UNCLASSIFIED Accession Folder Doc Ref ID Filename Doc Title Date
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SPYCATCHER by PETER WRIGHT with Paul Greengrass WILLIAM
SPYCATCHER by PETER WRIGHT with Paul Greengrass WILLIAM HEINEMANN: AUSTRALIA First published in 1987 by HEINEMANN PUBLISHERS AUSTRALIA (A division of Octopus Publishing Group/Australia Pty Ltd) 85 Abinger Street, Richmond, Victoria, 3121. Copyright (c) 1987 by Peter Wright ISBN 0-85561-166-9 All Rights Reserved. No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the publisher. TO MY WIFE LOIS Prologue For years I had wondered what the last day would be like. In January 1976 after two decades in the top echelons of the British Security Service, MI5, it was time to rejoin the real world. I emerged for the final time from Euston Road tube station. The winter sun shone brightly as I made my way down Gower Street toward Trafalgar Square. Fifty yards on I turned into the unmarked entrance to an anonymous office block. Tucked between an art college and a hospital stood the unlikely headquarters of British Counterespionage. I showed my pass to the policeman standing discreetly in the reception alcove and took one of the specially programmed lifts which carry senior officers to the sixth-floor inner sanctum. I walked silently down the corridor to my room next to the Director-General's suite. The offices were quiet. Far below I could hear the rumble of tube trains carrying commuters to the West End. I unlocked my door. In front of me stood the essential tools of the intelligence officer’s trade - a desk, two telephones, one scrambled for outside calls, and to one side a large green metal safe with an oversized combination lock on the front. -
How I Learned to Stop Worrying and Love the Bombe: Machine Research and Development and Bletchley Park
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CURVE/open How I learned to stop worrying and love the Bombe: Machine Research and Development and Bletchley Park Smith, C Author post-print (accepted) deposited by Coventry University’s Repository Original citation & hyperlink: Smith, C 2014, 'How I learned to stop worrying and love the Bombe: Machine Research and Development and Bletchley Park' History of Science, vol 52, no. 2, pp. 200-222 https://dx.doi.org/10.1177/0073275314529861 DOI 10.1177/0073275314529861 ISSN 0073-2753 ESSN 1753-8564 Publisher: Sage Publications Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. This document is the author’s post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it. Mechanising the Information War – Machine Research and Development and Bletchley Park Christopher Smith Abstract The Bombe machine was a key device in the cryptanalysis of the ciphers created by the machine system widely employed by the Axis powers during the Second World War – Enigma. -
A Practical Implementation of a One-Time Pad Cryptosystem
Jeff Connelly CPE 456 June 11, 2008 A Practical Implementation of a One-time Pad Cryptosystem 0.1 Abstract How to securely transmit messages between two people has been a problem for centuries. The first ciphers of antiquity used laughably short keys and insecure algorithms easily broken with today’s computational power. This pattern has repeated throughout history, until the invention of the one-time pad in 1917, the world’s first provably unbreakable cryptosystem. However, the public generally does not use the one-time pad for encrypting their communication, despite the assurance of confidentiality, because of practical reasons. This paper presents an implementation of a practical one-time pad cryptosystem for use between two trusted individuals, that have met previously but wish to securely communicate over email after their departure. The system includes the generation of a one-time pad using a custom-built hardware TRNG as well as software to easily send and receive encrypted messages over email. This implementation combines guaranteed confidentiality with practicality. All of the work discussed here is available at http://imotp.sourceforge.net/. 1 Contents 0.1 Abstract.......................................... 1 1 Introduction 3 2 Implementation 3 2.1 RelatedWork....................................... 3 2.2 Description ........................................ 3 3 Generating Randomness 4 3.1 Inadequacy of Pseudo-random Number Generation . 4 3.2 TrulyRandomData .................................... 5 4 Software 6 4.1 Acquiring Audio . 6 4.1.1 Interference..................................... 6 4.2 MeasuringEntropy................................... 6 4.3 EntropyExtraction................................ ..... 7 4.3.1 De-skewing ..................................... 7 4.3.2 Mixing........................................ 7 5 Exchanging Pads 8 5.1 Merkle Channels . 8 5.2 Local Pad Security . -
Biometrics & Security
