrnrooth foundation, Orion Farmos Research foundation, Rector of Åbo Akademi and Kemian Päivien säätiö is gratefully acknowledged. I wish to express my gratitude to my supervisor Professor Reko Leino for giving me the opportunity to join the research group, giving me a chance to venture into the world of iron catalysis and for his patience and support during these years.
    [Show full text]
  • Nomenclature of Organic Chemistry. IUPAC Recommendations and Preferred Names 2013
    International Union of Pure and Applied Chemistry Division VIII Chemical Nomenclature and Structure Representation Division Nomenclature of Organic Chemistry. IUPAC Recommendations and Preferred Names 2013. Prepared for publication by Henri A. Favre and Warren H. Powell, Royal Society of Chemistry, ISBN 978-0-85404-182-4 Chapter P-6 APPLICATIONS TO SPECIFIC CLASSES OF COMPOUNDS (continued) (P-66 to P-69) (continued from P-60 to P-65) P-60 Introduction P-61 Substitutive nomenclature: prefix mode P-62 Amines and imines P-63 Hydroxy compounds, ethers, peroxols, peroxides and chalcogen analogues P-64 Ketones, pseudoketones and heterones, and chalcogen analogues P-65 Acids and derivatives P-66 Amides, hydrazides, nitriles, aldehydes P-67 Oxoacids used as parents for organic compounds P-68 Nomenclature of other classes of compounds P-69 Organometallic compounds P-66 AMIDES, IMIDES, HYDRAZIDES, NITRILES, AND ALDEHYDES, P-66.0 Introduction P-66.1 Amides P-66.2 Imides P-66.3 Hydrazides P-66.4 Amidines, amidrazones, hydrazidines, and amidoximes (amide oximes) P-66.5 Nitriles P-66.6 Aldehydes P-66.0 INTRODUCTION The classes dealt with in this Section have in common the fact that their retained names are derived from those of acids by changing the ‘ic acid’ ending to a class name, for example ‘amide’, ‘ohydrazide’, ‘nitrile’, or ‘aldehyde’. Their systematic names are formed substitutively by the suffix mode using one of two types of suffix, one that includes the carbon atom, for example, ‘carbonitrile’ for –CN, and one that does not, for example, ‘-nitrile’ for –(C)N. Amidines are named as amides, hydrazidines as hydrazides, and amidrazones as amides or hydrazides.
    [Show full text]
  • Synthesis, Purification, and Characterization of Tetraphosphine Ligands Deniz Cevik
    Synthesis, purification, and characterization of tetraphosphine ligands Deniz Cevik To cite this version: Deniz Cevik. Synthesis, purification, and characterization of tetraphosphine ligands. Other. Univer- sité Paris-Saclay, 2017. English. NNT : 2017SACLX026. tel-01631221 HAL Id: tel-01631221 https://pastel.archives-ouvertes.fr/tel-01631221 Submitted on 8 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2017SACLX026 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY PREPAREE A ÉCOLE POLYTECHNIQUE ECOLE DOCTORALE N° 517 2MIB | Sciences chimiques : Molécules, matériaux, instrumentation et biosystèmes Spécialité de doctorat : Chimie Par Mme. Deniz Çevik Synthesis, Purification, and Characterization of Tetraphosphine Ligands Thèse présentée et soutenue à Palaiseau, le 17. Juillet 2017 : Composition du Jury : Mme. Hii, King Kuok (Mimi) Professeur Imperial College London Rapporteure M. Manoury, Eric DR - CNRS au LCC (Toulouse) Rapporteur M. Voituriez, Arnaud DR - CNRS á l’ICSN Président M. van Leeuwen, Piet Chaire d’Attractivité au LPCNO, INSA-Toulouse
    [Show full text]