Durham E-Theses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Brittain-DR-1965-Phd-Thesis.Pdf
POLYMETHYLENE PYRIDINES , A thesis submitted by David Robert Brittain in partial fulfilment of the requirements for the degree of DOCTOR OP PHILOSOPHY in the University of London Organic Chemistry Department, dune, 1965. Imperial College, LONDON, S.W.7. ABSTRACT This thesis describes a series of attempts to syn- thesise 2,5- and 1,4-polymethylene bridged pyridines. Nuclear magnetic resonance theory predicts that protons, which are held directly over an aromatic ring, will be abnormally shielded compared with protons in aliphatic straight-chain hydrocarbons. This prediction has been verified for the central methylene protons of paracyclo- phanes. The degree of shielding, expressed in terms of the distance from the aromatic ring, is a measure of the induced ring current and hence the aromaticity of the benzene ring. Similar measurements upon 2,5- or 1,4— polymethylene bridged pyridines would make it possible to determine the degree of aromaticity of the pyridine ring relative to benzene. A review of the subject of aromaticity is presented in which special reference has been made to its inter- pretation by nuclear magnetic resonance. The synthetic work has not been brougL.t to a truly satisfactory conclusion. However, the synthetic routes to 2,5-dialkylpyridines have been thoroughly investigated and a wide variety of such compounds prepared. The functional groups at the ends of the alkyl chains have been varied in an effort to produce a derivative which would cyclise to give a 2,5-bridged pyridine. The attempted intramolecular oxidative coupling of 2,5-dihex- 51 -ynylpyridine received much attention. In the attempts to obtain a 1,4-bridged pyridine, two tricyclic compounds, each containing two quaternised pyridine rings linked by polymethylene chains, were obtained. -
Pearson-CV-15.Pdf
A. J. Pearson/C.V. January 2016 Curriculum Vitae Anthony J. Pearson Academic Rank: Rudolph & Susan Rense Professor of Chemistry Birthplace: Kingswinford, England. Citizenship: British; U.S. Naturalized Citizen. Education: University of Leeds, England, B.Sc. Hons. Class 1, 1971, Chemistry. Aston University, England, Ph.D., 1974, Organic Chemistry. Awards & Honors: Akroyd Scholarship (1969), Whytlaw-Gray Prize for Chemistry (1971), and Dawson Prize for Physical Chemistry (1971), University of Leeds. Sir Gilbert Morgan Medal (1973), Society for Chemical Industry, U.K. Science and Engineering Research Council (U.K.) Advanced Fellowship (1977-82). Sigma Xi Research Award (1984), Case Western Reserve University. John S. Diekhoff Award for Distinguished Graduate Teaching (1994), Case Western Reserve University. Visiting Scientist, Chemistry Research Promotion Center, Taipei, Taiwan, R.O.C., May 1990. Visiting Professor, University of Auckland, New Zealand, July/August, 1995. Chairman-Elect, American Chemical Society, Cleveland Section, 1999. Chairman, 2000. Finalist (one of three) for Northern Ohio Live 2001 Award of Achievement in Architecture, with R. Bostwick, N. Distad, K. Kutina, and N. Rushforth, for design of Agnar Pytte Science Center at CWRU. Case Alumni Association, Recognition of Meritorious Service, 2003. Experience: 1963-66 Chemist. Industrial research and analytical laboratories. Albright & Wilson; British Steel; West Midlands Gas Board. Semi-professional musician. 1974-77 Postdoctoral Research Fellow, with Arthur J. Birch. Research School of Chemistry, Australian National University, Canberra, Australia. 1977-82 SERC Advanced Fellow. Cambridge University Chemical Laboratory. 1978-81 Pauline Merz Official Fellow and Lecturer in Chemistry. Girton College, Cambridge University. 1979-81 Tutor. Girton College, Cambridge University. 1982-84 Associate Professor of Chemistry. -
04. M.SC Chemistry