Biometrics & Security: Combining Fingerprints, Smart Cards and Cryptography THÈSE NO 4748 (2010) PRÉSENTÉE LE 25 AOÛT 2010 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS LABORATOIRE DE SÉCURITÉ ET DE CRYPTOGRAPHIE PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Claude BARRAL acceptée sur proposition du jury: Prof. A. Lenstra, président du jury Prof. S. Vaudenay, Dr A. Tria, directeurs de thèse Prof. B. Dorizzi, rapporteur Dr A. Drygajlo, rapporteur Prof. A. Ross, rapporteur Suisse 2010 Acknowledgments First of all, I would like to thank David Naccache for his crazy idea to give me the opportunity to start a PhD thesis, on the late, and Serge Vaudenay for his welcoming in LASEC, for teaching me cryptography, and his incredible patience with my slow advancement in this PhD work. Many thanks to Jean-Pierre Gloton, David Naccache and Pierre Paradinas for sup- porting my Doctoral School application. I must thank all my colleagues in Gemplus, then Gemalto, for all their support. Especially Pierre Paradinas for hiring me, more than ten years ago, in his GRL team - the Gemplus Research Lab - Denis Praca, my very first mentor at Gemplus and Michel Agoyan for his precious sup- port whatever was the subject (e.g. Hardware, Software, Chip Design, Trainees management). Then Eric Brier and Cédric Cardonnel, first persons to work with me on Biometrics. Pascal Paillier and Louis Goubin for their support in cryptography. Jean-Louis Lanet for giving me the opportunity to give my very first courses at universities. Precisely, I would like to thank every person having trusted me for my teaching skills on Biomet- rics, Smart Cards and Cryptography: Traïan Muntean at Ecole Supérieure d’Ingénieurs de Lu- miny, Marseille, France. -
Polish Mathematicians Finding Patterns in Enigma Messages
Fall 2006 Chris Christensen MAT/CSC 483 Machine Ciphers Polyalphabetic ciphers are good ways to destroy the usefulness of frequency analysis. Implementation can be a problem, however. The key to a polyalphabetic cipher specifies the order of the ciphers that will be used during encryption. Ideally there would be as many ciphers as there are letters in the plaintext message and the ordering of the ciphers would be random – an one-time pad. More commonly, some rotation among a small number of ciphers is prescribed. But, rotating among a small number of ciphers leads to a period, which a cryptanalyst can exploit. Rotating among a “large” number of ciphers might work, but that is hard to do by hand – there is a high probability of encryption errors. Maybe, a machine. During World War II, all the Allied and Axis countries used machine ciphers. The United States had SIGABA, Britain had TypeX, Japan had “Purple,” and Germany (and Italy) had Enigma. SIGABA http://en.wikipedia.org/wiki/SIGABA 1 A TypeX machine at Bletchley Park. 2 From the 1920s until the 1970s, cryptology was dominated by machine ciphers. What the machine ciphers typically did was provide a mechanical way to rotate among a large number of ciphers. The rotation was not random, but the large number of ciphers that were available could prevent depth from occurring within messages and (if the machines were used properly) among messages. We will examine Enigma, which was broken by Polish mathematicians in the 1930s and by the British during World War II. The Japanese Purple machine, which was used to transmit diplomatic messages, was broken by William Friedman’s cryptanalysts. -
The Informant
PRESS INFORMATION The Informant History Permanent exhibition Collection Eye-witnesses Facts AS OF 10/17 Inhalt History 4 Permanent exhibition 6 Our collection 9 Eye-witnesses 10 Our experts 11 Events 12 Facts 14 Dear members of the press, Thank you very much for your interest in our museum. We hope that the information we provide here, about our permanent exhibition focussing on the secret world of espionage from ancient times to the present, will be of use to you. This is just an overview of our activities; if you have any further questions, please do not hesitate to contact us. We are also happy to give interviews and look forward to your visit! Robert Rückel, Director Contact: [email protected] Tel: +49 (0)30 - 39 82 00 45 - 0 Further information: deutsches-spionagemuseum.de/en/press 4 HISTORY The history of espionage The Persian King Cyrus II. (6th century BC) established a wide network of spies Alberti’s cipher disc, one of the first tools for Mata Hari – a double agent in WWI The Cryptex may look medieval but was the encryption of messages (15th century) invented by the author Dan Brown Knowledge has always been power – right Espionage was profes sionalized during the gauge the strength of enemy forces and shore back to the earliest settlements and the 15th century. The counsellors of the English up various political systems. The collapse of need of every ruler to find out what his Queen Elizabeth I (1533–1603) established the Warsaw Pact in the 1990s heralded a fur- enemies were doing, thinking and planning. -
The First Americans the 1941 US Codebreaking Mission to Bletchley Park