DEPARTMENT OF CHEMISTRY ANNA UNIVERSITY, CHENNAI VISION The Department of Chemistry at Anna University shall strive towards attaining world class status and recognition by producing students with sound knowledge, professional skills, high levels of integrity and ethical values. The Department shall provide an outstanding ambience for teaching, research and consultancy.The Department shall perform frontier research and create knowledge base in theoretical and appliedchemistry, polymeric and catalytic materials, fuel and energy related processes and materials, environmental chemistry and other transdisciplinary areas of technological importance. MISSION The Department of Chemistry, Anna University shall contribute to the educational, economic and social development: By producing postgraduates and Doctorates who are equipped with thorough knowledge in Chemistry, analytical thinking, practical skills and ethics. By inspiring the students to be creative thinkers, inspirational role models and citizens with environmental and social consciousness. By introducing high quality academic and research programmes in Chemistry and enabling interaction with experts from around the world in the fields of Chemistry. By ensuring a supportive ambience in the Department with dynamic leadership and growth opportunities to meet the needs of the students, faculty and staff. By promoting the development of technologically and socially relevant processes and products in the fields of catalysis, polymers, corrosion resistance coatings and energy conversion through academic and sponsored research, in collaboration with global research groups. By sharing the intellectual resources and infrastructural facilities of the Department of Chemistry among the academic fraternity of the University campus and other Institutions, among the industrial research groups, funding agencies and the Government. By facilitating collaborative partnership with industries and other institutions and catalyseinnovation, transfer of technology and commercialization towards fulfilling societal developments. -
JUN 1 51998 Science
Efforts Toward the Syntheses of Natural Products: Part A: Paeoniflorin Part B: (+)-Taxusin A thesis presented by Rebecca J. Carazza B.S. Chemistry University of Massachusetts, Amherst, 1993 Submitted to the Department of Chemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry at the Massachusetts Institute of Technology June 1998 © 1998 Massachusetts Institute of Technology. All rights reserved. SinatureofAuthor: SignatureT- -~- -- .. -uof -Author: -- I- ----- D4pdrtment o('ihemistry May 26, 1998 Certified by: ,Scott C. Virgil Thesis Advisor Acceuted bv: Dietmar Seyferth Chairman, Departmental Committee on Graduate Students O-V .Z\ . JUN 1 51998 Science UR PAES This doctoral thesis has been examined by a committee of the Department of Chemistry as follows: Professor Rick L. Danheiser - Chairman Professor Scott C. Virgil / Th/sis Supervisor Professor Peter H. Seeberger Efforts Toward the Syntheses of Natural Products: Part A: Paeoniflorin Part B: (+)-Taxusin by Rebecca J. Carazza Submitted to the Department of Chemistry on May 26, 1998 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry Massachusetts Institute of Technology ABSTRACT Part A Efforts toward the synthesis of the monoterpene glycoside paeoniflorin (1) are discussed. Optimization of the previous synthetic route was successful. Synthesis of the key cc-diazo intermediate 30 was achieved and the construction of the carbocyclic frame was completed. Key reactions of the strategy involve a ring contraction via a Wolff rearrangement, and formation of the lactone 78 which undergoes diisobutylaluminum hydride reduction followed by acid catalyzed cyclization to the paeoniflorin ring system 80. A new synthetic strategy was initiated to prepare the key [3.2.1]bicyclooctanone 81 using a palladium mediated olefin cyclization of the acyloin substrate 82. -
Lithium Transport in Crown Ether Polymers
Durham E-Theses Lithium transport in crown ether polymers Collie, Luke E. How to cite: Collie, Luke E. (1995) Lithium transport in crown ether polymers, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5196/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Lithium Transport in Crown Ether Polymers Luke E. Collie BSc. (Hons.) University of Durham Department of Chemistry The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. A Thesis submitted for the degree of Doctor of Philosophy October 1995 1 6 JAN 1996 Statement of Copyright The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. -