United States Cryptologic History The First Americans The 1941 US Codebreaking Mission to Bletchley Park Special series | Volume 12 | 2016 Center for Cryptologic History David J. Sherman is Associate Director for Policy and Records at the National Security Agency. A graduate of Duke University, he holds a doctorate in Slavic Studies from Cornell University, where he taught for three years. He also is a graduate of the CAPSTONE General/Flag Officer Course at the National Defense University, the Intelligence Community Senior Leadership Program, and the Alexander S. Pushkin Institute of the Russian Language in Moscow. He has served as Associate Dean for Academic Programs at the National War College and while there taught courses on strategy, inter- national relations, and intelligence. Among his other government assignments include ones as NSA’s representative to the Office of the Secretary of Defense, as Director for Intelligence Programs at the National Security Council, and on the staff of the National Economic Council. This publication presents a historical perspective for informational and educational purposes, is the result of independent research, and does not necessarily reflect a position of NSA/CSS or any other US government entity. This publication is distributed free by the National Security Agency. If you would like additional copies, please email [email protected] or write to: Center for Cryptologic History National Security Agency 9800 Savage Road, Suite 6886 Fort George G. Meade, MD 20755 Cover: (Top) Navy Department building, with Washington Monument in center distance, 1918 or 1919; (bottom) Bletchley Park mansion, headquarters of UK codebreaking, 1939 UNITED STATES CRYPTOLOGIC HISTORY The First Americans The 1941 US Codebreaking Mission to Bletchley Park David Sherman National Security Agency Center for Cryptologic History 2016 Second Printing Contents Foreword ................................................................................ -
The Da Vinci Code
The Da Vinci Code Dan Brown FOR BLYTHE... AGAIN. MORE THAN EVER. Acknowledgments First and foremost, to my friend and editor, Jason Kaufman, for working so hard on this project and for truly understanding what this book is all about. And to the incomparable Heide Lange—tireless champion of The Da Vinci Code, agent extraordinaire, and trusted friend. I cannot fully express my gratitude to the exceptional team at Doubleday, for their generosity, faith, and superb guidance. Thank you especially to Bill Thomas and Steve Rubin, who believed in this book from the start. My thanks also to the initial core of early in-house supporters, headed by Michael Palgon, Suzanne Herz, Janelle Moburg, Jackie Everly, and Adrienne Sparks, as well as to the talented people of Doubleday's sales force. For their generous assistance in the research of the book, I would like to acknowledge the Louvre Museum, the French Ministry of Culture, Project Gutenberg, Bibliothèque Nationale, the Gnostic Society Library, the Department of Paintings Study and Documentation Service at the Louvre, Catholic World News, Royal Observatory Greenwich, London Record Society, the Muniment Collection at Westminster Abbey, John Pike and the Federation of American Scientists, and the five members of Opus Dei (three active, two former) who recounted their stories, both positive and negative, regarding their experiences inside Opus Dei. My gratitude also to Water Street Bookstore for tracking down so many of my research books, my father Richard Brown—mathematics teacher and author—for his assistance with the Divine Proportion and the Fibonacci Sequence, Stan Planton, Sylvie Baudeloque, Peter McGuigan, Francis McInerney, Margie Wachtel, André Vernet, Ken Kelleher at Anchorball Web Media, Cara Sottak, Karyn Popham, Esther Sung, Miriam Abramowitz, William Tunstall-Pedoe, and Griffin Wooden Brown. -
WRAP Theses Shah 2016.Pdf
A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/81565 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications 1 2 ‘Secret Towns’: British Intelligence in Asia during the Cold War Nikita Shah A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Politics and International Studies Submitted March 2016 Department of Politics and International Studies University of Warwick 3 Table of Contents List of Abbreviations 1. Introduction 1 1.1 Chapter Outline 21 2. Methodology 25 2.1 Reading the Archive 25 2.2 A Lesson in Empire 31 2.3 Overcoming Archival Obstacles 38 3. Literature Review 49 3.1 Introduction 49 3.2 Definitional Debate – What is Intelligence? 51 3.3 The Special Relationship 63 3.4 The Special Intelligence Relationship in Asia 71 4. Historical Overview 80 4.1 The Special Intelligence Relationship in Asia 80 4.2 The Remnants of Empire 81 4.3 China, Hong Kong, and Taiwan 84 4.4 Burma 87 4.5 India 88 4.6 Indonesia 91 5. The Watchtower: British Intelligence in Hong Kong 95 5.1 Intelligence and Chaos in Hong Kong 101 5.2 Failed Networks and Blind Spots 106 5.3 British Intelligence and the Residue of Empire 112 4 5.4 Sino-Soviet Tensions and Espionage 128 5.5 The Special Intelligence Relationship in Hong Kong 132 6. -
Historical Cryptography 2