Syntheses of Morphine and Codeine (1992 – 2002): Templates for Exploration of Synthetic Tools
Current Organic Synthesis, 2006, 3, 99-120 99 Syntheses of Morphine and Codeine (1992 – 2002): Templates for Exploration of Synthetic Tools L. M. Mascavage#, M. L. Wilson and D. R. Dalton* Department of Chemistry (016-00), Beury Hall, 13th and Norris Streets, Temple University, Philadelphia, PA 19122, USA and Department of Chemistry, Arcadia University, Glenside, PA, 19038, USA Abstract: Morphine (1) and its O-methylated analogue codeine (2), analgesic alkaloids of the opium poppy (Papaver Somniferium), have been targets of organic chemists engaged in synthetic activities for at least half a century. The “first” (Gates) and “most efficient” (Rice) syntheses of morphine (1) and codeine (2) are well known and have been reviewed and analyzed extensively numerous times. However, syntheses of the same two alkaloids that have been reported since 1992 and which have been used as devices to advance the art of organic synthesis are not as widely recognized and they have not been as thoroughly reviewed. Here they are analyzed in the spirit of the use of these two compounds as templates. Further, since both racemic and enantiospecific syntheses are important and since all eight (8) approaches (since 1992) are sufficiently different so as to warrant more tha n superficial examination, they are all considered. H HO 7 H 8 15 6 H H 6 14 N 5 CH3 H 13 NCH3 HO 14 13 9 16 9 O 16 12 15 10 O 10 4 4 11 1, R = H 2, R = CH 1 1 3 RO 3 RO 3 2 2 It is nearly two hundred years since the initial report the ubiquitous standard opium poppy or with cultivars that (1806) of the isolation of morphine (1, R = H) from the might be subsequently generated through genetic unripe seed pods of the opium poppy, Papever somniferum, manipulations so as to maximize production of these or by Friedrich Wihelm Adam Setürner [1], seventy five years related bases. -
List of Publications
List of Publications 316. D. Mishig, M. Gruner, T. Lübken, C. Ganbaatar, D. Regdel, H.-J. Knölker, Sci. Rep. 2021, 11, 13740: Isolation and Structure Elucidation of Pyridine Alkaloids from the Aerial Parts of the Mongolian Medicinal Plant Caryopteris mongolica Bunge. 315. A. K. Solanki, M. R. Biswal, S. Walterhouse, R. Martin, A. A. Kondkar, H.-J. Knölker, B. Rahman, E. Arif, S. Husain, S. R. Montezuma, D. Nihalani, G. P. Lobo, Cells 2021, 10, 1322: Loss of Motor Protein MYO1C Causes Rhodopsin Mislocation and Results in Impaired Visual Function. 314. A. Åslund, M. H. Bokhari, E. Wetterdal, R. Martin, H.-J. Knölker, T. Bengtsson, Mol. Metab. 2021, 53, 101247: Myosin 1c: A Novel Regulator of Glucose Uptake in Brown Adipocytes. 313. F. Puls, P. Linke, O. Kataeva, H.-J. Knölker, Angew. Chem. 2021, 133, 14202–14209; Angew. Chem. Int. Ed. 2021, 60, 14083–14090: Transition Metals in Organic Synthesis, Part 148. Iron- Catalyzed Wacker-type Oxidation of Olefins at Room Temperature with 1,3-Diketones or Neocuproine as Ligands. 312. M. Witting, U. Schmidt, H.-J. Knölker, Anal. Bioanal. Chem. 2021, 413, 2091–2102: UHPLC-IM- Q-ToFMS Analysis of Maradolipids, Found Exclusively in Caenorhabditis elegans Dauer Larvae. 311. H.-J. Knölker, Sitzungsberichte der Sächsischen Akademie der Wissenschaften zu Leipzig – Mathematisch-naturwissenschaftliche Klasse, S. Hirzel, Suttgart/Leipzig, 2021, Band 133, Heft 4, S. 1–30: Katalyse – Eine Renaissance der „Eisenzeit“? 310. S. Vellino, C. Oddou, P. Rivier, C. Boyault, E. Hiriart-Bryant, A. Kraut, R. Martin, Y. Coute, H.-J. Knölker, M. A. Valverde, C. Albigès-Rizo, O. Destaing, J. -
Iron Catalysis in Organic Chemistry
Iron Catalysis in Organic Chemistry Reactions and Applications Edited by Bernd Plietker Iron Catalysis in Organic Chemistry Edited by Bernd Plietker Related Titles Cornils, B., Herrmann, W. A., Muhler, M., Wong, C.-H. (eds.) Catalysis from A to Z A Concise Encyclopedia 2007 ISBN: 978-3-527-31438-6 Tietze, L. F., Brasche, G., Gericke, K. M. Domino Reactions in Organic Synthesis 2006 SBN: 978-3-527-29060-4 Yudin, A. K. (ed.) Aziridines and Epoxides in Organic Synthesis 2006 ISBN: 978-3-527-31213-9 Cornils, B., Herrmann, W. A., Horvath, I. T., Leitner, W., Mecking, S., Olivier-Bourbigou, H., Vogt, D. (eds.) Multiphase Homogeneous Catalysis 2005 ISBN: 978-3-527-30721-0 Christoffers, J., Baro, A. (eds.) Quaternary Stereocenters Challenges and Solutions for Organic Synthesis 2005 ISBN: 978-3-527-31107-1 Dyker, G. (ed.) Handbook of C-H Transformations Applications in Organic Synthesis 2005 ISBN: 978-3-527-31074-6 Knochel, P. (ed.) Handbook of Functionalized Organometallics Applications in Synthesis 2005 ISBN: 978-3-527-31131-6 Iron Catalysis in Organic Chemistry Reactions and Applications Edited by Bernd Plietker The Editor All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and Prof. Dr. Bernd Plietker publisher do not warrant the information contained Institut für Organische Chemie in these books, including this book, to be free of Universität Stuttgart errors. Readers are advised to keep in mind that Pfaffenwaldring 55 statements, data, illustrations, procedural details or 70569 Stuttgart other items may inadvertently be inaccurate. Germany Library of Congress Card No.: applied for British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. -
Iron Complexes and (Dienyl)Iron Cations in Organic Synthesis William Donaldson Marquette University, [email protected]
CORE Metadata, citation and similar papers at core.ac.uk Provided by epublications@Marquette Marquette University e-Publications@Marquette Chemistry Faculty Research and Publications Chemistry, Department of 8-1-2009 Recent Applications of Acyclic (Diene)iron Complexes and (Dienyl)iron Cations in Organic Synthesis William Donaldson Marquette University, [email protected] Subhabrata Chaudhury Marquette University Accepted version. European Journal of Organic Chemistry, Volume 2009, Issue 23 (August 2009). pp 3831-3843. DOI: 10.1002/ejoc.200900141 © 2009 Wiley-VCH Verlag. Used with permission. This is the pre-peer reviewed version of the article, which has been published in final form. NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation at the bottom of the page. Recent Applications of Acyclic (Diene)iron Complexes and (Dienyl)iron Cations in Organic Synthesis William A. Donaldson Department of Chemistry, Marquette University Milwaukee, WI Subhabrata Chaudhury Department of Chemistry, Marquette University Milwaukee, WI Abstract: Complexation of (tricarbonyl)iron to an acyclic diene serves to protect the ligand against oxidation, reduction and cycloaddition reactions while the steric bulk of this adjunct serves to direct the approach reagents to unsaturated groups attached to the diene onto the face opposite to iron. Furthermore, the Fe(CO)3 moiety can serve to stabilize carbocation centers adjacent to the diene (i.e. pentadienyl-iron cations). Recent applications of these reactivities to the synthesis of polyene, cyclopropane, cycloheptadiene and cyclohexenone containing natural products or analogs will be presented. Keywords: Diene ligands, Iron, Synthetic methods, Regioselective nucleophilic addition. -
Advances in the Asymmetric Total Synthesis of Natural Products Using Chiral Secondary Amine Catalyzed Reactions of Α,Β-Unsaturated Aldehydes
molecules Review Advances in the Asymmetric Total Synthesis of Natural Products Using Chiral Secondary Amine Catalyzed Reactions of α,β-Unsaturated Aldehydes Zhonglei Wang 1,2 1 School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; [email protected] 2 School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China Academic Editor: Ari Koskinen Received: 12 August 2019; Accepted: 19 September 2019; Published: 19 September 2019 Abstract: Chirality is one of the most important attributes for its presence in a vast majority of bioactive natural products and pharmaceuticals. Asymmetric organocatalysis methods have emerged as a powerful methodology for the construction of highly enantioenriched structural skeletons of the target molecules. Due to their extensive application of organocatalysis in the total synthesis of bioactive molecules and some of them have been used in the industrial synthesis of drugs have attracted increasing interests from chemists. Among