Historical cryptography 2 CSCI 470: Web Science • Keith Vertanen Overview • Historical cryptography – WWI • Zimmerman telegram – WWII • Rise of the cipher machines • Engima • Allied encryption 2 WWI: Zimmermann Telegram • 1915, U-boat sinks Lusitania – 1,198 drown including 128 US – Germany agrees to surface 1st • 1916, new Foreign Minister – Arthur Zimmermann • 1917, unrestricted submarine warfare – Zimmermann hatches plan • Keep American busy at home • Persuade Mexico to: invade US and invite Japan to attack US as well Arthur Zimmermann 3 4 Mechanization of secret writing • Pencil and paper – Security limited by what humans can do quickly and accurately in the heat of battle • Enter the machine Thomas Jefferson's wheel cipher Captain Midnight's Code-o-Graph 5 Enigma machine • Enigma cipher machine – 1918, patented by German engineer Arthur Scherbius Arthur Scherbius – A electrical/mechanical implementation of a polyalphabetic substitution cipher 6 7 Enigma rotors • Rotor (wheel, drum) – Monoalphabetic substitution cipher implemented via complex wiring pattern – One of 26 initial positions – Geared: rotates after each letter • Rotor set – 3 rotors in 3!=6 possible orders • Eventually increased to 3 out of 5 • Navy used even more – Possible keys: • 3! * 263 = 6 * 17,576 = 105,456 8 Enigma plugboard • Plugboard – Operator inserts cables to swap letters – Initially 6 cables • Swaps 6 pairs of letters • Leaves 14 letters unswapped – Possible configurations: • 100,391,791,500 • Total keys: – 17,576 * 6 * 100,391,791,500 ≈ 10,000,000,000,000,000 -
CHAPTER 8 a History of Communications Security in New Zealand
CHAPTER 8 A History of Communications Security in New Zealand By Eric Morgon Early Days “Admiralty to Britannia Wellington. Comence hostilities at once with Germany in accordance with War Standing Orders.” This is an entry in the cipher log of HMS Philomel dated 5 August, 1914. HMS Philomel was a cruiser of the Royal Navy and took part in the naval operations in the Dardanelles during the ill-fated Gallipoli campaign. Philomel’s cipher logs covering the period 1914 to 1918 make interesting reading and show how codes and ciphers were used extensively by the Royal Navy during World War 1. New Zealand officers and ratings served on board Philomel and thus it can be claimed that the use of codes and ciphers by Philomel are part of the early history of communications security in New Zealand. Immediately following the codes to Navy Office, the Senior Naval Officer New Zealand was advised that Cypher G and Cypher M had been compromised and that telegrams received by landline in these ciphers were to be recoded in Code C before transmission by Wireless Telegraphy (W/T) Apparently Cypher G was also used for cables between the Commonwealth Navy Board in Melbourne and he British Consul in Noumea. The Rear Admiral Commanding Her Majesty’s Australian Fleet instructed that when signalling by WT every odd numbered code group was to be a dummy. It is interesting to note that up until the outbreak of hostilities no provision had been made for the storage of code books or for precautions to prevent them from falling into enemy hands. -
History and Modern Cryptanalysis of Enigma's Pluggable Reflector
History and Modern Cryptanalysis of Enigma’s Pluggable Reflector Olaf Ostwald and Frode Weierud ABSTRACT: The development history of Umkehrwalze Dora (UKWD), Enigma's pluggable reflector, is presented from the first ideas in the mid-1920s to the last development plans and its actual usage in 1945. An Enigma message in three parts, enciphered with UKWD and intercepted by the British on 11 March 1945, is shown. The successful recovery of the key of this message is described. Modern computer-based cryptanalysis is used to recover the wiring of the unknown “Uncle Dick,” which the British called this field-rewirable reflector. The attack is based on the known ciphertext and plaintext pair from the first part of the intercept. After recovery of the unknown reflector wiring and the daily key the plaintext of the second part of the message is revealed. KEYWORDS: Enigma, cryptanalysis, Uncle Dick, Umkehrwalze Dora, UKWD, unsolved ciphers Address correspondence to Frode Weierud, Bjerkealleen 17, 1385 Asker, Norway. Email: [email protected] 1. Introduction Uncle Dick,1 as it was called by the codebreakers of Bletchley Park (BP), or Umkehrwalze Dora (UKWD), as designated by the Germans, was the nickname of a special pluggable reflector,2 used as the leftmost wheel within the scrambler 3 of the Enigma. The electro-mechanical cipher machine Enigma (from Greek αίνιγµα for “riddle”) was the backbone of the German Wehrmacht during World War II. Arthur Scherbius, a German promoted electrical engineer and inventor of considerable standing, invented Enigma in 1918 [14]. Subsequently it was improved and then used by all three parts of the German armed forces, namely army (Heer), air force (Luftwaffe), and military navy (Kriegsmarine), for enciphering and deciphering of their secret messages.