the chiral organocatalysts, chiral secondary amines (MacMillan’s catalyst and Jorgensen’s catalyst) have been especially considered attractive strategies because of their impressive efficiency. Herein, we outline advances in the asymmetric total synthesis of natural products and relevant drugs by using the strategy of chiral secondary amine catalyzed reactions of α,β-unsaturated aldehydes in the last eighteen years. Keywords: bioactive natural products; pharmaceuticals; asymmetric total synthesis; chiral secondary amines; α,β-unsaturated aldehydes 1. Introduction In 2000, the MacMillan group [1] first described the fundamental concept of LUMO-lowering iminium-ion activation. In 2005, the Jørgensen group [2,3] reported diarylprolinol silyl ether catalysts, which have also been used in iminium-ion catalysis. -
Iron(III) As Lewis Acid Catalyst in Organosilicon and Carbonyl Chemistry
Risto Savela Iron(III) as Lewis Acid Catalyst in Organosilicon and Carbonyl Chemistry Iron(III) as Lewis Acid Catalyst in Organosilicon and Carbonyl Chemistry Acid Catalyst in Organosilicon Iron(III) as Lewis Risto Savela Johan Gadolin Process Chemistry Centre Laboratory of Organic Chemistry Faculty of Science and Technology Åbo Akademi University ISBN 978-952-12-3205-3 Åbo, Finland Painosalama Oy – Turku, Finland 2015 2015 2015 Iron(III) as Lewis Acid Catalyst in Organosilicon and Carbonyl Chemistry Risto Savela Johan Gadolin Process Chemistry Centre Laboratory of Organic Chemistry Faculty of Science and Technology Åbo Akademi University Åbo, Finland 2015 Supervisor and Custos Professor Reko Leino Laboratory of Organic Chemistry Åbo Akademi University Åbo, Finland Opponent Dr. George Britovsek Department of Chemistry Imperial College London London, United Kingdom Reviewers Professor Timo Repo Laboratory of Inorganic Chemistry University of Helsinki Helsinki, Finland and Professor Hans Adolfsson Department of Organic Chemistry Stockholm University Stockholm, Sweden ISBN 978-952-12-3206-0 Painosalama Oy – Turku, Finland 2015 Remember kids, the only difference between screwing around and science, is writing it down. Adam Savage PREFACE The present work was carried out at the Laboratory of Organic Chemistry, Department of Natural Sciences, Åbo Akademi University between the years 2009 and 2015. Financial support from the former National Graduate School of Organic Chemistry and Chemical Biology, Stiftelsen för Åbo Akademi, Magnus Ehrnrooth foundation, Orion Farmos Research foundation, Rector of Åbo Akademi and Kemian Päivien säätiö is gratefully acknowledged. I wish to express my gratitude to my supervisor Professor Reko Leino for giving me the opportunity to join the research group, giving me a chance to venture into the world of iron catalysis and for his patience and support during these years. -
Strategic Applications of Named Reactions in Organic Synthesis
Strategic Applications of Named Reactions in Organic Synthesis Strategic Applications of Named Reactions in Organic Synthesis Background and Detailed Mechanisms by László Kürti and Barbara Czakó UNIVERSITY OF PENNSYLVANIA 250 Named Reactions AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD • PARIS SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO iii Senior Publishing Editor Jeremy Hayhurst Project Manager Carl M. Soares Editorial Assistant Desiree Marr Marketing Manager Linda Beattie Cover Printer RR Donnelley Interior Printer RR Donnelley Elsevier Academic Press 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald's Road, London WC1X 8RR, UK This book is printed on acid-free paper. Copyright © 2005, Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: [email protected]. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting “Customer Support” and then “Obtaining Permissions.” Library of Congress Cataloging-in-Publication Data Application Submitted British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN: 0-12-429785-4 For all information on all Elsevier Academic Press Publications visit our Web site at www.books.elsevier.com Printed in the United States of America 05 06 07 08 09 10 9 8 7 6 5 4 3 2 1 iv This book is dedicated to Professor Madeleine M.